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ABSTRACT. Let π1, π2 be cuspidal automorphic representations of GL2 over a number field F with Hecke
eigenvalues λπ1(m),λπ2(m). For nonzero integers l1, l2 ∈ F and compactly supported functions W1,W2 on F×∞ , a
spectral decomposition of the shifted convolution sum

∑
l1t1−l2t2=q
0 6=t1,t2∈n

λπ1(t1n
−1)λπ2(t2n−1)√

N (t1t2n−2)
W1(l1t1)W2(l2t2)

is obtained for any nonzero fractional ideal n and any nonzero element q ∈ n.

1. INTRODUCTION

Assume that π1,π2 are cuspidal automorphic representations of GL2 over a number field F with Hecke
eigenvalues λπ1(m),λπ2(m). Fix a nonzero fractional ideal n and some nonzero element q ∈ n. The so-called
shifted convolution sums

(1) ∑
l1t1−l2t2=q
06=t1,t2∈n

λπ1(t1n
−1)λπ2(t2n−1)√

N (t1t2n−2)
W1(l1t1)W2(l2t2)

(for integers l1, l2 ∈ F and rapidly decaying functions W1,W2 on F×∞ ) proved to be important in analytic
number theory: they are variants of the classical additive divisor sums and have several applications. It was
shown by Blomer and Harcos in [BH08] and [BH10] that if F is totally real, then (1) decomposes spectrally
over the full automorphic spectrum, and the spectral components can be estimated in terms of higher order
Sobolev norms of W1,W2. In this paper, we work out the spectral decomposition and the relevant estimates
over any number field F .

In 1965, Selberg [Sel65] proved that for classical holomorphic cusp forms π1,π2 on the upper half-plane,
and for any integer h > 0, the Dirichlet series

∑
m,n≥1

m−n=h

λπ1(m)λπ2(n)(mn)β

(m+n)s+β

is holomorphic for ℜs > 1/2, assuming β is a sufficiently large integer. This result was extended to arbitrary
cusp forms over a totally real number field in [BH08] and [BH10] by decomposing the corresponding shifted
convolution sums spectrally.

Shifted convolution sums have numerous applications to moment bounds for L-functions. For example,
in the investigation of the fourth moment of the Riemann zeta function on the critical line, off-diagonal
terms lead to the problem of the asymptotic behavior of additive divisor sums (see [Ing26], [Ing27], [Est31],
[HB79], [Mot94], [Mot97]). Analogously, the second moment of an L-function corresponding to a GL2 cusp
form leads to shifted convolution sums of Hecke eigenvalues (see [Goo81a], [Goo81b]).

Shifted convolution sums also play a central role in the subconvexity problem of L-funcions, as they
arise naturally from averaging in short families or by employing amplifiers (which is an arithmetic way to
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shorten the family). This program was initiated by Duke, Friedlander and Iwaniec [DFI93] who applied
the circle method, then continued by Cogdell, Piatetski-Shapiro and Sarnak [CPSS] who used the spectral
decomposition for holomorphic Hilbert modular forms, and by Blomer and Harcos [BH10] who established a
Burgess type subconvex bound for twisted GL2 L-functions over totally real number fields (see also [Sar01]
and [Ven10]). The author extended this result to any number field in his PhD thesis [Mag13b]. We remark
that the same estimate was simultaneously established by Wu [Wu14] by a different method based on the
work of Michel and Venkatesh [MV10].

1.0.1. Organization of the paper. In Section 2, we introduce the notions of automorphic theory which are
necessary for the results in this paper, and we conclude by stating the spectral decomposition in Theorem 1. In
Section 3, we derive some bounds on cusp forms and the corresponding Kirillov vectors. Finally, in Secion 4,
we prove Theorem 1.

2. BACKGROUND ON AUTOMORPHIC THEORY

2.1. Notations. First we introduce the notations we shall use later. We advise the reader to consult [Wei74]
for the arising notions.

2.1.1. The number field. Throughout this paper, X �A Y means that |X | ≤ cY for some constant c > 0
depending only on A.

Let F be a number field, a finite algebraic extension of Q. Assuming F has r real and s complex places, we
will throughout denote the corresponding archimedean completions by F1, . . . ,Fr+s, where F1, . . . ,Fr are all
isomorphic to R and Fr+1, . . . ,Fr+s are all isomorphic to C as topological fields. Let F∞ stand for the direct
sum of these fields (as rings), F×∞ for its multiplicative group, F×∞,+ for the totally positive elements (which
are positive at each real place), and Fdiag

∞,+ for {(a1, . . . ,ar+s) ∈ F×∞,+ : a1 = . . .= ar+s}.
Denote by o the ring of integers of F . The ideals and fractional ideals will be denoted by gothic characters

a,b,c, . . ., the prime ideals by p and we keep d for the different and DF for the discriminant of F . Each prime
ideal p determines a non-archimedean place and a corresponding completion Fp. At such a place, we denote
by op the maximal compact subring.

Write A for the adele ring of F . Given an adele a, a j denotes its projection to Fj for 1≤ j ≤ r+ s, and
ap the same to Fp for a prime ideal p. We will also use the subscripts j,p for the projections of other adelic
objects to the place corresponding to j,p, respectively. The subscripts ∞ and fin stand for the projections to
F∞ and ∏p Fp.

The absolute norm (module) of adeles will be denoted by | · |, while | · | j and | · |p will stand for the norm
(module) at single places. Sometimes we will need | · |∞, which is the product of the archimedean norms. (At
this point, we call the reader’s attention to the notational ambiguity that for a real or complex number y, we
keep the conventional |y| for its ordinary absolute value. We hope this will not lead to confusion. Note that at
real places, |y| j = |y|, while at complex places, |y| j = |y|2.) For a fractional ideal a, N (a) will denote its
absolute norm, defined as N (a) = |a|−1, where a is any finite representing idele for a. When a is a finite
idele, we may also write N (a) for |a|−1.

We define an additive character ψ on A: it is required to be trivial on F (embedded diagonally); on F∞:

ψ∞(x) = exp(2πiTr(x)) = exp(2πi(x1 + . . .+ xr + xr+1 + xr+1 + . . .+ xr+s + xr+s));

while on Fp: it is trivial on d−1
p but not on d−1

p p−1.
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2.1.2. Matrix groups. Given a ring R, we define the following subgroups of GL2(R):

Z(R) =
{(

a 0
0 a

)
: a ∈ R×

}
,

B(R) =
{(

a b
0 d

)
: a,d ∈ R×,b ∈ R

}
,

N(R) =
{(

1 b
0 1

)
: b ∈ R

}
.

Assume 0 6= np,cp ⊆ op. Then let

Kp(np,cp) =

{(
a b
c d

)
: a,d ∈ op,b ∈ (npdp)

−1,c ∈ npdpcp,ad−bc ∈ o×p

}
,

moreover in the special case np = op, we simply write Kp(cp) instead of Kp(op,cp). For ideals 0 6= n,c⊆ o, let

K(n,c) = ∏
p

Kp(np,cp), K(c) = ∏
p

Kp(cp),

and taking the archimedean places into account, let

K∞ =
r

∏
j=1

SO2(R)×
r+s

∏
j=r+1

SU2(C), K = K∞×K(o)⊆ GL2(A).

Finally, for 0 6= n,c⊆ o, let

Γ(n,c) =

{
g∞ ∈ GL2(F∞) : ∃gfin ∈∏

p

Kp(np,cp) such that g∞gfin ∈ GL2(F)

}
.

We note that the choice of the subgroups K is not canonical (they can be conjugated arbitrarily), our
normalization follows [BH10].

2.1.3. Archimedean matrix coefficients. On K∞, we define the matrix coefficients (see [Bum04, p.8]). Again,
it is more convenient to give them on the factors. At a real place, on SO2(R), for a given integer q, set

Φq

((
cosθ sinθ

−sinθ cosθ

))
= exp(iqθ).

At a complex place, on SU2(C), we introduce the parametrization

SU2(C) =

{
k[α,β ] =

(
α β

−β α

)
: α,β ∈ C, |α|2 + |β |2 = 1

}
.

Assume now that the integers or half-integers p,q, l satisfy |p|, |q| ≤ l and p ≡ q ≡ l (mod 1). Then the
matrix coefficient Φl

p,q is defined via

∑
|p|≤l

Φ
l
p,q(k[α,β ])xl−p = (αx−β )l−q(βx+α)l+q,

where this equation is understood in the polynomial ring C[x], see [BM03, (3.18)] and [LG04, (2.28)]. Note
that

‖Φl
p,q‖SU2(C) =

(∫
SU2(C)

|Φl
p,q(k)|2dk

)1/2

=
1√

2l +1

(
2l

l− p

)1/2( 2l
l−q

)−1/2

by [LG04, (2.35)], where the Haar measure on SU2(C) is the probability measure.
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2.1.4. Measures. On Fp, we normalize the Haar measure such that op has measure 1. On F∞, we use the
Haar measure |DF |−1/2dx1 · · ·dxr|dxr+1 ∧ dxr+1| · · · |dxr+s ∧ dxr+s|. On A, we use the Haar measure dx,
the product of these measures, this induces a Haar probability measure on F\A (see [Wei74, Chapter V,
Proposition 7]).

On R×, we use the Haar measure d×R y = dy/|y|, this gives rise to a Haar measure on C× as d×C y =

d×R |y|dθ/2π , where exp(iθ) = y/|y|. On F×∞ , we use the product d×∞ y of these measures. On F×p , we
normalize the Haar measure such that o×p has measure 1. The product d×y of these measures is a Haar
measure on A×, inducing some Haar measure on F×\A×.

On K and its factors, we use the Haar probability measures. On Z(F∞)\GL2(F∞), we use the Haar measure
which satisfies ∫

Z(F∞)\GL2(F∞)
f (g)dg =

∫
(R×)r×(R×+)s

∫
F∞

∫
K∞

f
((

y x
0 1

)
k
)

dkdx
d×∞ y

∏
r+s
j=1 |y j|

.

Recalling |y|∞ = ∏
r
j=1 |y j|∏r+s

j=r+1 |y j|2, it follows that on F×∞ , d×∞ y = const.dy/|y|∞.
On GL2(Fp) we normalize the Haar measure such that K(op) has measure 1. On the factor space

Z(F∞)\GL2(A), we use the product of these measures, which, on the factor Z(A)\GL2(A), restricts as∫
Z(A)\GL2(A)

f (g)dg =
∫

A×

∫
A

∫
K

f
((

y x
0 1

)
k
)

dkdx
d×y
|y|

.

Compare this with [BH10, p.6] and [GJ79, (3.10)].

2.2. Spectral decomposition and Eisenstein series. We review some basic facts about the automorphic
theory of GL2 that we shall use later. In the setup, we follow the work of Blomer and Harcos [BH10, Sections
2.2-2.7], even when it is not emphasized. Since our aim is to extend the spectral decomposition of [BH10]
from totally real number fields to all number fields, we will always pay special attention to complex places.

For a Hecke character ω , we denote by L2(GL2(F)\GL2(A),ω) the Hilbert space of functions φ :
GL2(A)→ C satisfying

|φ |2 = 〈φ ,φ〉< ∞, where 〈φ1,φ2〉=
∫

Z(A)GL2(F)\GL2(A)
φ1(g)φ2(g)dg;

∀z ∈ A×,γ ∈ GL2(F),g ∈ GL2(A) : φ

((
z 0
0 z

)
γg
)
= ω(z)φ(g).

On L2(GL2(F)\GL2(A),ω), the group GL2(A) acts via right translations. From now on, without loss of
generality, we assume that ω is trivial on Fdiag

∞,+ (see [BH10, p.6]).
In this section, following [BH10, Section 2.2] closely, we give a short exposition of the spectral decom-

position of the Hilbert space L2(GL2(F)\GL2(A),ω). For a detailed discussion, consult [GJ79, Sections
2-5].

First, φ ∈ L2(GL2(F)\GL2(A),ω) is called cuspidal if for almost every g ∈ GL2(A),∫
F\A

φ

((
1 x
0 1

)
g
)

dx = 0.

The closed subspace generated by cuspidal functions is an invariant subspace Lcusp decomposing into a
countable sum of irreducible representations Vπ , each π occuring with multiplicity one (see [GJ79, Section 2]
and [JL70, Proposition 11.1.1]). Therefore, denoting the set of cuspidal representations by Cω , we may write

Lcusp =
⊕

π∈Cω

Vπ ,

where the irreducible representations on the right-hand side are distinct.
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To any Hecke character χ with χ2 = ω , we can associate a one-dimensional representation Vχ generated
by g 7→ χ(detg), these sum up to

Lsp =
⊕

χ2=ω

Vχ .

For details, see [GJ79, Sections 3-4].
Now

L2(GL2(F)\GL2(A),ω) = Lcusp⊕Lsp⊕Lcont,

where Lcont can be described in terms of Eisenstein series.
Take Hecke quasicharacters χ1,χ2 : F×\A×→ C× satisfying χ1χ2 = ω . Denote by H(χ1,χ2) the space

of functions ϕ : GL2(A)→ C satisfying ∫
K
|ϕ(k)|2dk < ∞

and

ϕ

((
a x
0 b

)
g
)
= χ1(a)χ2(b)

∣∣∣a
b

∣∣∣1/2
ϕ(g), x ∈ A,a,b ∈ A×.

In particular, H(χ1,χ2) can be identified with the set of functions ϕ ∈ L2(K) satisfying

ϕ

((
a x
0 b

)
g
)
= χ1(a)χ2(b)ϕ(g),

(
a x
0 b

)
∈ K.

There is a unique s ∈ C such that χ1(a) = |a|s∞ and χ2(a) = |a|−s
∞ for a ∈ Fdiag

∞,+ , hence introduce

H(s) =
⊕

χ1χ2=ω

χ1χ
−1
2 =|·|2s

∞ on Fdiag
∞,+

H(χ1,χ2).

Now regard the space H =
∫

s∈C H(s)ds as a holomorphic fibre bundle over base C. Given a section ϕ ∈ H,
ϕ(s) ∈ H(s) and ϕ(s,g) ∈ C. The bundle H is trivial, since any ϕ(0) ∈ H(0) extends to a section ϕ ∈ H
satisfying ϕ(s,g) = ϕ(0,g)H(g)s, where H(g) is the height function defined at [GJ79, p.219]. (One may
think of this as a deformation of the function ϕ .)

Define

L′cont =
∫

∞

0
H(iy)dy,

and equip it with the inner product

〈φ1,φ2〉=
2
π

∫
∞

0
〈φ1(iy),φ2(iy)〉dy

=
2
π

∫
∞

0

∫
F×\A1

∫
K

φ1

(
iy,
(

a 0
0 1

)
k
)

φ2

(
iy,
(

a 0
0 1

)
k
)

dkdady,

where A1 stands for the group of ideles of norm 1 (see [GJ79, (3.15)]). Then there is an intertwining operator
S : Lcont → L′cont given by [GJ79, (4.23)] on a dense subspace. Now combining this with the theory of
Eisenstein series [GJ79, Section 5], we obtain the spectral decomposition of Lcont.

For ϕ ∈ H, and for ℜs > 1/2, define the Eisenstein series

E(ϕ(s),g) = ∑
γ∈B(F)\GL2(F)

ϕ(s,γg)

on GL2(A). This is a holomorphic function which continues meromorphically to s ∈ C, with no poles on the
line ℜs = 0. Now for y ∈ R×, consider the complex vector space

V (iy) = {E(ϕ(iy)) : ϕ(iy) ∈ H(iy)}
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with the inner product
〈E(ϕ1(iy)),E(ϕ2(iy))〉= 〈ϕ1(iy),ϕ2(iy)〉.

As above,
V (iy) =

⊕
χ1χ2=ω

χ1χ
−1
2 =|·|2iy

∞ on Fdiag
∞,+

Vχ1,χ2 ,

with
Vχ1,χ2 = {E(ϕ(iy)) : ϕ(iy) ∈ H(χ1,χ2)}.

Here, V (iy) =V (−iy) by [GJ79, (4.3), (4.24), (5.15)]. Therefore, we have a GL2(A)-invariant decomposition

Lcont =
∫

∞

0
V (iy)dy =

∫
∞

0

⊕
χ1χ2=ω

χ1χ
−1
2 =|·|2iy

∞ on Fdiag
∞,+

Vχ1,χ2dy.

In fact, [GJ79, (4.24), (5.15-18)] implies that for φ ∈ Lcont, taking Sφ = ϕ ∈ L′cont,

φ(g) =
1
π

∫
∞

0
E(ϕ(iy),g)dy,

and also Plancherel holds, that is,

〈φ1,φ2〉=
1
π

∫
∞

0
〈E(ϕ(iy),g),φ2〉dy

=
2
π

∫
∞

0
〈ϕ1(iy),ϕ2(iy)〉dy =

2
π

∫
∞

0
〈E(ϕ1(iy)),E(ϕ2(iy))〉dy.

To summarize,

(2) L2(GL2(F)\GL2(A),ω) =
⊕

π∈Cω

Vπ ⊕
⊕

χ2=ω

Vχ ⊕
∫

∞

0

⊕
χ1χ2=ω

χ1χ
−1
2 =|·|2iy

∞ on Fdiag
∞,+

Vχ1,χ2dy,

a function on the left-hand side decomposes into a convergent sum and integral of functions from the spaces
appearing on the right-hand side, and also Plancherel holds.

For the Eisenstein spectrum, we introduce the notation
∫
Eω

Vϖ dϖ , where Eω is the set of unordered pairs
of Hecke characters {χ1,χ2} which are nontrivial on Fdiag

∞,+ and satisfy χ1χ2 = ω .

2.3. Derivations and weights. In this section, we review the action of the Lie algebra sl2(F∞) on the space
L2(GL2(F)\GL2(A),ω), following [BH10, Sections 2.3 and 2.10] at real places, [BM03, Section 3] and
[LG04, Chapter 2] at complex places.

First we give a real basis such that each basis element is 0 for all but one place Fj. At this exceptional
place, we use the following elements. For a real place ( j ≤ r), let

(3) H j =

(
1 0
0 −1

)
, R j =

(
0 1
0 0

)
, L j =

(
0 0
1 0

)
,

while for a complex place ( j > r), let

H1, j =
1
2

(
1 0
0 −1

)
, V1, j =

1
2

(
0 1
1 0

)
, W1, j =

1
2

(
0 1
−1 0

)
,

H2, j =
1
2

(
i 0
0 −i

)
, V2, j =

1
2

(
0 i
−i 0

)
, W2, j =

1
2

(
0 i
i 0

)
.

(4)

An element X ∈ sl2(F∞) acts as a right-differentiation on a function φ : GL2(A)→ C via

(Xφ)(g) =
d
dt

φ(gexp(tX))

∣∣∣∣
t=0

.
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Let g = sl2(F∞)⊗R C be the complexified Lie algebra and set U(g) for its universal enveloping algebra,
consisting of higher-order right-differentiations with complex coefficients.

The above-defined first-order differentiations give rise to local Casimir elements

Ω j =−
1
4
(
H2

j −2H j +4R jL j
)
,

Ω±, j =
1
8
(
(H1, j∓H2, j)

2 +(V1, j∓W2, j)
2− (W1, j∓V2, j)

2)(5)

at real and complex places, respectively.
On an irreducible unitary representation (π,Vπ), these local Casimir elements act as scalars, that is, for

φ ∈V ∞
π , Ω jφ = λ jφ , Ω+, jφ = λ+, jφ , Ω−, jφ = λ−, jφ with

(6) λ j =
1
4
−ν

2
j , λ±, j =

1
8
(
(ν j∓ p j)

2−1
)
,

where the parameters can be described as follows. At each place, the representation can be either even or odd
(according to the action of the element which is −id at the corresponding place and id at all other places).
At real places, there are three families of representations: principal series ν j ∈ iR, complementary series
ν j ∈ [−θ ,θ ] (only in the even case), and discrete series ν j ∈ 1/2+Z in the even case and ν j ∈ Z in the odd
case. At complex places, there are two families of representations: principal series ν j ∈ iR, p j ∈ Z in the
even case and ν j ∈ iR, p j ∈ 1/2+Z in the odd case, and complementary series ν j ∈ [−2θ ,2θ ], p j = 0 (only
in the even case). Here, θ is a constant towards the Ramanujan-Petersson conjecture, according to the current
state of art (see [BB11]), θ = 7/64 is admissible.

For some D ∈U(g) and a smooth vector φ ∈ L2(GL2(F)\GL2(A),ω), recalling the spectral decomposition
(2),

φ = ∑
π∈Cω

φπ + ∑
χ2=ω

φχ +
∫

Eω

φϖ dϖ ,

we have

(7) ‖Dφ‖2 = ∑
π∈Cω

‖Dφπ‖2 + ∑
χ2=ω

‖Dφχ‖2 +
∫

Eω

‖Dφϖ‖2dϖ ,

see [CPS90, Sections 1.2-4] with references to [DM78]. Compare (7) also with [BH08, (33)] and [BH10,
(84)].

We focus on the local subgroups SO2(R) (for j ≤ r) and SU2(C) (for j > r), they are compact, connected
and (modulo the center) maximal subgroups of GL2(R), GL2(C), respectively, with these properties. The
corresponding Lie algebras are so2(R) and su2(C), and define

(8) Ωk, j = R j−L j, Ωk, j =−
1
2
(H2

2, j +W2
1, j +W2

2, j),

at real and complex places, respectively. At a complex place, Ωk, j is the Casimir element (see [Sug90,
Definition 9 on p.72]).

We now define the weight set W (π). For j≤ r, let q j be any integer of the same parity as the representation
at the corresponding place, with the only restriction |q j| ≥ 2|ν j|+ 1 in the discrete series. For j > r, let
(l j,q j) be any pair of numbers satisfying |q j| ≤ l j ≥ |p j| and p j ≡ q j ≡ l j (mod 1). Now set

(9) w = (q1, . . . ,qr,(lr+1,qr+1), . . . ,(lr+s,qr+s))

and denote by W (π) the set of w’s satisfying the above condition.
For a given w ∈W (π), we say that φ : GL2(A)→ C is of weight w, if for j ≤ r,

(10) Ωk, jφ = iq jφ
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and for j > r,

(11) H2, jφ =−iq jφ , Ωk, jφ =
1
2
(l2

j + l j)φ ,

for the action of Ωk, j at complex places, see [Sug90, Chapter II, Proposition 5.15].
Note that W (π), through (q1, . . . ,qr, lr+1, . . . , lr+s), lists all irreducible representations of K∞ occuring in

π , while (qr+1, . . . ,qr+s) is to single out a one-dimensional space from each such representation.
Similarly, introduce the notation

(12) r = (ν1 . . . ,νr,(νr+1, pr+1), . . . ,(νr+s, pr+s)) ,

and also its norm

N (r) =
r

∏
j=1

(1+ |ν j|)
r+s

∏
j=r+1

(1+ |ν j|+ |p j|)2,

compare this with [MV10, Section 3.1.8].

2.4. Cuspidal spectrum.

2.4.1. Analytic conductor, newforms and oldforms. Let Vπ be a cuspidal representation in L2(GL2(F)\GL2(A),ω).
By the tensor product theorem (see [Bum97, Section 3.4] or [Fla79]),

(13) Vπ =
⊗

v
Vπv

as a restricted tensor product with respect to the family {Kp(op)} (by [Bum97, Theorem 3.3.4], irreducible
cuspidal representations are admissible).

For an ideal c⊆ cω (with cω standing for the conductor of ω), let

Vπ(c) =

{
φ ∈Vπ : φ

(
g
(

a b
c d

))
= ωc(d)φ(g), if g ∈ GL2(A),

(
a b
c d

)
∈ K(c)

}
,

where ωc(x) = ∏p|c ωp(x). Then c′ ⊆ c implies Vπ(c
′)⊇Vπ(c) (see [BH10, p.9]).

By [Miy71, Corollary 2(a) of Theorem 2], there is a nonzero ideal cπ such that Vπ(c) is nontrivial if and
only if c⊆ cπ . Now the analytic conductor of the representation is defined as

C(π) = N (cπ)N (r).

Introducing also
Vπ,w(c) = {φ ∈Vπ(c) : φ is of weight w}

for w ∈ W (π), [Miy71, Corollary 2(b) of Theorem 2] states that for any w ∈ W (π), Vπ,w(cπ) is one-
dimensional, that is, restricting Vπ(cπ) to K∞, each irreducible representation of K∞ listed in W (π) appears
with multiplicity one. A nontrivial element of Vπ,w(cπ) is called a newform of weight w.

Now consider an ideal c ⊆ cπ , and take any ideal t such that tcπ ⊇ c. Fixing some finite idele t ∈ A×fin
representing t, we obtain an isometric embedding

(14) Rt : Vπ(cπ) ↪→Vπ(c), (Rtφ)(g) = φ

(
g
(

t−1 0
0 1

))
.

Then combining [Miy71, Corollary 2(c) of Theorem 2] with [Cas73, Corollary on p.306] and (13), we see
the decompositions

Vπ(c) =
⊕
t|cc−1

π

RtVπ(cπ), Vπ,w(c) =
⊕
t|cc−1

π

RtVπ,w(cπ),

which are not orthogonal in general. However, for nonzero ideals t1, t2,

〈Rt1φ1,Rt2φ2〉= 〈φ1,φ2〉C(t1, t2,π),
8



with the constant factor C(t1, t2,π) depending only on t1, t2,π , but not on w (see [Mag13b, Chapter 3]). This
allows us to use the Gram-Schmidt method, obtaining complex numbers αt,s (with αo,o = 1) for any pair of
ideals s|t|cc−1

π such that the isometries

Rt = ∑
s|t

αt,sRs : Vπ(cπ) ↪→Vπ(c), t|cc−1
π ,

give rise to the orthogonal decompositions

(15) Vπ(c) =
⊕
t|cc−1

π

RtVπ(cπ), Vπ,w(c) =
⊕
t|cc−1

π

RtVπ,w(cπ).

2.4.2. Whittaker functions and the Fourier-Whittaker expansion. For a given r,w (recall (9) and (12)), we
define the Whittaker function as the product of Whittaker functions at archimedean places. The important
property of these functions is that they are the exponentially decaying eigenfunctions of the Casimir operators
Ω,Ω±, therefore, they emerge in the Fourier expansion of automorphic forms (see [Bum97, Section 3.5]).

At real places,

(16) Wq,ν(y) =
isign(y) q

2 Wsign(y) q
2 ,ν

(4π|y|)
(Γ(1

2 −ν + sign(y)q
2)Γ(

1
2 +ν + sign(y)q

2))
1/2

,

W denoting the classical Whittaker function (see [WW96, Chapter XVI]). This is taken from [BH10, (23)].
At complex places, we first define the Whittaker function on the positive real axis via

W(l,q),(ν ,p)(|y|) =
√

8(2l +1)
(2π)ℜν

(
2l

l−q

) 1
2
(

2l
l− p

)− 1
2

√∣∣∣∣Γ(l +1+ν)

Γ(l +1−ν)

∣∣∣∣
· (−1)l−p(2π)ν i−p−qwl

q(ν , p; |y|),

(17)

where

(18) wl
q(ν , p; |y|) =

l− 1
2 (|q+p|+|q−p|)

∑
k=0

(−1)k
ξ

l
p(q,k)

(2π|y|)l+1−k

Γ(l +1+ν− k)
Kν+l−|q+p|−k(4π|y|),

K denoting the K-Bessel function, and

(19) ξ
l
p(q,k) =

k!(2l− k)!
(l− p)!(l + p)!

(
l− 1

2(|q+ p|+ |q− p|)
k

)(
l− 1

2(|q+ p|− |q− p|)
k

)
.

Then extend this to y ∈ C× to satisfy

W(l,q),(ν ,p)(yeiθ ) = e−iqθ W(l,q),(ν ,p)(y), y ∈ C×,θ ∈ R.

This definition is borrowed from [BM03, Section 5] and [LG04, Section 4.1], apart from the first line, which
is a normalization to gain the right L2-norm.

In both cases, the occuring numbers ν , p,q, l are those given by the representation and weight data, encoded
in the action of the elements Ω,Ω±,Ωk,H2 (recall (4), (5), (6), (8), (9), (12)).

Finally, define the archimedean Whittaker function as

Ww,r(y) = ∏
j≤r

Wq j,ν j(y j)∏
j>r

W(l j,q j),(ν j,p j)(y j).

With the given normalization, for a fixed r,

(20)
∫

F×∞
Ww,r(y)Ww′,r(y)d×∞ y = δw,w′ .

This can be seen as the product of the analogous results at single places. For real places, see [BH10, (25)] and
[BM05, Section 4]. As for complex places, see [Mag13a, Lemma 2] and [Mag13b, Lemma 8.1 and Lemma
8.2].
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Now we extend [BH10, Section 2.5] to our more general situation. For any π ∈ Cω , c⊆ cπ , any function
φ ∈ Vπ,w(c) can be expanded into Fourier series as follows. There exists a character επ : {±1}r → {±1}
depending only on π such that

(21) φ

((
y x
0 1

))
= ∑

t∈F×
ρφ (tyfin)επ(sign(ty∞))Ww,r(ty∞)ψ(tx).

Note that επ is not well-defined, if we are in the discrete series and that the coefficient ρ(tyfin) depends only
on the fractional ideal generated by tyfin. Moreover, it is zero, if this fractional ideal is nonintegral. For the
proof of this, see [DFI02, Section 4], [KM96, Sections 1-3] or [Mag13b, Proposition 2.1].

Now assume that c = cπ , i.e. φ is a newform of weight w. In this case, the coefficients ρπ(m) are
proportional to the Hecke eigenvalues λπ(m):

ρφ (m) =
λπ(m)√
N (m)

ρφ (o).

Setting
Wφ (y) = ρφ (o)επ(sign(y))Ww,r(y), y ∈ F×∞ ,

we obtain

(22) φ

((
y x
0 1

))
= ∑

t∈F×

λπ(tyfin)√
N (tyfin)

Wφ (ty∞)ψ(tx).

2.4.3. The archimedean Kirillov model. Now fixing yfin =(1,1, . . .), we can single out the term corresponding
to t = 1:

(23) Wφ (y) =
∫

F\A
φ

((
y x
0 1

))
ψ(−x)dx.

In the case of arbitrary (i.e. non-necessarily pure weight) smooth functions in Vπ(cπ), this latter formula
can be considered as the definition of the mapping φ 7→Wφ . The image is a dense subspace in L2(F×∞ ,d×∞ y),
moreover, there is a positive constant Cπ depending only on π and satisfying

(24) C(π)−ε �ε Cπ �ε C(π)ε

such that

(25) 〈φ1,φ2〉=Cπ〈Wφ1 ,Wφ2〉,

where the scalar product on the left-hand side is the scalar product in L2(GL2(F)\GL2(A),ω), while on the
right-hand side, it is the scalar product in L2(F×∞ ,d×∞ y). For the proof of these facts, see [Mag13b, Proposition
2.2 and Section 3]. The map φ 7→Wφ is therefore surjective from Vπ(cπ) to L2(F×∞ ,d×∞ y).

Now turn to the general case c⊆ cπ . Using the isometries Rt, (22) gives rise to, for every φ ∈ RtVπ(cπ),

(26) φ

((
y x
0 1

))
= ∑

t∈F×

λ t
π(tyfin)√
N (tyfin)

Wφ (ty∞)ψ(tx),

with

(27) Wφ =W(Rt)−1φ , λ
t
π(m) = ∑

s|gcd(t,m)

αt,sN (s)1/2
λπ(ms−1).

2.5. Eisenstein spectrum. In this section, we develop the theory of Eisenstein series. Since Eisenstein
series will show up only in the spectral decomposition of an automorphic function of trivial central character,
we assume temporarily that ω = 1. From now on, let χ ∈ E1 be a Hecke character which is nontrivial on
Fdiag

∞,+ .
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2.5.1. Analytic conductor, newforms and oldforms. Similarly to the cuspidal case, for any ideal c⊆ o, define

Vχ,χ−1(c) =

{
φ ∈Vχ,χ−1 : φ

(
g
(

a b
c d

))
= φ(g), if g ∈ GL2(A),

(
a b
c d

)
∈ K(c)

}
.

Using that Vχ,χ−1 and H(χ,χ−1) are isomorphic as GL2(A)-representations, we have

Vχ,χ−1(c) = {E(ϕ(iy), ·) ∈Vχ,χ−1 : ϕ ∈ H(χ,χ−1,c)}
with

H(χ,χ−1,c) =

{
ϕ ∈ H(χ,χ−1) : ϕ

(
g
(

a b
c d

))
= ϕ(g), if

(
a b
c d

)
∈ K(c)

}
.

Analogously to (13), we have
H(χ,χ−1) =

⊗
v

Hv(χ,χ
−1),

a restricted tensor product with respect to the family {Kp(op)} again, the admissibility of H(χ,χ−1) is
straight-forward.

Assume χ has conductor cχ . The following is taken from [BH10, Section 2.6].

Proposition 2.1. For any non-archimedean place p, set d = vp(d) and m = vp(cχ), and fix some ϖ such
that vp(ϖ) = 1. Then for any integer n ≥ 0, the complex vector space Hp(χ,χ

−1,pn) has dimension
max(0,n−2m+1). For n≥ 2m, an orthogonal basis is {ϕp, j : 0≤ j ≤ n−2m} with functions ϕp, j defined
as follows.

If m = 0 and k =
(
∗ ∗

bϖd ∗

)
∈ Kp(op), let

ϕp,0(k) = 1; ϕp,1(k) =
{

N (p)−1/2, if vp(b) = 0,
−N (p)1/2, if vp(b)≥ 1;

while for j ≥ 2,

ϕp, j(k) =


0, vp(b)≤ j−2,
−N (p) j/2−1, if vp(b) = j−1,
N (p) j/2

(
1− 1

N (p)

)
, ifvp(b)≥ j.

If m > 0 and k =
( a ∗

bϖd ∗
)
∈ Kp(op), let

ϕp, j(k) =
{

N (p)(m+ j)/2χp(ab−1), if vp(b) = m+ j,
0, if vp(b) 6= m+ j.

Moreover,

1− 1
N (p)

≤ ‖ϕp, j‖ ≤ 1.

Proof. See [BH10, Lemma 1 and Remark 7]. �

Therefore, cχ,χ−1 = (cχ)
2 is the maximal ideal c such that Vχ,χ−1(c) and H(χ,χ−1,c) are nontrivial.

Now turn our attention to the archimedean quasifactors H j(χ,χ
−1). They are always principal series

representations and their parameter r is the following. At real places, ν j ∈ iR of (6) is the one satisfying
χ j(a) = aν j for a ∈ R+ (see [BM05, p.83]). At complex places, ν j ∈ iR and p j ∈ Z/2 of (6) are those
satisfying χ j(aeiθ ) = aν j e−ip jθ for a ∈ R+,θ ∈ R (see [BM03, Section 3] or [LG04, Section 2.3]). Now
these give rise to the set W (χ,χ−1) of weights (those occuring in H j(χ,χ

−1)): the only condition is
|q j| ≤ l j ≥ |p j| at complex places.

The analytic conductor is again defined as

(28) C(χ,χ−1) = N (cχ,χ−1)N (r).
11



We can now give an orthogonal basis of H(χ,χ−1,c) for any c ⊆ c2
χ . Given t|cc−2

χ and any weight
w ∈W (χ,χ−1), let ϕ t,w be the tensor product of the following local functions. At the archimedean places,
with the notation of Section 2.1.3, let ϕ

t,w
j (k) = Φq j(k), ϕ

t,w
j (k) = Φ

l j
p j,q j(k)/‖Φ

l j
p j,q j‖SU2(C) for k ∈ K j with

j ≤ r, j > r, respectively. At non-archimedean places, let ϕ
t,w
p = ϕp,vp(t). The global functions form an

orthogonal basis of H(χ,χ−1,c) and this gives rise to an orthogonal basis in Vχ,χ−1 via the corresponding
Eisenstein series φ t,w =E(ϕ t,w). Finally, defining Rt : Vχ,χ−1(c2

χ) ↪→Vχ,χ−1(c) as φ o,w/‖φ o,w‖ 7→ φ t,w/‖φ t,w‖
for all w, we obtain the orthogonal decomposition

(29) Vχ,χ−1(c) =
⊕
t|cc−2

χ

RtVχ,χ−1(c2
χ).

2.5.2. The Fourier-Whittaker expansion and the archimedean Kirillov model. Similarly to cusp forms,
Eisenstein series can also be expanded into Fourier-Whittaker series. Assume ϕ is one of the pure tensors
defined above and φ = E(ϕ), where we dropped t and w from the notation. Denoting by ρE(ϕ,0)(y) the
constant term [GJ79, p.220], we obtain the Fourier-Whittaker expansion (see [BH10, Sections 2.6 and 2.7]
and [Mag13b, Section 2.4])

(30) φ

((
y x
0 1

))
= ρE(ϕ),0(y)+ ∑

t∈F×

λ t
χ,χ−1(tyfin)√
N (tyfin)

WE(ϕ)(ty∞)ψ(tx)

where the coefficients satisfy

λ
t
χ,χ−1(m)�F,ε N (gcd(t,m))N (m)ε ,

for all m⊆ o. Also,

(31) ‖WE(ϕ)‖�F,ε N (t)εC(χ,χ−1)ε‖ϕ‖,

where the norms are understood in the spaces L2(F×∞ ,d×∞ y) and L2(K) (recall also (28)). Compare these with
[BH10, (48-50)].

The mapping E(ϕ) 7→WE(ϕ) has similar properties as in the cuspidal spectrum. In the special case c= c2
χ ,

t= tχ = o, E(ϕ) spans the space Vχ,χ−1,w(c
2
χ) of newforms of weight w. In this case, we have the alternative

definition

(32) WE(ϕ)(y) =
∫

F\A
E(ϕ)

((
y x
0 1

))
ψ(−x)dx,

where yfin = (1,1, . . .). For φ1,φ2 ∈Vχ,χ−1(c2
χ), we have

(33) 〈φ1,φ2〉=Cχ,χ−1〈Wφ1 ,Wφ2〉

with some positive constant Cχ,χ−1 �F,ε C(χ,χ−1)−ε depending only on χ . Also, λχ,χ−1 specialize to Hecke
eigenvalues.

2.6. The spectral decomposition of shifted convolution sums. Fix an ideal c 6= 0, and focus on L2(GL2(F)\GL2(A)/K(c),ω),
the subspace consisting of functions that are right K(c)-invariant. Its spectral decomposition is similar to (2),
the only modification is the restriction of Cω ,Eω to

Cω(c) = {π ∈ Cω | c⊆ cπ}, Eω(c) = {χ ∈ Eω | c⊆ cχ,χ−1}.
We write

(34)
∫
(c)

fϖ dϖ = ∑
π∈Cω (c)

fπ +
∫

Eω (c)
fϖ dϖ ,

if f is a function of the infinite-dimensional representations not orthogonal to the subspace L2(GL2(F)\GL2(A)/K(c),ω).
We further introduce the notion of Sobolev norms in the automorphic setup. Let d ≥ 0 be an integer. As-

sume that φ ∈ L2(GL2(F)\GL2(A),ω) is a function such that X1 . . .Xdφ exists for every sequence X1, . . . ,Xd ,
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where each Xk is one of those differential operators given in (3) and (4). Then the Sobolev norm ‖φ‖Sd of φ

is defined via

‖φ‖2
Sd
=

d

∑
k=0

∑
{X1,...,Xk}∈{H j,R j,L j,H1, j,H2, j,V1, j,V2, j,W1, j,W2, j}k

‖X1 . . .Xkφ‖2.

One can prove (consult [Ven10, Section 8.1]) that the action of U(g) can be lifted up to the Kirillov model,
i.e. for sufficiently smooth vectors W ∈ L2(F×∞ ), it makes sense to speak about

‖W‖2
Sd
=

d

∑
k=0

∑
{X1,...,Xk}∈{H j,R j,L j,H1, j,H2, j,V1, j,V2, j,W1, j,W2, j}k

‖X1 . . .XkW‖2.

Now we are in the position to state the main result of the paper, a generalization of [BH10, Theorem 2] for
arbitrary number fields.

Theorem 1. Assume π1,π2 are irreducible cuspidal representations of the same central character. Let
l1, l2 ∈ o\{0}, and set c= lcm(l1cπ1 , l2cπ2). Let moreover W1,W2 : F×∞ → C be arbitrary Schwarz functions,
that is, they are smooth and tend to 0 faster then any power of y−1 or y, as y tends to ∞ or 0, respectively.
Then for any ϖ ∈ C1(c)∪ E1(c) and t|cc−1

π , there exists a function Wϖ ,t : F×∞ → C× depending only on
F,π1,π2,W1,W2,ϖ , t such that the following holds. For any Y ∈ (0,∞)r+s, any ideal n⊆ o and any 0 6= q ∈ n,
there is a spectral decomposition of the shifted convolution sum

∑
l1t1−l2t2=q,06=t1,t2∈n

λπ1(t1n
−1)λπ2(t2n−1)√

N (t1t2n−2)
W1

((
(l1t1) j

Yj

)
j

)
W2

((
(l2t2) j

Yj

)
j

)

=
∫
(c)

∑
t|cc−1

ϖ

λ t
ϖ(qn

−1)√
N (qn−1)

Wϖ ,t

((
q j

Yj

)
j

)
dϖ ,

where λ t
ϖ(m) is given in (27).

Let P ∈ C[x1, . . . ,xr+2s] be a polynomial of degree at most a in each variable. Set then

D = P

((
y j

∂

∂y j

)
j≤r

,

(
y j

∂

∂y j

)
j>r

,

(
y j

∂

∂y j

)
j>r

)
.

Then for any 0 < ε < 1/4 and nonnegative integers b,c, we have, for all y ∈ F×∞ ,∫
(c)

∑
t|cc−1

ϖ

(N (rϖ))
2c|DWϖ ,t(y)|2dϖ �F,ε,π1,π2,a,b,c,P N ((l1l2))ε‖W1‖2

Sα
‖W2‖2

Sα

·
r

∏
j=1

(|y j|1−ε + |y j|1−2θ−ε)(min(1, |y j|−2b))
r+s

∏
j=r+1

(|y j|3/2 + |y j|2)(min(1, |y j|−2b))

with α = (a+b+2c+20)r+(a+b+2c+44)s+4.

From the L2-bound presented in Theorem 1, one can easily deduce L1-bounds (see [Mag13b, Chapter 6]).

3. ANALYSIS OF SMOOTH AUTOMORPHIC VECTORS

Assume that we are given a smooth automorphic vector φ appearing in an automorphic representation.
The aim of this section is to give a pointwise estimate for the associated Kirillov vector Wφ , and, when φ is a
cuspidal newform, the supremum norm of φ , both in terms of some Sobolev norm of φ .
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3.1. Bounds on Bessel functions. About the classical J-Bessel function of parameter p ∈ Z/2, record the
bounds

(35) |J2p(x)| ≤ 1 for all x ∈ (0,∞), |J2p(x)| � x−1/2 for all x ∈ (max(1/2,(2p)2),∞),

see [Wat95, 2.2(1)] and [GR07, 8.451(1-8)].
Now we define and estimate a function j that later will turn out to be the Bessel function of a certain

representation (after a simple transformation of the argument).

Lemma 3.1. Assume ν ∈ C and p ∈ Z/2 are given such that either ℜν = 0 (principal series) or ℜν 6= 0,
ℑν = 0, |ν | ≤ 2θ = 7/32, p = 0 (complementary series). Define

(36) j(t) = 4π|t|2
∫

∞

0
y2ν

(
yt + y−1t
|yt + y−1t|

)2p

J2p(2π|yt + y−1t|)d×R y.

Then j(t) is an even function of t ∈ C× satisfying the bound

(37) j(t)� |t|2(1+ |t|−1/2)(1+ |p|).

Proof. It is clear that j(t) = j(−t), so we are left to prove (37). Assume first that p 6= 0, which implies that
we are in the principal series. Then trivially

j(t)� |t|2
∫

∞

0
|J2p(2π|yt + y−1t|)|d×R y.

The integral is invariant under y↔ 1/y, so we have

j(t)� |t|2
∫

∞

1
|J2p(2π|yt + y−1t|)|d×R y.

Here ∫ 2

1
|J2p(2π|yt + y−1t|)|d×R y� 1

and ∫ max
(

4p2
π|t| ,2

)
2

|J2p(2π|yt + y−1t|)|d×R y�max
(

log
(

4p2

π|t|

)
,0
)

by |J2p(x)| ≤ 1 of (35). On the remaining domain, y ≥ 2, hence |yt + y−1t| ≥ y|t|/2. Moreover, since
y≥ 4p2/(π|t|), we have 2π|yt + y−1t| ≥ (2p)2 > 1/2, so we may apply |J2p(x)| � x−1/2 of (35), obtaining∫

∞

max
(

4p2
π|t| ,2

) |J2p(2π|yt + y−1t|)|d×R y� 1+ |t|−1/2.

Altogether,

j(t)� |t|2
(

1+ |t|−1/2 +max
(

log
(

4p2

π|t|

)
,0
))

,

which obviously implies

(38) j(t)� |t|2(1+ |t|−1/2)(1+ |p|).
If p = 0, in particular, in the complementary series, a similar calculation yields (using also that 2|ℜν | ≤

7/16)

(39) j(t)� |t|2(1+ |t|−1/2).

(This time the integral might not be invariant under y↔ 1/y, however, replacing y2ℜν by y2|ℜν |, we may
write

∫
∞

1 in place of
∫

∞

0 ; and the domain of integration [1,∞] is splitted up as [1,2]∪ [2,max(1/|t|,2)]∪
[max(1/|t|,2),∞].)

Collecting the bounds (38), (39), we arrive at (37). �
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3.2. Bounds on Whittaker functions. We would like to give estimates on the Whittaker functions defined
in (16) and (17). At real places, we refer to [BH08].

Lemma 3.2. For all ν ,

(40) Wq,ν(y)� |y|1/2
(

|y|
|q|+ |ν |+1

)−1−|ℜν |
exp
(
− |y|
|q|+ |ν |+1

)
.

For ν ∈ (Z/2)∪ iR and for any 0 < ε < 1/4,

(41) Wq,ν(y)�ε |y|1/2−ε(|q|+ |ν |+1).

For ν ∈ (−1/2,1/2) and for any 0 < ε < 1,

(42) Wq,ν(y)�ε |y|1/2−|ν |−ε(|q|+ |ν |+1)1+|ν |.

Proof. See [BH08, (24-26)] (and also [BH10, (26-28)]). �

At complex places, introduce

J(l,q),(ν ,p)(y) = W(l,q),(ν ,p)(y)

(√
8(2l +1)
(2π)ℜν

(
2l

l−q

) 1
2
(

2l
l− p

)− 1
2

√∣∣∣∣Γ(l +1+ν)

Γ(l +1−ν)

∣∣∣∣
)−1

,

the unnormalized Whittaker function appearing in [BM03, Section 5] and [LG04, Section 4.1]; our function
J(l,q),(ν ,p)(y) is the same as J1ϕl,q(ν , p)(a(y)) in [LG04]. The advantage of this unnormalized function is its
regularity in ν . Note that J(l,q),(ν ,p) is nothing else but (17) without its first line.

Lemma 3.3. For 0 < |y| ≤ 1 and ε > 0,

(43) W(l,q),(ν ,p)(y)�ε |y|1−|ℜν |−ε(1+ |p|+ l)1+|p|/2.

For |y| ≥ (l4 +1)(|ν |2 +1),

(44) W(l,q),(ν ,p)(y)� exp
(
− |y|
|ν |+ l +1

)
.

Proof. It is clear from the definition and the fact |ℜν | ≤ 7/32 that

W(l,q),(ν ,p)(y)� J(l,q),(ν ,p)(y)(1+ |p|+ l)1+|p|/2.

Together with [LG04, (4.28)], this shows the bound (43). As for (44), take |y| ≥ (l4 +1)(|ν |2 +1). We first
estimate J(l,q),(ν ,p) from its expression in terms of K-Bessel functions (recall (18) and (19)). We trivially have

ξ
l
p(q,k),(2π|y|)l+1−k,(1+ l)(1+ |p|+ l)1+|p|/2� e|y|/(3(|ν |+l+1))

for the binomial factor, for the power of |y|, and for the summation over k together with the transition factor
from J(l,q),(ν ,p) to W(l,q),(ν ,p). Now we would like to estimate

Kν+l−|q+p|−k(4π|y|)
Γ(l +1+ν− k)

,

where 0≤ k ≤ l−max(|p|, |q|). Instead of this, we may write

Kν+a(4π|y|)
Γ(b+1+ν)

,

where 0≤ a≤ b≤ l: in the principal series ℜν = 0, this is justified by Ks(x) = K−s(x) (see [Wat95, 3.7(6)])
and |Γ(x)|= |Γ(x)|, hence take b = l−k, then a = |l−k−|q+ p‖ (and we conjugate ν , if l−k < |q+ p|), 0≤
a≤ b≤ l follows from the constraint on k; while in the complementary series, p= 0 implies l−|q+ p|−k≥ 0,
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from which 0≤ a≤ b≤ l is satisfied by setting b = l− k, a = l− k−|q+ p|. By Basset’s integral [Wat95,
§6.16],

Kν+a(4π|y|)
Γ(b+1+ν)

=
Γ(ν +a+1/2)
Γ(ν +b+1)

1
2
√

π(2π|y|)ν+a

∫
∞

−∞

e−i4π|y|t

(1+ t2)ν+a+1/2 dt.

From Stirling’s formula, we see that the quotient of the Γ-factors is O(1). As for the rest, integrating by parts,
then shifting the contour to ℑt =−(|ν |+a+2)−1 (similarly as in [BM05, (4.2-5)]),

1
2
√

π(2π|y|)ν+a

∫
∞

−∞

e−i4π|y|t

(1+ t2)ν+a+1/2 dt� |ν |+a+1
|y|ν+a−1 exp

(
−(3+1/3)π|y|
|ν |+a+1

)
.

Here, |ν |+a+1� |y|1/2, so as above,

|ν |+a+1� e|y|/(|ν |+a+1), |y|−ν−a+1� e|y|/(3(|ν |+a+1)),

giving
Kν+l−|q+p|− j(4π|y|)

Γ(l +1+ν− j)
� exp

(
− 2|y|
|ν |+ l +1

)
.

Altogether

W(l,q),(ν ,p)(y)� exp
(
− |y|
|ν |+ l +1

)
as claimed. �

Now borrowing an idea from [BH08, p.330], we give a further bound on W(l,q),(ν ,p).

Lemma 3.4. For all y ∈ C×,

(45) W(l,q),(ν ,p)(y)� (|y|3/4 + |y|)(l4 +1)(|ν |2 +1)(|p|+1).

Proof. Our starting point is a special Jacquet-Langlands functional equation

(46) W(l,q),(ν ,p)(y) = κ(p, l,q)π
∫

C×
j(
√

t)W(l,−q),(ν ,p)(t/y)d×C t,

where j is defined in (36) and |κ(p, l,q)|= 1. This is proved in [BM02, Theorem 2 and (3)] in a different
formulation, one is straight-forward from the other using [LG04, (2.30), (2.43) and (4.2)]. Note that in
[BM02], it is stated only for the principal series (i.e. ℜν = 0) and even representations (i.e. p ∈ Z), but the
result extends to the complementary series by analytic continuation, the odd case can be handled similarly
(see [BM02, p.90]). Also note that j(

√
t) does not lead to confusion, since j(t) is an even function of t (by

Lemma 3.1).
In (46), split up the integral as

W(l,q),(ν ,p)(y)�

I︷ ︸︸ ︷∫
0<|t|<|y|(l4+1)(|ν |2+1)

j(
√

t)W(l,−q),(ν ,p)(t/y)d×C t

+

II︷ ︸︸ ︷∫
|t|≥|y|(l4+1)(|ν |2+1)

j(
√

t)W(l,−q),(ν ,p)(t/y)d×C t .

First estimate I. Using Cauchy-Schwarz,

I�
(∫

0<|t|<|y|(l4+1)(|ν |2+1)
| j(
√

t)|2d×C t
)1/2

·
(∫

0<|t|<|y|(l4+1)(|ν |2+1)
|W(l,−q),(ν ,p)(t/y)|2d×C t

)1/2

.
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The second factor is at most 1, since the Whittaker functions have L2-norm 1 (recall (20) and the remark after
that). In the first factor, we may apply (37), giving

I�max(|y|, |y|3/4)(l4 +1)(|ν |2 +1)(|p|+1).

In the second term II, we apply Lemma 3.3 together with (37). This gives

II�max(|y|, |y|3/4)(|ν |+ l +1)(|p|+1).

Summing up, we arrive at (45). �

3.3. A bound on the supremum norm of a cusp form. The aim of this section is to give a bound of the
form ‖φ‖sup�F,π ‖φ‖Sd , where φ is a sufficiently smooth newform in the cuspidal representation π , and the
order d depends only on F .

Proposition 3.5. Let (π,Vπ) be an irreducible cuspidal representation. Assume that φ ∈Vπ(cπ) such that
‖φ‖S14r+36s exists. Then

‖φ‖∞ = sup
g∈GL2(A)

|φ(g)| �F,π ‖φ‖S14r+36s .

Proof. We follow the proof of [BH10, Lemma 5]. Note that there is a correction made later in its erratum,
which we also build in. First assume φ ∈Vπ(cπ) is of pure weight w. Let η1, . . . ,ηh ∈ A×fin be finite ideles
representing the ideal classes. By strong approximation [Bum97, Theorem 3.3.1], there exist γ ∈ GL2(F),
g′ ∈ GL2(F∞), k ∈ K(o) such that for some 1≤ j ≤ h,

g = γ

(
g′×

(
η
−1
j 0
0 1

)
k
)
.

Now decompose g′ as

g′ = zγ
′a j′

(
y′ x′

0 1

)
k′,

where a j′ ∈ GL2(F) (regarded as an element of GL2(F∞)) is from a fixed set {a1, . . . ,a2rh}, y′ > δ at all
archimedean places, where δ > 0 is fixed (depending only on F), z ∈ Z(F∞), γ ′ ∈ SL2(o), k′ ∈ K∞, this can
be done by [Mag13b, Lemma 4.9]. From now on, we regard z as an element in Z(A), therefore we have

g = zγγ
′a j′

((
y′ x′

0 1

)
k′×a−1

j′ γ
′−1
(

η
−1
j 0
0 1

)
k
)
.

Here, a−1
j′ γ ′−1

(
η
−1
j 0
0 1

)
k lies in a fixed compact subset of GL2(Afin), which can be covered with finitely many

left cosets of the open subgroup K(cπ). Therefore

g = zγ
∗
((

y′ x′

0 1

)
×m

)
(k∗∞× k∗fin) ,

where γ∗ ∈ GL2(F), k∗ = k∗∞× k∗fin ∈ K∞×K(cπ), and m ∈ GL2(Afin) runs through a finite set depending
only on F and cπ , y′ > δ at all archimedean places.

Now let φm(g) = φ(gm). Obviously, φ and φm have the same supremum and Sobolev norms, and when g
decomposes as above,

|φ(g)|=
∣∣∣∣φm

((
y′ x′

0 1

)
k∗∞×

(
1 0
0 1

))∣∣∣∣
�F

∣∣∣∣φm

((
y′ x′

0 1

)
×
(

1 0
0 1

))∣∣∣∣ r+s

∏
j=r+1

(l j +1)7,

(47)

where we applied [Mag13b, Lemma 4.8] in the last estimate.
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The function φm can be regarded as a classical automorphic function on GL2(F∞) (see [Mag13b, Section
4.3]). Therefore, analogously to (21), we see that φm (as a function on GL2(F∞)) can be expanded into Fourier
series

(48) φm

((
y′ x′

0 1

))
= ∑

06=t∈f
a(t)Ww,r(ty′)ψ∞(tx′),

where f is a fractional ideal (regarded as a lattice in F∞) depending only on F and π . Here,

a(t)�F,π ‖φ‖∏
j≤r

(1+ |q j|5)∏
j>r

(1+ l10
j ),

by [Mag13b, Lemma 4.11].
Now (47) and (48) give

(49) |φ(g)| �F,π ‖φ‖∏
j≤r

(1+ |q j|5)∏
j>r

(1+ l17
j ) ∑

06=t∈f
|Ww,r(ty′)|.

We turn our attention to ∑06=t∈f |Ww,r(ty′)|.
From (40), (41), (42), (44) and (45), we see that

Wq,ν(y)�F,π (|q|3 +1)exp
(
− |y|

2(q2 +1)(|ν |2 +1)

)
,

W(l,q),(ν ,p)(y)�F,π (l8 +1)exp
(
− |y|

2(l4 +1)(|ν |2 +1)

)(50)

hold for all y 6= 0, at real and complex places, respectively.
Setting A j = |q j|3 +1, B j = 2(q2

j +1)(|ν j|2 +1) at real places, and A j = l8
j +1, B j = 2(l4

j +1)(|ν j|2 +1)
at complex places, (50) and a simple calculation yields

∑
06=t∈f

|Ww,r(ty′)| �F,f

r+s

∏
j=1

A jB
deg[Fj:R]
j ,

where we used that |y′j|> δ at all places, and also the fact that a lattice L in F∞ contains OL(Nr+2s) points of
supremum norm ≤ N.

Therefore,

∑
06=t∈f

|Ww,r(ty′)| �F,π

r

∏
j=1

(|q j|5 +1)
r+s

∏
j=r+1

(l16
j +1),

which, together with (49), give rise to

(51) |φ(g)| �F,π ‖φ‖∏
j≤r

(1+q10
j )∏

j>r
(1+ l33

j ).

Assume now a sufficiently smooth φ ∈Vπ is not necessarily of pure weight. We may decompose it as

(52) φ = ∑
w∈W (π)

bwφw,

where φw is a weight w function of norm 1 in Vπ . Let us follow the common practice and using the smoothness
of φ , estimate bw in terms of supw = max(|q1|, . . . , |qr|, lr+1, . . . , lr+s). Using Parseval, then (10) and (11),
we find, for any nonnegative integer k,

(53) bw = 〈φ ,φw〉 �k
1

(1+(supw))2k 〈Ω
k
k, jφ ,φw〉 �k

1
(1+(supw))2k ‖φ‖S2k ,

where j is the index of an archimedean place, where the maximum (in the definition of supw) is attained.
Together with (51) and (52), this implies

|φ(g)| �F,π,k ∑
w∈W (π)

(1+ supw)10r+33s−2k‖φ‖S2k .
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Here, choosing k = 7r+18s, we obtain the statement by noting that supw attains the positive integer N on a
set of cardinality OF(Nr+2s−1). �

3.4. A bound on Kirillov vectors.

Proposition 3.6. Let (π,Vπ) be an irreducible automorphic representation occuring in L2(GL2(F)\GL2(A),ω).
Let t⊆ o be an ideal, a,b,c be nonnegative integers, 0 < ε < 1/4. Let P ∈ C[x1, . . . ,xr+2s] be a polynomial
of degree at most a in each variable. Set then

D = P

((
y j

∂

∂y j

)
j≤r

,

(
y j

∂

∂y j

)
j>r

,

(
y j

∂

∂y j

)
j>r

)
.

Assume φ ∈ RtVπ(cπ) such that ‖φ‖S(a+b+2c+6)r+(a+b+2c+8)s+a+b+2c+4 exists. Then DWφ exists and

DWφ (y)�a,b,c,P,F,ε ‖φ‖S(a+b+2c+6)r+(a+b+2c+8)s+a+b+2c+4N (t)εN (cπ)
εN (r)−c

·
r

∏
j=1

(|y j|1/2−ε + |y j|1/2−θ−ε)(min(1, |y j|−b))
r+s

∏
j=r+1

(|y j|3/4 + |y j|)(min(1, |y j|−b)).

Proof. We follow the proof of [BH10, Lemma 4]. First assume φ ∈ RtVπ(cπ) is of pure weight w. Then we
may write

|Wφ (y)|= ‖Wφ‖ · |Ww,r(y)|.
Using (24), (25), (31), (33), the remark after that, and the estimates (41), (42), (45), we have, for 0 < ε < 1/4,

Wφ (y)�F,ε ‖φ‖N (t)εN (cπ)
εN (r)ε

r

∏
j=1

(1+ |ν j|+ |q j|)1+θ (|y j|1/2−ε + |y j|1/2−θ−ε)

·
r+s

∏
j=r+1

(1+ |p j|)(1+ |ν j|2)(1+ l4
j )(|y j|3/4 + |y j|).

This gives

Wφ (y)�F,ε ‖φ‖N (t)εN (cπ)
εN (r)2

r

∏
j=1

(1+ |q j|)1+θ (|y j|1/2−ε + |y j|1/2−θ−ε)

·
r+s

∏
j=r+1

(1+ l4
j )(|y j|3/4 + |y j|).

Now take an arbitrary φ ∈ RtVπ(cπ), which is sufficiently smooth. Then recalling (52) and (53), in

φ = ∑
w∈W (π)

bwφw, ‖φw‖= 1,

we have
bw�k

1
(1+(supw))2k ‖φ‖S2k .

Now choosing k = 3r+4s, we obtain

Wφ (y)�F,ε ‖φ‖S2(3r+4s)N (t)εN (cπ)
εN (r)2

r

∏
j=1

(|y j|1/2−ε + |y j|1/2−θ−ε)

·
r+s

∏
j=r+1

(|y j|3/4 + |y j|).
(54)

The differential operators given in (3) and (4) act on the sufficiently smooth Kirillov vectors. We record the
action of some of them (neglecting some absolute scalars for simplicity). Of course, Ω j(,±) act by λ(±). From
(23) and (32), it is easy to derive that R j, V1, j +W1, j, V2, j +W2, j act via a multiplication by y j, ℜy j, ℑy j,
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respectively; finally H j by y j(∂/∂y j), and H1, j, H2, j by y j(∂/∂y j)+ y j(∂/∂y j), iy j(∂/∂y j)− iy j(∂/∂y j),
respectively.

Now assume given a,b,c and the polynomial P as in the statement. Then

D = const.F,DP
(
(H j) j≤r,((H1, j− iH2, j)/2) j>r,((H1, j + iH2, j)/2) j>r

)
,

and define the differential operator

D ′ =

(
∏
j≤r

Ω
c+2
j ∏

j>r
Ω

c+2
j,+

) ∏
1≤ j≤r
|y j|≥1

Rb
j


 ∏

r+1≤ j≤r+s
|y j|≥1

|ℜy j|≥|ℑy j|

(V1, j +W1, j)
b



 ∏
r+1≤ j≤r+s
|y j|≥1

|ℜy j|<|ℑy j|

(V2, j +W2, j)
b

 .

Applying (54) to D ′Dφ , we obtain the statement. �

4. PROOF OF THEOREM 1

Using the archimedean Kirillov model, we see that there exist functions φ1 ∈Vπ1(cπ1), φ2 ∈Vπ2(cπ2) such
that Wφ1 =W1, Wφ2 =W2. Set then

Φ = R(l1)φ1R(l2)φ2.

Then since c = lcm(l1cπ1 , l2cπ2), we see that Φ is right K(c)-invariant. Also, since W1,W2 are from the
Schwarz space, φ1, φ2 are smooth and have finite Sobolev norms of arbitrarily large order, the same hold for
Φ ∈ L2(GL2(F)\GL2(A)/K(c),1) (use (24), (25) and Proposition 3.5 together with [Ven10, Lemma 8.4]).
Then by (2), (15), (29) and (34), we can decompose Φ as

(55) Φ = Φsp +
∫
(c)

∑
t|cc−1

π

Φϖ ,tdϖ ,

where Φϖ ,t ∈ Rt(Vϖ(cϖ)) and Φsp is the orthogonal projection of Φ to Lsp. Now set Wϖ ,t =WΦϖ ,t . We claim
this fulfills the property stated in Theorem 1. Given Y ∈ (0,∞)r+s, n⊆ o, 0 6= q ∈ n, let (yfin) = n, and y∞ =Y .
We compute

(56)
∫

F\A
Φ

((
y−1 x
0 1

))
ψ(−qx)dx

in two ways. On the one hand, we use (55). Here, q 6= 0 implies that Φsp has zero contribution to (56), and
we obtain that (56) equals ∫

(c)
∑

t|cc−1
ϖ

λ t
ϖ(qn

−1)√
N (qn−1)

Wϖ ,t

((
q j

Yj

)
j

)
dϖ

from (26) and (30). On the other hand, using (14) and (22) together with the choice of φ1, φ2, we obtain that
(56) equals

∑
l1t1−l2t2=q,06=t1,t2∈n

λπ1(t1n
−1)λπ2(t2n−1)√

N (t1t2n−2)
W1

((
(l1t1) j

Yj

)
j

)
W2

((
(l2t2) j

Yj

)
j

)
.

The equality of the last two displays is exactly the statement about the spectral decomposition.
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We still have to prove the inequalities concerning the L2-norm of the derivatives. By Proposition 3.6 and a
consequence of (7) (see [BH10, (85)]), we have∫

(c)
∑

t|cc−1
ϖ

(N (rϖ))
2c|DWϖ ,t(y)|2dϖ �F,ε,π1,π2,a,b,c,P N (l1l2)ε‖Φ‖2

Sβ

·
r

∏
j=1

(|y j|1−ε + |y j|1−2θ−ε)(min(1, |y j|−2b))
r+s

∏
j=r+1

(|y j|3/2 + |y j|2)(min(1, |y j|−2b))

with β = 2(3r+4s+2)+(r+ s)(a+b+2c). For any differential operator D ′ ∈U(g) of order k, we have

‖D ′φ1‖∞�F,π1 ‖φ1‖Sk+2(7r+18s) , ‖D ′φ2‖∞�F,π2 ‖φ2‖Sk+2(7r+18s)

by Proposition 3.5. Since Z(A)GL2(F)\GL2(A) has finite volume, and the operators R(l1,2) do not affect
Sobolev norms, ‖Φ‖Sβ

�F,π1,π2 ‖φ1‖Sβ+2(7r+18s)‖φ2‖Sβ+2(7r+18s) . Now (24) completes the proof of Theorem 1.
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