
SUBCONVEXITY FOR TWISTED L-FUNCTIONS OVER NUMBER FIELDS
VIA SHIFTED CONVOLUTION SUMS
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ABSTRACT. Assume that π is a cuspidal automorphic GL2 representation over a number field F . Then for any
Hecke character χ of conductor q, the subconvex bound

L(1/2,π⊗χ)�F,π,χ∞,ε N (q)3/8+θ/4+ε

holds for any ε > 0, where θ is any constant towards the Ramanujan-Petersson conjecture (θ = 7/64 is
admissible). In these notes, we derive this bound from the spectral decomposition of shifted convolution sums
worked out by the author in [Mag].

1. INTRODUCTION

The subconvexity problem is concerned with the size of an L-function. Given a family of automorphic
forms, we look for a bound of the form

L(1/2,π)�ε cond(π)δ+ε ,

which holds for each member of the family. Here, cond(π) denotes the analytic conductor of π , as described
in [IS00, Section 2]. With δ = 1/4, this is known as the convexity bound as it follows from the Phragmén-
Lindelöf convexity principle combined with the functional equation and some bound on the half-plane ℜs > 1
(for the latter see [Mol02]). However, for most applications, one needs a stronger estimate. Any improvement
in the exponent (i.e. any δ < 1/4) is called a subconvex bound. The generalized Lindelöf hypothesis
predicts that even δ = 0 is admissible, and this would follow from the generalized Riemann hypothesis.
On the other hand, several unconditional results are known. For example, for GL1 L-functions over Q (i.e.
Dirichlet L-functions), the famous Burgess bound [Bur63] is the above with δ = 3/16. For automorphic GL2
L-functions over number fields, the subconvexity problem was solved by Michel and Venkatesh [MV10] with
an unspecified δ .

Recently, Blomer and Harcos [BH10] proved a Burgess type subconvex bound for twisted automorphic
GL2 L-functions over totally real number fields. The method is based on the generalization of their earlier
work [BH08], a spectral decomposition of shifted convolution sums.

In this paper, we extend the subconvex bound of [BH10] to all number fields. Let π be an irreducible
cuspidal representation of GL2(F)\GL2(A) with unitary central character, and let χ be a Hecke character
of conductor q. Moreover, let θ be a constant towards the Ramanujan-Petersson conjecture (by [BB11],
θ = 7/64 is admissible).

Theorem 1. For any ε > 0, we have the Burgess like subconvex bound

L(1/2,π⊗χ)�F,π,χ∞,ε N (q)3/8+θ/4+ε ,

where N (q) stands for the norm of q.

We remark that the same exponent was simultaneously achieved by Wu [Wu14], using a method built on
[MV10].

The family of twisted L-functions considered in Theorem 1 was the first instance of the automorphic
subconvexity problem to be studied systematically (see for example the works [Iwa87], [Duk88], [DFI93],
[Byk96], [CI00], [CPSS], [BHM07], [Ven10]). Via Waldspurger type formulae, critical values of twisted
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L-functions are connected to Fourier coefficients of modular forms of half-integral weight. The whole area
has been highly motivated by Hilbert’s eleventh problem: which integers are integrally represented by a
given quadratic form over a number field, and subconvex bounds for twisted L-functions give rise to the
asymptotic of representation numbers of quadratic forms (see [DSP90]). They also appear in the solution
of other arithmetic equidistribution problems (consult [Coh05], [Zha05], [Ven10]). On the other hand, such
subconvexity estimates are often used as ingredients in higher-rank subconvexity problems.

A note to the reader. This paper is the continuation of [Mag], therefore it is cited many times below. The
results presented here (and also those of [Mag]) were part of the author’s PhD thesis [Mag13b] at Central
European University, Budapest.

Acknowledgements. I am grateful to my advisor, Gergely Harcos, for introducing me to the theory of
automorphic forms and for proposing me this instructive project. I also thank Valentin Blomer the helpful
discussions.

2. NOTATIONS

As in the introduction, let F be a number field (a finite algebraic extension of Q) with ring of integers o
and adele ring A. Assume that the degree of F over Q is r+2s, where F has r real and s complex places,
and set F1, . . . ,Fr for the pairwise inequivalent real and Fr+1, . . . ,Fr+s for the pairwise inequivalent complex
completions of F . Let then

F∞ =
r+s⊕
j=1

Fj

be the Minkowski space of F . Set further

F×∞,+ = {(a1, . . . ,ar+s) ∈ F×∞ : a1, . . . ,ar > 0}

for the multiplicative group of totally positive elements (those that are positive at each real place). An
important subset of this is the diagonal subgroup

Fdiag
∞,+ = {(a1, . . . ,ar+s) ∈ F×∞,+ : a1 = . . .= ar+s}.

For any a = (a1, . . . ,ar+s) ∈ F∞, we define its infinity norm

|a|∞ =
r

∏
j=1
|a j|

r+s

∏
j=r+1

|a j|2.

If π is an irreducible cuspidal automorphic GL2 representation with Hecke eigenvalues λπ(a), then on the
domain ℜs > 1, the corresponding L-function is defined as

L(s,π) = ∑
06=a⊆o

λπ(a)

N (a)s .

Fixing the representation π , we may twist it with various GL1 representations (i.e. Hecke characters) χ ,
and we get the L-function

L(s,π⊗χ) = ∑
06=a⊆o

λπ⊗χ(a)

N (a)s .

Now L(s,π) and also L(s,π⊗χ) (for any Hecke character χ) continue holomorphically to the complex
plane.

Throughout the paper, we use Vinogradov’s notation: A�∗ B means that for some constant c ∈ R
depending only on ∗, |A| ≤ cB. Also, by A�∗ B we mean that both A�∗ B and B�∗ A hold.
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3. PRELIMINARIES: KUZNETSOV FORMULA AND THE DENSITY OF THE AUTOMORPHIC SPECTRUM

3.1. A semi-adelic Kuznetsov formula over number fields. First of all, we introduce some more notations.
Given an ideal c, let

C1(c) = {π ∈ C1 | c⊆ cπ}, E1(c) = {χ ∈ E1 | c⊆ cχ,χ−1},

where C1, E1 stand for the cuspidal spectrum and the Eisenstein spectrum of trivial central character,
respectively; while cπ , cχ,χ−1 are the analytic conductors, consult [Mag, Section 2].

Now we briefly discuss a variant of the Kuznetsov formula (for details, see [Mag13a, Theorem 1] or
[Mag13b, Theorem 3], an extension of Venkatesh’s version [Ven04]) that we will use later, the central
character is still assumed to be trivial. In our notation, for a weight function h of the form described below
and an ideal c⊆ o,

[K(o) : K(c)]−1
∑

π∈C1(c)

C−1
π ∑

t|cc−1
π

h(rπ)λ
t
π(αa−1)λ t

π(α
′a′−1)+CSC =

const.F∆(αa−1,α ′a′−1)
∫

h(r)dµ+

const.F ∑
m∈C

∑
c∈amc

∑
ε∈o×+/o2×

KS(εα,a−1d−1;α ′γm,a
′−1d−1;c,a−1m−1d−1)

N (ca−1m−1)

·
∫

Bh(r)

(
4π

(αα ′γmε)
1
2

c

)
dµ,

(1)

where KS is a Kloosterman sum, B is a certain transform, and dµ is a certain measure of the space of the
archimedean spectral parameters (and for convenience, we introduce its norm)

r = (ν1, . . . ,νr,(νr+1, pr+1), . . . ,(νr+s, pr+s)), N (r) =
r

∏
j=1

(1+ |ν j|)
r+s

∏
j=r+1

(1+ |ν j|+ |p j|)2.

(see [Mag, Section 2]). We explain the notation and the conditions: d is the different; a−1 and a′−1 are
nonzero fractional ideals; α ∈ a,α ∈ a′ such that αα ′ is totally positive; C is a fixed set of narrow ideal
class representatives m, for which m2aa′−1 is a principal ideal generated by a totally positive element γm;
∆(αa−1,α ′a′−1) is 1 if αa−1 = α ′a′−1, otherwise it is 0; CSC is an analogous integral over the Eisenstein
spectrum. Further, the factors Cπ depend only on the representations π in the summation: for its definition,
see for example [Mag, Section 2], and for its estimates, consult [BH10, Sections 2.8-9] and [Mag13b, Chapter
3].

The weight function h we will use is of the form h = ∏ j h j (a product over the archimedean places), where
h j’s are defined as follows. Let a j,b j > 1,a′j ∈ R be given. Then at real places

h j(ν j) =

 e(ν
2
j− 1

4 )/a j , if |ℜν j|< 2
3 ,

1, if ν j ∈ 1
2 +Z, 3

2 ≤ |ν j| ≤ b j,
0 otherwise,

while at complex places

h j(ν j, p j) =

{
e(ν

2
j +a′j p2

j−1)/a j , if |ℜν j|< 2
3 , p j ∈ Z, |p j| ≤ b j,

0 otherwise.
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For the purpose of this paper, we will choose our parameters as follows. At each place, a j > 1 is arbitrary,
then set b j =

√a j. Furthermore, at complex places, we use a′j =−1. In this setup, we have the bounds∫
h j(ν j)dµ j� a j,

∫
(B jh j)ν j(t)dµ j� a j min(1, |t|1/2);∫

h j(ν j, p j)dµ j� a2
j ,

∫
(B jh j)(ν j,p j)(t)dµ j� a j min(1, |t|),

(2)

at real and complex places, respectively (see [BMP01, pp. 124-126], [BM03, Section 10] and [Mag13b,
Lemma 5.3]).

3.2. The density of the spectrum. In this section, we estimate the density of the Eisenstein and the cuspidal
spectrum in terms of the spectral parameters. These are the extensions of [BH10, Lemma 2 and Lemma 6].
After the suitable modifications, the proofs given there apply in the more general situation. In this section, we
still assume that the central character is trivial, since this is the only case we shall use later.

3.2.1. Density of the Eisenstein spectrum.

Lemma 1. Let c2
1c2 = c⊆ o, where c2 is squarefree. Then for 1≤ X ∈ R, 1≤ P ∈ Z,∫

ϖ∈E1(c)
|νϖ , j|≤X
|pϖ , j|≤P

1dϖ �F X r+sPsN (c1).

Proof. Any Hecke character χ can be factorized as χ = χ∞χfin. Here, χfin|∏p o
×
p

is a character of ∏p o
×
p .

By [BH10, Lemma 1] or [Mag, Proposition 2.1], cχ |c1, so there are at most ϕ(c1) possibilities for this
restriction. Given a character ξ of ∏p o

×
p , we estimate the measure of the set S of those Hecke characters χ

for which χfin|∏p o
×
p
= ξ . If S = /0, the measure is 0. If S 6= /0, fix some χ0 ∈ S. Then to any χ in S, associate

χ ′ = χχ
−1
0 . From the non-archimedan part, we see χ ′ is trivial on ∏p o

×
p . From the archimedan part, we see

that for a ∈ F×∞,+, χ ′(a j) = |a j|t j , if j ≤ r, and χ ′(a j) = |a j|t j(a j/|a j|)p j , if j > r, where t j ∈ i[−2X ,2X ], and
p j ∈ [−2P,2P]∩Z. Fix the vector (p j) j>r ∈ [−2P,2P]s∩Zs.

Now χ ′∞ is trivial on the group U+ of totally positive units embedded in F×∞,+. Fix a generating set
{u1, . . . ,ur+s−1} for the torsion-free part of U+. Then by the notation of [BH10], take

M =


deg[F1 : R] . . . deg[Fr+s : R]

deg[F1 : R] log |u1,1| . . . deg[Fr+s : R] log |u1,r+s|
· ·
· ·
· ·

deg[F1 : R] log |ur+s−1,1| . . . deg[Fr+s : R] log |ur+s−1,r+s|

 ∈ R(r+s)×(r+s).

Then the column vector t =(t j) j ∈ i[−2X ,2X ]r+s with iT =∑ j deg[Fj : R]t j satisfies Mt ∈{iT}×(2πiZ)r+s−1.
Using that M is invertible and depends only on F , we see∫ 2(r+2s)X

−2(r+2s)X
#(({T}× (2πiZ)r+s−1)∩Mi[−2X ,2X ]r+s)dT �F X r+s,

since the integrand is OF(X r+s−1). Taking into account the finiteness of the torsion subgroup of U+ and of
F×F×∞,+ ∏p o

×
p \A×, finally summing over (p j) j>r ∈ [−2P,2P]s, we obtain the statement. �

Corollary 2. Let c2
1c2 = c⊆ o, where c2 is squarefree. Then for 1≤ X ∈ R,∫

ϖ∈E1(c)
j≤r:|νϖ , j|≤X

j>r:|ν2
ϖ , j−p2

ϖ , j|≤X2

1dϖ �F X r+2sN (c1).
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3.2.2. Density of the cuspidal spectrum. Using the Kuznetsov formula, we may estimate the density of the
cuspidal spectrum as follows.

Lemma 3. Let c⊆ o be an ideal. Then for 1≤ X j ∈ Rr+s,

∑
ϖ∈C1(c)

j≤r:|νϖ , j|≤X j

j>r:|ν2
ϖ , j−p2

ϖ , j|≤X2
j

∑
t|cc−1

ϖ

|λ t
ϖ(m)|2�F,ε

(
∏
j≤r

X2+ε

j

)(
∏
j>r

X4+ε

j

)
N (c)1+ε +

(
∏

j
X2+ε

j

)
(N (gcd(m,c)))1/2N (m)1/2+ε .

Proof. This is the generalization of [BH10, Lemma 6], and we can repeat its proof. Choose a narrow class
representative n equivalent to m−1 from a fixed set of narrow class representatives. Then for some α ∈ F×,
m= αn−1, and 1�F N ((α))/N (m)�F 1. We apply the Kuznetsov formula (1) with α = α ′, a= a′ = n,
and the weight function is the one described above, setting a j = X2

j , b j = X j at each archimedean place. On
the spectral side of the Kuznetsov formula, we obtain an upper bound on the left-hand side of the statement,
since the contribution of the Eisenstein spectrum is nonnegative. For ϖ ∈ C1(c), one obtains

[K(o) : K(c)]Cϖ �F,ε (∏
j

X j)
εN (c)1+ε ,

consult [BH10, Section 2.9] and [Mag13b, Chapter 3] for the estimate of Cϖ . Then by (2), the delta term
gives

�F,ε
(
∏
j≤r

X2+ε

j

)(
∏
j>r

X4+ε

j

)
N (c)1+ε .

As for the Kloosterman term, we use Weil’s bound [Ven04, (13)] together with (2) to see it is

�F,ε

(
∏

j
X2+ε

j

)
N (c)1+ε max

a∈C
∑

06=c∈nac

N ((gcd(m,cn−1a−1)))1/2

N (cn−1a−1)1/2−ε

·∏
j≤r

min(1, |α j/c j|1/2)∏
j>r

min(1, |α j/c j|),
(3)

where C is a fixed set of narrow class representatives (depending only on F) such that a2 is a totally positive
ideal for each a ∈C. Then sum over the elements c can be rewritten as a sum over the principal ideals (c),
while the sum over the units is estimated in [BM98, Lemma 8.1]. Then the above display becomes

�F,ε

(
∏

j
X2+ε

j

)
N (c)1+ε max

a∈C
∑

06=(c)⊆nac

N (gcd(m,cn−1a−1))1/2

N (cn−1a−1)1/2−ε

· (1+ | log(N ((α/c)))|r+s−1)min(1,N ((α/c))),

which is obviously

�F,ε

(
∏

j
X2+ε

j

)
N (c)1+εN (m)1/2+2ε max

a∈C
∑

06=(c)⊆nac

N ((gcd(m,cn−1a−1)))1/2

N ((c))1/2+ε
.

We estimate now the sum. First we extend it to all nonzero ideals contained in nac (parametrized as bnac,
where 0 6= b⊆ o), then we factorize out N (gcd(m,c))1/2. In this way we obtain

1
N (nac)1+ε ∑

b⊆o

N (gcd(m,cb))1/2

N (b)1+ε
�F,ε

N (gcd(m,c))1/2

N (nac)1+ε
N (m)ε .
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Altogether, the contribution of the Kloosterman term is

�F,ε

(
∏

j
X2+ε

j

)
N (gcd(m,c))1/2N (m)1/2+ε .

Finally, recall that the contribution of the Eisenstein spectrum is nonnegative, hence we are done. �

Corollary 4. Let c⊆ o be an ideal. Then for 1≤ X j ∈ Rr+s,

∑
ϖ∈C1(c)

j≤r:|νϖ , j|≤X j

j>r:|ν2
ϖ , j−p2

ϖ , j|≤X2
j

∑
t|cc−1

π

1�F,ε

(
∏
j≤r

X2+ε

j

)(
∏
j>r

X4+ε

j

)
N (c)1+ε .

4. PROOF OF THEOREM 1

Assume that π is an irreducible cuspidal automorphic representation. Let q⊆ o be an ideal, χ a Hecke
character of conductor q. We may also think of χ as a character on the group of fractional ideals coprime
to q, extended to be 0 on other ideals. There exist characters χfin of (o/q)× and χ∞ of F×∞ satisfying
χ((t)) = χfin(t)χ∞(t) for all t ∈ o coprime to q. The transition from one meaning to another of Hecke
characters can be found at several places (see [Bum97, Sections 1.7 and 3.1], for example). Our goal is to
estimate L(1/2,π ⊗ χ) in terms of N (q). Fix any ε > 0. From now on, the implicit constants in� are
always meant to depend on F,ε,π,χ∞, even if it is not emphasized in the subscript like�F,ε,π,χ∞

. Fix an
ideal n coprime to q satisfying

(4) N (n)�N (q)ε

and note that in every narrow ideal class, there is a representative n with these properties.
First we introduce the following notation. For given positive real numbers a < b,

(5) [[a,b]] = {x ∈ F×∞,+ : a≤ |x j| ≤ b}.

Let G0 be a smooth and compactly supported function on F1
∞,+ = {x ∈ F×∞,+ : |x|∞ = 1} satisfying

∑u∈o×+ G0(ux) = 1 for all x ∈ F1
∞,+ (where o×+ stands for the group of totally positive units). We extend

this function to F×∞,+ as G(x) = G0(x/|x|∞), then ∑u∈o×+ G(ux) = 1 for all x ∈ F×∞,+. Assume that G0 is

supported on [[c1,c2]], then G is supported on Fdiag
∞,+ [[c1,c2]], where c1,c2 are constants depending only on F

(recall (5)). Fix moreover a compact fundamental domain G0 for the action of o×+ on F1
∞,+ and let G = Fdiag

∞,+ G0

be its extension to F×∞,+.

4.1. The amplification method. Let ξ be a character of (o/q)×. Parametrized by v = (v1, . . . ,vr+s) ∈
(iR)r+s, p = (pr+1, . . . , pr+s) ∈ Zs, assume that Wv,p are functions on F×∞,+ satisfying the following properties:

(i) Wv,p is smooth and supported on [[c3,c4]] for some c3 < c1 and c4 > c2 depending only on F ;
(ii) for any differential operator D of the form

D =

((
∂

∂y j

)µ j

j≤r

(
∂

∂y j

)µ j,1

j>r

(
∂

∂y j

)µ j,2

j>r

)
,

with nonnegative integers µ j,∗, we have

DWv,p(y)�D

r

∏
j=1

(1+ |v j|)µ j
r+s

∏
j=r+1

(1+ |v j|+ |p j|)µ j,1+µ j,2 .

6



For convenience, introduce

(6) N (v, p) =
r

∏
j=1

(1+ |v j|)
r+s

∏
j=r+1

(1+ |v j|+ |p j|)2.

Then set

(7) Lξ (v, p) = ∑
0<<t∈n

λπ(tn−1)ξ (t)√
N (tn−1)

Wv,p

( t
Y 1/(r+2s)

)
,

where 0 << t means that we sum over the totally positive elements. The only assumption on the positive real
number Y is that

(8) Y �N (q)1+ε .

Introduce K = n∩Fdiag
∞,+ [[c3,c4]]. We see that the numbers t that give a positive contribution are all in the set

n∩K and also satisfy t ∈ [[c3,c4]]Y 1/(r+2s), this latter implies |t|∞ �F Y .
Assume that L (the amplification length) is a further parameter satisfying

(9) logL� logN (q).

Lemma 5. Denote by Πq,+(L,2L) the set of totally positive, principal prime ideals l⊆ o satisfying N (l) ∈
[L,2L] and l - q. Set πq,+(L,2L) = #Πq,+(L,2L). Then

πq,+(L,2L)� LN (q)−ε .

Proof. This follows immediately from the results [Nar74, Corollary 6 of Proposition 7.8 and Proposition
7.9(ii)] about the natural density of prime ideals in narrow ideal classes. (See also [Neu99, Chapter VII, §13]
for analogous statements about the Dirichlet density.) �

Therefore,

|Lχfin(v, p)|2 = 1
πq,+(L,2L)2

∣∣∣∣∣∣∣Lχfin(v, p) ∑
l∈o∩G

(l)∈Πq,+(L,2L)

1

∣∣∣∣∣∣∣
2

� N (q)ε

L2 ∑
ξ∈(̂o/q)×

∣∣∣∣∣∣∣Lξ (v, p) ∑
l∈o∩G

(l)∈Πq,+(L,2L)

ξ (l)χfin(l)

∣∣∣∣∣∣∣
2

.

Observe that the ξ -sum is the square integral of the Fourier transform of the function

(o/q)× 3 x 7→ ∑
t∈n∩K

∑
l∈o∩G

(l)∈Πq,+(L,2L)
lt≡x (mod q)

χfin(l)
λπ(tn−1)√
N (tn−1)

Wv,p

( t
Y 1/(r+2s)

)
,

so Plancherel gives

|Lχfin(v, p)|2� ϕ(q)N (q)ε

L2

· ∑
x∈(o/q)×

∣∣∣∣∣∣∣ ∑
l∈o∩G

(l)∈Πq,+(L,2L)

χfin(l) ∑
t∈n∩K

lt≡x (mod q)

λπ(tn−1)√
N (tn−1)

Wv,p

( t
Y 1/(r+2s)

)∣∣∣∣∣∣∣
2

.
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This can be further majorized using ϕ(q)≤N (q) and (o/q)× ⊂ o/q, giving

|Lχfin(v, p)|2� N (q)1+ε

L2 ∑
l1,l2∈o∩G

(l1),(l2)∈Πq,+(L,2L)

χfin(l1)χfin(l2)

∑
t1,t2∈n∩K
l1t1−l2t2∈q

λπ(t1n−1)λπ(t2n−1)√
N (t1t2n−2)

Wv,p

( t1
Y 1/(r+2s)

)
Wv,p

( t2
Y 1/(r+2s)

)
.

(10)

In (10), the contribution of l1t1− l2t2 = 0 will be referred as the diagonal contribution DC, and that of
l1t1− l2t2 6= 0 as the off-diagonal contribution ODC. We will estimate them separately, then optimize the
choice of the parameter L (keeping (9) in mind), which will give rise to an estimate of Lχfin(v, p). Using
Mellin inversion, this bound on Lχfin(v, p) (with implicit parameters satisfying (4) and (8)) will give rise to a
Burgess type subconvex bound on L(1/2,π⊗χ).

4.2. The diagonal contribution. First we focus on DC. Then, by Cauchy-Schwarz,

DC� N (q)1+ε

L2 ∑
l∈o∩G

(l)∈Πq,+(L,2L)

∑
t∈n∩K
|t|∞�FY

|λπ(tn−1)|2

N (tn−1)
|{(l′, t ′) ∈ (o∩G )× (n∩K ) : l′t ′ = lt}|.

Here, |{(l′, t ′) ∈ (o∩ G )× (n∩K ) : l′t ′ = lt}| is at most the number of divisors of (lt), which is �
N ((lt))ε � (LY )ε . Using partial summation in [BH10, (77)], via (4) and (8), we see

∑
t∈n∩K
|t|∞�FY

|λπ(tn−1)|2

N (tn−1)
�N (q)ε ,

and estimate the number of prime ideals (l) trivially by� L. Altogether,

(11) DC� N (q)1+ε

L
.

4.3. Off-diagonal contribution: spectral decomposition and Eisenstein part.

4.3.1. Spectral decomposition. The estimate of the off-diagonal contribution requires much more work.
Assume G0 is supported on [[c5,c6]] for some constants c5,c6 depending only on F . Then only l1, l2 ∈
[[c5L1/(r+2s),c6L1/(r+2s)]] and t1, t2 ∈ [[c3Y 1/(r+2s),c4Y 1/(r+2s)]] have nonzero contribution. If l1, l2, t1, t2 sat-
isfy these constraints, then

l1t1− l2t2 ∈B = {x ∈ F∞ : |x j| ≤ c7(LY )1/(r+2s)}

with c7 = 2c4c6. Now a term in ODC corresponding to some fixed l1, l2 can be written as

(12) ∑
q∈qn∩B

q6=0

∑
l1t1−l2t2=q
06=t1,t2∈n

λπ(t1n−1)λπ(t2n−1)√
N (t1t2n−2)

W1

(
l1t1

(LY )1/(r+2s)
;v, p

)
W2

(
l2t2

(LY )1/(r+2s)
;v, p

)
,

where W1,W2 are smooth functions on F×∞,+ defined as

W1(y;v, p) =Wv,p(yL1/(r+2s)/l1), W2(y;v, p) =Wv,p(yL1/(r+2s)/l2).

Now by the assumptions made on Wv,p and l1, l2, we have that W1,W2 are smooth of compact support [[c8,c9]]
(where c8,c9 depend on F) and for any differential operator D of the form

D =

((
∂

∂y j

)µ j

j≤r

(
∂

∂y j

)µ j,1

j>r

(
∂

∂y j

)µ j,2

j>r

)
,

8



with nonnegative integers µ j,∗, we have

(13) DW1,2(y;v, p)�D N (v, p)µ ,

where µ = max j(µ j,∗) (recall (6)).
Now by [Mag, Theorem 1], (12) can be decomposed spectrally over the automorphic spectrum:

(14) ∑
06=q∈qn∩B

∫
(c)

∑
t|cc−1

ϖ

λ t
ϖ(qn

−1)√
N (qn−1)

Wϖ ,t

(
q

(LY )1/(r+2s)
;v, p

)
dϖ ,

where c = cπ lcm((l1),(l2)). Here, the integral over (c) means that only those automorphic representa-
tions ϖ might have nonzero contribution whose conductor cϖ contains c. The superscript t is due to the
orthogonalization process of oldforms (consult [Mag, (2.13-14), (2.26), (2.28-29)]).

4.3.2. Eisenstein spectrum. First we estimate the contribution of the Eisenstein spectrum to (14). We derive
a simple consequence of [Mag, Theorem 1].

Lemma 6. Conditions as in [Mag, Theorem 1]. Assume D is a differential operator as in [Mag, Proposition
3.6]. Then for any 0 < ε < 1/4 and nonnegative integers b,c′, we have, for all y ∈ F×∞ ,∫

E (c)
∑

t|cc−1
ϖ

(N (rϖ))
c′ |DWϖ ,t(y)|dϖ �F,ε,π1,π2,a,b,c′,P N (l)1/4N ((l1l2))ε ||W1||S

α ′ ||W2||S
α ′

·
r

∏
j=1

(|y j|1/2−ε + |y j|1/2−θ−ε)(min(1, |y j|−b))
r+s

∏
j=r+1

(|y j|3/4 + |y j|)(min(1, |y j|−b))

with α ′ = 2(3r+4s+2)+(r+s)(a+b+2c′+4(r+2s))+2(7r+18s), where l stands for the largest square
divisor of lcm((l1),(l2)).

Proof. Set c = c′+2(r+2s). Apply first Cauchy-Schwarz,∫
E (c)

∑
t|cc−1

ϖ

(N (rϖ))
c′ |DWϖ ,t(y)|dϖ

2

�F

∫
E (c)

∑
t|cc−1

ϖ

(N (rϖ))
2c|DWϖ ,t(y)|2dϖ

·
∫

E (c)
∑

t|cc−1
ϖ

(N (rϖ))
−4(r+2s)dϖ .

Now the first integral is estimated in [Mag, Theorem 1], while by Corollary 2, the second integral is
�F (N (l))1/2. We are done by taking square-roots. �

Now we apply this with D = 1,a = c′ = 0,b = 2. The largest square divisor of lcm((l1),(l2)) is o, hence∫
E (c)

∑
t|cc−1

ϖ

|Wϖ ,t(y;v, p)| �N ((l1l2))ε ||W1||Sα1
||W2||Sα1

with some positive integer α1 depending only on F , uniformly in y,v, p, where S∗ stands for Sobolev norms
(see [Mag, Section 2.6]). Moreover, by [Ven10, Lemma 8.4] and (13), for any positive α ,

(15) ||W1,2||Sα
�α N (v, p)2α

giving ∫
E (c)

∑
t|cc−1

ϖ

|Wϖ ,t(y;v, p)| �N ((l1l2))εN (v, p)4α1 .

9



Taking into account [Mag, display between (2.29) and (2.30)], (4), (8) and (9), we see that the contribution
of the Eisenstein spectrum to (14) is

�N (v, p)4α1N (q)ε
∑

06=q∈qn∩B

N (gcd(c,(q)))√
N ((q))

.

In the sum, each ideal (q) appears with multiplicity�N (q)ε . Indeed, each ideal (q)⊆ o has a generator
q satisfying |q j| ≥ c5 at each archimedean place. Hence the possible units ε for which qε ∈B all satisfy
|ε j| ≤ c10(LY )1/(r+2s) at each place, for some constant c10 depending only on F . The number of such units is
� log(N (q))r+s−1 by (8) and (9). Then the above display is

�N (v, p)4α1N (q)2ε
∑

06=(q)⊆qn
N ((q))�LY

N (gcd(c,(q)))√
N ((q))

.

Here, the sum is�N (q)−1+ε(LY )1/2, since gcd(c,(q)) = gcd(cπ ,(q)), which has norm OF,π(1).
Altogether, using again (8), in (14), the Eisenstein spectrum has contribution

(16) �N (v, p)4α1N (q)−1/2+εL1/2,

which is analogous to [BH10, (116)].

4.4. Off-diagonal contribution: cuspidal spectrum. Now we turn to the cuspidal part of (14), and since
the relevant set is countable, we will write a sum in place of the integral there.

Set
C (c,ε) = {ϖ ∈ C (c) : N (rϖ)≤N (q)ε}.

Later we will prove that the contribution of representations outside C (c,ε) is small. So restrict to C (c,ε),
and fix also the sign of q as follows. For any sign ξ ∈ {±1}r, set

B(ξ ) = {y ∈B : sign(y) = ξ}.
Then focus on the quantity

(17) ∑
q∈qn∩B(ξ )

∑
ϖ∈C (c,ε)

∑
t|cc−1

ϖ

λ t
ϖ(qn

−1)√
N (qn−1)

Wϖ ,t

(
q

(LY )1/(r+2s)
;v, p

)
.

We follow again [BH10]. Consider the Mellin transform

(18) Ŵ ξ

ϖ ,t(v
′, p′;v, p) =

∫
F×∞,+

Wϖ ,t(ξ y;v, p)
r+s

∏
j=1
|y j|v

′
j

r+s

∏
j=r+1

(
y j

|y j|

)p′j
d×∞ y.

We would like to invert this. As for p′, observe that Wϖ ,t(y;v, p) is continuous on the set where each |y j| is
fixed (which is the product of s circles), so the standard Fourier analysis of the circle group is applicable.

Lemma 7. Conditions as in [Mag, Theorem 1]. Assume D is a differential operator as [Mag, Proposition
3.6]. Then for any 0 < ε < 1/4 and nonnegative integers b,c′, we have, for all y ∈ F×∞ ,

∑
ϖ∈C (c)

∑
t|cc−1

ϖ

(N (rϖ))
c′ |DWϖ ,t(y)| �F,ε,π1,π2,a,b,c′,P N ((l1l2))1/2+ε ||W1||S

α ′ ||W2||S
α ′

·
r

∏
j=1

(|y j|1/2−ε + |y j|1/2−θ−ε)(min(1, |y j|−b))
r+s

∏
j=r+1

(|y j|3/4 + |y j|)(min(1, |y j|−b))

with α ′ = 2(3r+4s+2)+(r+ s)(a+b+2c′+4(r+2s))+2(7r+18s).

Proof. The same as the proof of Lemma 6 above, the only difference is that we use Corollary 4 instead of
Corollary 2. �
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From this, it is clear that the set (iR)r+s (which is the product of r + s lines) can be used for Mellin
inversion (see [GR07, 17.41]). Therefore, (17) is

� ∑
p′∈Zs

∫
(iR)r+s

(LY )(v
′
1+...+v′r+s)/(r+2s)

· ∑
ϖ∈C (c,ε)

∑
t|cc−1

ϖ

(
Ŵ ξ

ϖ ,t(v
′, p′;v, p) ∑

q∈qn∩B(ξ )

λ t
ϖ(qn

−1)√
N (qn−1)

r+s

∏
j=1
|q j|−v′j

r+s

∏
j=r+1

(
q j

|q j|

)−p′j
)

dv′∞.

By Cauchy-Schwarz, this is

� ∑
p′∈Zs

∫
(iR)r+s

 ∑
ϖ∈C (c,ε)

∑
t|cc−1

ϖ

∣∣∣Ŵ ξ

ϖ ,t(v
′, p′;v, p)

∣∣∣2
1/2

·

 ∑
ϖ∈C (c,ε)

∑
t|cc−1

ϖ

∣∣∣∣∣ ∑
q∈qn∩B(ξ )

λ t
ϖ(qn

−1)√
N (qn−1)

r+s

∏
j=1
|q j|−v′j

r+s

∏
j=r+1

(
q j

|q j|

)−p′j
∣∣∣∣∣
2
1/2

|dv′∞|.

(19)

In what follows, we estimate the Mellin part

(20)

 ∑
ϖ∈C (c,ε)

∑
t|cc−1

ϖ

∣∣∣Ŵ ξ

ϖ ,t(v
′, p′;v, p)

∣∣∣2
1/2

and the arithmetic part

(21)

 ∑
ϖ∈C (c,ε)

∑
t|cc−1

ϖ

∣∣∣∣∣ ∑
q∈qn∩B(ξ )

λ t
ϖ(qn

−1)√
N (qn−1)

r+s

∏
j=1
|q j|−v′j

r+s

∏
j=r+1

(
q j

|q j|

)−p′j
∣∣∣∣∣
2
1/2

separately.

4.4.1. Estimate of the Mellin part. Recall the definition (18) of the Mellin transform. Our plan is to insert
differentiations (using that W ’s are highly differentiable) to show that the Mellin part decays fast in terms of
N (v′, p′).

At real places ( j ≤ r), for v′j 6= 0,∫
R×+

W (y j)y
v′j
j d×R y j =−

1
v′j

∫
R×+

y j
∂

∂y j
W (y j)y

v′j
j d×R y j,

so at those real places, where |v′j| ≥ 1, we can gain a factor |v′j|−1 using the differential operator y j(∂/∂y j).
The complex places ( j > r) can be handled similarly. For v′j 6= 0,∫

C×
W (y j)|y j|v

′
j

(
y j

|y j|

)p′j
d×C y j =−

1
v′j

∫
C×
|y j|

∂

∂ |y j|
W (y j)|y j|v

′
j

(
y j

|y j|

)p′j
d×C y j,

while for p′j 6= 0,∫
C×

W (y j)|y j|v
′
j

(
y j

|y j|

)p′j
d×C y j =−

1
ip′j

∫
C×

∂

∂ (y j/|y j|)
W (y j)|y j|v

′
j

(
y j

|y j|

)p′j
d×C y j.

This means that at those complex places, where |v′j| ≥ 1 (or |p′j| ≥ 1, respectively), we can gain a factor
|v′j|−1 (or |p′j|−1, respectively), by inserting the differential operator y(∂/∂y) (or ∂/∂ (y/|y|), respectively).

A simple calculation shows that for any real-differentiable complex function f (z) with z = reiθ (r > 0,
θ ∈ [0,2π]), both r∂ f/∂ r and ∂ f/∂θ are� |z∂ f/∂ z|+ |z∂ f/∂ z|.
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Therefore, set the differential operators

D(e, f ,g) =

((y j
∂

∂y j

)e j
)

j≤r
,

((
y j

∂

∂y j

) f j
)

j>r

,

((
y j

∂

∂y j

)g j
)

j>r

 ,

where 0≤ e j ≤ 3 ( j ≤ r), 0≤ f j ≤ 6, 0≤ g j ≤ 6 ( j > r). Then the above argument, together with (18) and
Cauchy-Schwarz, implies that (20) is

� (N (v′, p′))−3/2
∑

(e, f ,g)

∫
F×∞,+

∫
F×∞,+

 ∑
ϖ∈C (c,ε)

∑
t|cc−1

ϖ

|D(e, f ,g)Wϖ ,t(y;v, p)|2
1/2

 ∑
ϖ∈C (c,ε)

∑
t|cc−1

ϖ

|Wϖ ,t(y′;v, p)|2
1/2

d×∞ yd×∞ y′


1/2

.

Now we apply [Mag, Theorem 1] with a = 6,b = 2,c = 0 in the first sum, and with a = 0,b = 2,c = 0 in the
second sum. Together with (15), this implies that the integrand is

�N (q)εN (v, p)4α2
r

∏
j=1

min(|y j|1/4, |y j|−3/2)min(|y′j|1/4, |y′j|−3/2)

·
r+s

∏
j=r+1

min(|y j|3/4, |y j|−1)min(|y′j|3/4, |y′j|−1)

with some positive integer α2 depending only on F . Altogether, the Mellin part (20) is

(22) �N (q)εN (v, p)4α2N (v′, p′)−3/2.

4.4.2. Estimate of the arithmetic part. Our next goal is to give a bound on (21), which is uniform in v′, p′.
Fix v′, p′ and consider

(23) ∑
ϖ∈C (c,ε)

∑
t|cc−1

ϖ

∣∣∣∣∣ ∑
q∈qn∩B(ξ )

λ t
ϖ(qn

−1)√
N (qn−1)

r+s

∏
j=1
|q j|−v′j

r+s

∏
j=r+1

(
q j

|q j|

)−p′j
∣∣∣∣∣
2

.

Following [BH10, p.45], introduce, for any ideal a⊆ o,

f (a;v′, p′) = ∑
q∈B(ξ )
(q)=an

r+s

∏
j=1
|q j|−v′j

r+s

∏
j=r+1

(
q j

|q j|

)−p′j
.

The number of possible units ε for which qε ∈B is�F,ε N (q)ε (recall the argument in Section 4.3.2),
hence

(24) | f (a;v′, p′)| �F,ε N (q)ε .

With this notation, we can rewrite the innermost sum in (23) as

∑
q∈qn∩B(ξ )

λ t
ϖ(qn

−1)√
N (qn−1)

r+s

∏
j=1
|q j|−v′j

r+s

∏
j=r+1

(
q j

|q j|

)−p′j
= ∑

N (m)�LY/N (qn)

λ t
ϖ(mq)√
N (mq)

f (mq;v′, p′),

where� in the sum means that we may choose a constant depending only on F such that this holds. Now on
the right-hand side, for each occurring m, transfer each prime factor dividing both m and q from m to q. This

12



does not affect the summand (since it depends only on the product mq) and lets us write

(25) ∑
N (m)�LY/N (qn)

λ t
ϖ(mq)√
N (mq)

f (mq;v′, p′) = ∑
q|q′|q∞

∑
N (m)�LY/N (q′n)

gcd(m,q)=o

λ t
ϖ(mq′)√
N (mq′)

f (mq′;v′, p′).

The following lemma (which is based on [BHM07, pp.73-74]) expresses λ t
ϖ(mq′).

Lemma 8. Assume m and q′ are coprime ideals in o. Then

λ
t
ϖ(mq′) = ∑

b|gcd(q′ gcd(q′,t)−1,gcd(q′,t))

µ(b)λϖ(q
′ gcd(q′, t)−1b−1)λ t

ϖ(mgcd(q′, t)b−1).

Proof. We follow [BHM07, pp.73-74]. (At [BH10, p.45], [BHM07, pp.73-74] is adapted incorrectly. The
corrected version can be found in the erratum of [BH10].)

By [Mag, (2.13-14)], we have

λ
t
ϖ(mq′) = ∑

s|gcd(mq′,t)

αt,sN (s)1/2
λϖ(mq′s−1)

= ∑
s1|gcd(m,t)
s2|gcd(q′,t)

αt,s1s2N (s1s2)
1/2

λϖ(mq′s−1
1 s−1

2 )

= ∑
s1|gcd(m,t)
s2|gcd(q′,t)

αt,s1s2N (s1s2)
1/2

λϖ(q
′s−1

2 )λϖ(ms−1
1 ),

where the last equation holds by gcd(m,q′) = o and the multiplicativity of Hecke eigenvalues.
Inverting the multiplicativity relation, we see that

λϖ(q
′s−1

2 ) = λϖ(q
′ gcd(q′, t)−1 ·gcd(q′, t)s−1

2 )

= ∑
b|gcd(q′ gcd(q′,t)−1,gcd(q′,t)s−1

2 )

µ(b)λϖ(q
′ gcd(q′, t)−1b−1)λϖ(gcd(q′, t)s−1

2 b−1).

Writing this into the above display, we obtain that

λ
t
ϖ(mq′) = ∑

b|gcd(q′ gcd(q′,t)−1,gcd(q′,t))

µ(b)λϖ(q
′ gcd(q′, t)−1b−1)

∑
s1|gcd(m,t)

s2|gcd(q′,t)b−1

αt,s1s2N (s1s2)
1/2

λϖ(mgcd(q′, t)b−1s−1
1 s−1

2 )

= ∑
b|gcd(q′ gcd(q′,t)−1,gcd(q′,t))

µ(b)λϖ(q
′ gcd(q′, t)−1b−1)

∑
s|gcd(t,mgcd(q′,t)b−1)

αt,sN (s)1/2
λϖ(mgcd(q′, t)b−1s−1)

= ∑
b|gcd(q′ gcd(q′,t)−1,gcd(q′,t))

µ(b)λϖ(q
′ gcd(q′, t)−1b−1)λ t

ϖ(mgcd(q′, t)b−1),

which completes the proof. �

Using this in (25), and noting
λπ(m)�ε N (m)θ+ε ,

we obtain
λϖ(q

′ gcd(q′, t)−1b−1)�N (q′)θ+ε .
13



We claim gcd(q′, t)|cπ . Indeed, t|cc−1
ϖ with c = cπ lcm((l1),(l2)), where l1, l2 are primes not dividing q.

Altogether, the q-sum in (23) can be estimated as

(26) � ∑
q|q′|q∞

N (q′)−1/2+θ+ε
∑
b|cπ

∣∣∣∣∣∣∣∣ ∑
N (m)�LY/N (q′n)

gcd(m,q)=o

λ t
ϖ(mb)√
N (m)

f (mq′;v′, p′)

∣∣∣∣∣∣∣∣ .
Now take the function h defined in Section 3.1 with a j = N (q)2ε at real, a j = N (q)ε at complex places,

b j =
√a j at all archimedean places, finally a′j =−1 at complex places. This has the property that it gives

weight� 1 to representations in C (c,ε).

∑
ϖ∈C (c,ε)

∑
t|cc−1

ϖ

∣∣∣∣∣ ∑
q∈qn∩B(ξ )

λ t
ϖ(qn

−1)√
N (qn−1)

r+s

∏
j=1
|q j|−v′j

r+s

∏
j=r+1

(
q j

|q j|

)−p′j
∣∣∣∣∣
2

� ∑
ϖ∈C (c,ε)

∑
t|cc−1

ϖ

h(rϖ)

∣∣∣∣∣ ∑
q∈qn∩B(ξ )

λ t
ϖ(qn

−1)√
N (qn−1)

r+s

∏
j=1
|q j|−v′j

r+s

∏
j=r+1

(
q j

|q j|

)−p′j
∣∣∣∣∣
2

.

In the summation over ϖ , multiply by a factor C−1
ϖ , which is � N (q)−ε by [BH10, Section 2.9] and

[Mag13b, Chapter 3]. We also add the analogous nonnegative contribution of the Eisenstein spectrum
(denoted by CSC).

Therefore, using (24), (26) estimates the ϖ-sum of (23) as

∑
ϖ∈C (c,ε)

∑
t|cc−1

ϖ

∣∣∣∣∣ ∑
q∈qn∩B(ξ )

λ t
ϖ(qn

−1)√
N (qn−1)

r+s

∏
j=1
|q j|−v′j

r+s

∏
j=r+1

(
q j

|q j|

)−p′j
∣∣∣∣∣
2

�N (q)−1+2θ+ε max
b1,b2|cπ

∑
N (m1),N (m2)�LY/N (q)

1√
N (m1m2)∣∣∣∣∣∣ ∑

ϖ∈C (c)

C−1
ϖ ∑

t|cc−1
ϖ

h(rϖ)λ
t
ϖ(m1b1)λ t

ϖ(m2b2)+CSC

∣∣∣∣∣∣ .
(27)

We apply the Kuznetsov formula to estimate the last line of (27), with α = α ′ = 1, a−1 =m1b1, a′−1 =
m2b2. The delta term is, up to a constant multiple,

[K(o) : K(c)]∆(m1b1,m2b2)
∫

h(rϖ)dµ.

Here, by Section 3.1, the integral of h gives �N (q)2(r+s)ε , and also [K(o) : K(c)]� L2N (q)ε by (9).
When ∆(m1b1,m2b2) 6= 0, N (m1)�F,π N (m2), so the sum over m1,m2 can be replaced by a sum over m.
Using (8), we see that LY/N (q)�N (q)εL, and taking into account also (9), we obtain that

∑
N (m)�LY/N (q)

1
N (m)

�N (q)ε .

Altogether, the delta term of the geometric side of the Kuznetsov formula contributes

(28) �N (q)−1+2θ+εL2

to the right-hand side of (27).
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As for the Kloosterman term, similarly to (3), we have to estimate

max
a∈C

∑
ε∈o×+/o2×

∑
06=c∈m−1

1 b−1
1 ac

N ((gcd(m1b1,m2b2,cm1b1a
−1)))1/2

N (cm1b1a−1)1/2−ε

·∏
j≤r

min(1, |ε jγa, j/c j|1/2)∏
j>r

min(1, |ε jγa, j/c j|),

where γa is a totally positive generator of the ideal a2(m1b1)
−1m2b2, C is a fixed set of narrow class

representatives (depending only on F and the narrow class of (m1b1)
−1m2b2) with the property that such a γa

exists for each a ∈C. The sum over ε ∈ o×+/o
2× is negligible. Now take a totally positive β ∈ o such that

(β )⊇m1b1, N ((β ))�N (m1b1), and then the above is

�max
a∈C

∑
06=c∈ac

N ((gcd(m1b1,m2b2,ca−1)))1/2

N (ca−1)1/2−ε

·∏
j≤r

min(1, |γa, jβ j|1/4/|c j|1/2)∏
j>r

min(1, |γa, jβ j|1/2/|c j|),

Then the same method as in the proof of Lemma 3 shows that the previous display can be estimated as

�N ((γaβ ))1/4+εN (gcd(m1,m2,c))
1/2+εN (c)−1−ε .

The last factor N (c)−1−ε cancels [K(o) : K(c)]. Noting that N ((γaβ ))� N (m1m2), we see that the
Kloosterman term contributes

�N (q)−1+2θ+ε
∑

N (m1),N (m2)�LY/N (q)

N (gcd(m1,m2,c))
1/2+εN (m1m2)

−1/4+ε

to the right-hand side of (27). Obviously

N (gcd(m1,m2,c))
1/2 ≤N (gcd(m1,c))

1/4N (gcd(m2,c))
1/4,

so the above display is (using also (8) and (9) again)

�N (q)−1+2θ+2ε

(
∑

N (m)�LY/N (q)

(
N (gcd(m,c))

N (m)

)1/4
)2

.

Here, if m is divisible by l1 or l2, then N (gcd(m,c))� L (by (9), an ideal of norm�N (q)εL cannot have
two different prime divisors l1, l2), this happens at most for N (q)ε many m’s. For other m’s, N (gcd(m,c))�
1. Therefore, the Kloosterman contribution to (27) is

(29) �N (q)−1+2θ+εL3/2.

Taking square-roots, we obtain from (28) and (29) that the arithmetic part (21) is

(30) �N (q)−1/2+θ+εL.

4.4.3. Summing up in the cuspidal spectrum. Inside C (c,ε), (19), (22) and (30) show that the contribution
(17) is

� ∑
p′∈Zs

∫
(iR)r+s

N (v, p)4α2N (v′, p′)−3/2N (q)−1/2+θ+εL|dv′∞|

�N (q)−1/2+θ+εLN (v, p)4α2 ,

and this bound holds (with the implicit constant multiplied by 2r) without restricting the summation in (19)
to a specific sign ξ .

Now we concentrate on representations outside C (c,ε). First of all, from Lemma 3, we see that

λ
t
ϖ(qn

−1)� L1/2+εN ((q))1/4+εN (rϖ),
15



therefore, with a large c′ (depending on ε), we may write (using (9)), outside C (c,ε),

λ t
ϖ(qn

−1)√
N (qn−1)

� L1/2+εN (q)−1/4N (rϖ)�N (rϖ)
c′ .

Now by Cauchy-Schwarz, outside C (c,ε), the cuspidal contribution is, with some c much larger than c′,

�

 ∑
06=q∈qn∩B

∑
ϖ /∈C (c,ε)

∑
t|cc−1

ϖ

N (rϖ)
2(c′−c)

1/2

·

 ∑
06=q∈qn∩B

∑
ϖ /∈C (c,ε)

∑
t|cc−1

ϖ

∣∣∣∣N (rϖ)
cWϖ ,t

(
q

(LY )1/(r+2s)
;v, p

)∣∣∣∣2
1/2

.

The first factor is�k N (q)−k for any k ∈ N, if c− c′ is large enough, as it follows from Corollary 4. As for
the second factor, apply [Mag, Theorem 1] with a = 0, b = 0 and the above c. The number of q’s in qn∩B
is OF(LY ). Then together with (15), we see that the second factor is�N (q)−1+εN (v, p)4α3 with some
positive integer α3 depending only on F . To match Y and L with N (q), we use (8) and (9) throughout.

Altogether, the cuspidal spectrum has contribution

(31) �N (v, p)4max(α2,α3)N (q)−1/2+θ+εL.

4.5. Choice of the amplification length. Set α = max(α1,α2,α3). Summing trivially over l1, l2, and using
(12), (14), (16) and (31), we see

ODC�N (v, p)4αN (q)1/2+θ+εL.

This estimate, together with (11) and through (10), gives rise to

|Lχfin(v, p)|2�N (v, p)4α(N (q)1+εL−1 +N (q)1/2+θ+εL),

|Lχfin(v, p)| �N (v, p)2α(N (q)1/2+εL−1/2 +N (q)1/4+θ/2+εL1/2).

We see that the optimal choice is L = N (q)1/4−θ/2, which meets the condition (9). With this, we obtain the
bound

(32) |Lχfin(v, p)| �N (v, p)2αN (q)3/8+θ/4+ε .

4.6. Completion of the proof. In the derivation of the subconvex bound on L(1/2,π ⊗ χ), the starting
point is [BH10, (75)], a consequence of the approximate functional equation [Har02, Theorem 2.1] (see
also [Mag13b, Section 3.3]): there is a constant c = c(F,π,χ∞,ε)> 0 and a smooth function V : (0,∞)→ C
supported on [1/2,2], satisfying V ( j)(y)�F,π,χ∞, j 1 for each nonnegative integer j, such that

(33) L(1/2,π⊗χ)�F,π,χ∞,ε N (q)ε max
Y≤cN (q)1+ε

∣∣∣∣∣ ∑
06=m⊆o

λπ(m)χ(m)√
N (m)

V
(

N (m)

Y

)∣∣∣∣∣ .
First of all, we split up the sum on the right-hand side of (33) over ideals according to their narrow class

(with representatives n satisfying (4)). Then

L(1/2,π⊗χ)�F,π,χ∞,ε N (q)ε max
Y≤cN (q)1+ε

∣∣∣∣∣∣ ∑
0<<t∈n (mod o×+)

λπ(tn−1)χ(tn−1)√
N (tn−1)

V
(
|t|∞
Y

)∣∣∣∣∣∣
for some c = c(F,π,χ∞,ε), hence (8) is satisfied. Here, by the partition of unity introduced in the beginning
of this section, the sum on the right-hand side can be rewritten as

∑
0<<t∈n

λπ(tn−1)χ(tn−1)√
N (tn−1)

G(t∞)V
(
|t|∞
Y

)
W
( t∞

Y 1/(r+2s)

)
,
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where W is a smooth nonnegative function which is 1 on [[c1,c2]] and supported on [[c3,c4]]. Now introducing
the Mellin transform

V̂ (v, p) =
∫

F×∞,+

G(y)V (y)χ∞(y)
r+s

∏
j=1
|y j|v j

r+s

∏
j=r+1

(
y j

|y j|

)p j

d×y,

we have, by Mellin inversion, that the above display is

�F ∑
p∈Zs

∫
v∈(iR)r+s

V̂ (v, p) ∑
0<<t∈n

λπ(tn−1)χfin(t)√
N (tn−1)

Wv,p

( t
Y 1/(r+2s)

)
dv,

where

Wv,p(y) =W (y)
r+s

∏
j=1
|y j|−v j

r+s

∏
j=r+1

(
y j

|y j|

)−p j

d×y.

Since F(y), V (y), W (y) are all smooth and compactly supported, we see that

V̂ (v, p)�F,π,χ∞,ε,β N (v, p)−β

for all β ∈ N and also that the family of Wv,p’s satisfies (i) and (ii). Then

L(1/2,π⊗χ)�F,π,χ∞,ε,β ∑
p∈Zs

∫
v∈(iR)r+s

Lχfin(v, p)N (v, p)−β dv

with L of (7) satisfying all conditions we needed in its estimate. Now taking a β which is much larger than
2α , (32) completes the proof.
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