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Abstract 

With the purpose of fast characterization of supercapacitors' electrode materials, an 

impedance measurement system has been constructed which employs multisine 

perturbation. The properties of this system are described. 

Introduction 

In the past decades much effort has been done to develop high surface area carbon 

electrodes with a view to use them in electrochemical capacitors (in “supercaps”, [1]). A 

possible candidate for high power applications is the electrode with vertically aligned carbon 

nanotubes (VACNT or shortly: CNT) [2]. In a project done mainly in the Fraunhofer Institute 

for Material and Beam Technology, IWS, Dresden, Germany, a device – actually an 

atmospheric pressure CVD furnace- is being developed by which a layer of CNT can be grown 

onto a nickel substrate („CNT-on-Ni”) in a continuous, i.e. a „roll-to-roll” process. As a quality 

control step, the CNT-on-Ni layer is characterized by the measurement of surface area as if it 

were a supercapacitor’s electrode; specific capacitance were determined from measured 

impedance spectra. 

In general, impedance spectra of supercaps look like the ones shown in Fig.1. One of the 

spectra is of the traditional ones with activated carbon electrodes, the other is the one with 

CNT-on-Ni electrodes. At low frequency both spectra are capacitive, the higher frequency 

parts of the spectra are characteristic to the pore structure. To obtain a good estimate of 

pore-structure related parameters and of surface area, it is sufficient to measure impedance 

spectra in the audio frequency range, and somewhat below.  

For an on-line characterization – that is, on the slowly moving Ni band leaving the CVD 

furnace - we need (i) an appropriate electrochemical cell which can be easily attached to, or 

pressed to, or snapped on the metal sheet already covered by the CNT layer and (ii) an 

impedance measurement system which performs the measurement very fast, within 

seconds. The first item is under development and hence will be shortly discussed only. The 

second item is the subject of the present communication: the fast impedance measurement 

system which directly yields parameters of a simple three to five elements equivalent circuit 
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within two to three seconds. The properties of this measurement system are demonstrated 

with two-electrodes symmetrical cells. 

The impedance measurement and analysis 

Usually impedance measurements are performed by sinusoidal perturbation of one of the 

quantities of potential or current and the resulting sinusoidal signals of the other quantity is 

related to the perturbing signal. The spectra are compiled from frequency-by-frequency 

measurements. The devices needed for this method are commercially available and precise, 

though somewhat time-consuming in particular at low frequencies. An alternative method 

employs steady state multi-frequency perturbation in the form of a sum of harmonics. The 

potential and current signals are Fourier-transformed and impedances are calculated for 

each frequency. It is worth to be noted that this method has been elaborated almost a half a 

century ago [3,4]; also employing other forms of multi-frequency perturbation like white 

noise [3] or pulse sequences [5] or wavelets [6]. Though multi-frequency impedance 

methods were sometimes used in studies of electrode kinetics [7] and of corrosion [8], these 

have been much scarce than those with frequency-scan, mostly because the frequency 

response analyzers apparently proved to be superior over the spectrum analyzers. The multi-

frequency variants of EIS are much faster than the conventional one (on the expense of 

lower precision – for a thorough analysis see [9]) and thus can be used to track temporal 

changes at constant potential or when the potential is scanned. In the latter case, obviously, 

certain conditions must be held regarding the relation of minimum frequency and scan rate. 

With this method called dynamic EIS (DEIS) the advantages of CV and EIS can be coupled; for 

details see a recent review [10]. In the present case, the short time available was the reason 

for applying multifrequency voltage perturbation.  

The perturbation signal contained certain odd prime number harmonics of a base frequency 

only; all harmonics are of equal amplitudes and of random phases. The base frequency was 

chosen by adhering to the sampling rate, fs, (or sampling time, ∆t≡1/fs) of the signal digitizer. 

In our first experiments, a „laboratory version” of the setup was developed, based on a 

Tektronix MSO-2014 oscilloscope, with fs=62.5 kHz. Later on, to provide portability for the 

system, we replaced the oscilloscope with a laboratory-built USB-interfaced 12-bit analog-to-

digital converter (ADC) the sampling rate of which, with almost simultaneous sampling on its 

two inputs was fs =5 kHz2. 

The fast Fourier transform (FFT) algorithm [11] requires 2N data-point array (we employed 

N=13, ie. 8192 datapoints were sampled); to get sharp spectrum lines, the period length of 

the base harmonic of frequency f0 must match the time of the 2N data-points. The frequency 

limit of impedance detemination is fs/2, according to the Nyquist criterion. Keeping these in 

mind, the frequency range of the measurement is kmin∙fs/2N to the upper limit, fs/2 where the 

factor kmin=11 stands for the first used harmonic included in the perturbing signal. Hence the 

                                                      
2 Apart portability, the idea of using the the ADC rather than the oscilloscope can be traced back to that the 

contribution-to-impedance of a capacitance is larger at lower frequencies, hence it is advisable to shift down 

the frequency range as much as possible within the allowable time frame of a spectrum measurement. The 

ADC's data can be read out continuously while the measurement is still running thereby much time is gained.  



T. Pajkossy et al, A multisine perturbation EIS system etc. To appear in Bulgarian Chem. Comm., (2017) 

3 

frequency range is about two-and-a-half orders of magnitude broad. The frequencies of the 

used harmonics are approximately equidistant on the logarithmic scale. Actually, with N=13, 

f0=0.6103 Hz, and fs=5kHz; the signal consists of altogether 38 harmonics in the 6.71-1786Hz 

frequency range. This frequency range more-or-less fits to that of the sound cards of the 

personal computers (PCs), therefore the audio output of the PC can be used as a function 

generator as follows: The perturbing signal has been generated once as an array of 2N data 

points; from this array of points - simply by repeating it - a 100 seconds record-length audio-

file of .wav format has been generated. This audio file is played back by an audio player 

program of the computer, yielding a noise-like voltage of approximately 0.3 V rms 

amplitude3.  

Data acquisition, i.e. digitization of the two voltages proportional to the perturbation voltage 

and current, is performed by the ADC. Its full control and data readout is carried out by a PC 

via its USB interface by a program written in C++. Some parts of the data processing 

(conversion of the binary readout of the digitizer and the FFT) is done also by C++  

subprograms called from a VBA program ("Excel macro"). This macro performs the 

subsequent calculations including the curve fitting (nonlinear least means squares 

minimization using modulus weighting [12]) the plotting, and documenting. 

 
Fig.1. Complex plane impedance spectrum (circles, highest frequency 66 kHz) of a 
supercap, realised as two CNT-on-Ni electrodes separated by a 50µm paper spacer. 
Electrolyte: 1 M Et4NBF4 in acetonitrile. For comparison the impedance spectrum of a 
supercap made with activated carbon electrodes is also shown (squares). 
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setting amplitudes and frequency range. As the next step of the development, a dedicated function generator 

working simultaneously with a two-channel ADC is under construction. 



T. Pajkossy et al, A multisine perturbation EIS system etc. To appear in Bulgarian Chem. Comm., (2017) 

4 

 

The impedance spectra of the supercaps exhibit typical characteristics of porous electrodes. 

The different shapes of the spectra – like those in Fig.1 – can be attributed to the differences 

of the pore-size distributions. The CNT-covered electrode’s spectrum corresponds to the 

limiting case of a pore system with uniform pores. Accordingly, its spectrum can be well 

fitted with the equivalent circuit model containing the impedance element of the porous 

layer of finite thickness [13], having a frequency dependence of Zpore≡k1 coth[k2/√(jω)] / √(jω) 

where k1 and k2 are constants, ω is the angular frequency, and j is the imaginary unit. 

However, replacing this element by a serial W-C circuit (W is a pseudo-Warburg element and 

C represents the double layer capacitance of the complete surface) yields just as good fits as 

with Zpore. The complete equivalent circuit is usually an R-W-C one, where the R resistance 

represents the internal resistance or the supercap electrode. In addition, at the high 

frequency end an inductive term also appears, which is of instrumental origin; it is easy to 

correct its effect, and it is irrelevant in the present context. We note that the spectrum of 

the activated carbon-covered electrode in Fig.1. represents another limiting case of the pore 

systems: when the micropores' orefices are within macropores. Impedance spectra of 

electrodes of such complicated geometries can be modelled by a recent theory [14]. 

The measurement time plus data processing time – including FFTs, impedance calculations 

and curve fitting to extract the capacitance and Warburg parameter – is about two seconds; 

measurement accuracy is sufficient to the actual purpose. The whole measurement and the 

subsequent analysis is carried out upon a single mouseclick.  

The cell and electronics 

The basic idea is that there is an electrochemical cell mounted just above the slowly moving 

Ni sheet - close to the edge of the sheet - in such a way that it can be pressed against the 

sheet and after the two-seconds measurement it can be lifted up. The cell comprises parallel 

layers of metal electrodes and separators: in up-to-down direction a metal disk as the 

counter electrode, a separator, a stainless steel mesh serving as a quasi-reference electrode, 

and finally a separator as the terminating element. These four layers are disks of 9 mm 

diameter, surrounded by, and held together by a silicon tube acting as sealing ring. 

Measurement is done in such a way that the cell is lowered, and the second separator is 

pressed against the Ni sheet. All parts of the cell must be kept wet by the electrolyte, which 

is slowly injected in the interelectrode space from an electrolyte reservoir. The whole cell is 

built into an Al cylinder serving as a Faraday cage.  

The electronics belonging to the cell is simple and self-explanatory (Fig.2). Since the working 

electrode, the Ni sheet is in metallic contact with various parts of the furnace, the working 

electrode is grounded. Hence current is to be measured in the counter electrode's circuit, as 

a voltage across the Rm= 10 ohm resistor. The measurement is done at open circuit potential, 

thus there is no need to apply a potentiostatic feedback. The perturbation from DAC is 

attenuated to 10 mV amplitude by an input amplifier. The two instrumentation amplifiers 

are designed to be very similar to each other, they are constructed using Texas Instruments 

TL 082C operational amplifiers. Their AC and DC amplifications are 100 and 1, respectively. 
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Fig. 2. Connection scheme of the cell, without the DAC and the two-inputs ADC. Note that 
the two instrumental amplifiers (the IAs) are of identical characteristics. ce, re, and we 
stand for the counter, reference and working electrodes, respectively; for the two-
electrodes cell ce and re are shorted.  
 

The three-electrodes cell is still under development; for testing the impedance setup 

(electronics of Fig.1, the digitizers and the programs) a two-electrodes simplified version is 

used: this comprises two stainless-steel disks of 8 mm diameter within a plastic cylinder. The 

„supercap” is a sandwich of two electrode sheets (disks of 7 mm diameter) separated by two 

sheets of 25 μm thickness ethyl-cellulose sheets (Nippon Kodoshi Corp.), wetted by the 

electrolyte and pressed together by the stainless steel disks by a force of 75N. In the audio-

frequency range the capacitive interfacial impedance of the CNT-on-Ni is as low as 1-10 

ohm∙cm2, hence solution resistance must be also small - i.e. thin separators and high 

conductivity electrolyte are to be used (this latter is 1-ethyl-3-methyl-imidazolium-

tetrafluoroborate (EMImBF4) in acetonitrile, 34% (w/w), with about 45mS/cm specific 

conductivity at room temperature).  

The presence of water and oxygen – as impurities in the organic electrolyte – affects 

somewhat the low frequency impedances; a parallel charge transfer resistance appears in 

the equivalent circuit. However, it does not affect the interfacial capacitance, in addition its 

effect is negligible in the frequency range of the multisine measurement. Therefore, the 

experiment can be done in the ambient atmosphere. 

Results 

The accuracy of the multisine setup was tested by comparing the obtained impedance 

spectra with those obtained with a Solartron impedance measurement setup (1286 

potentiostat +1250 frequency response analyzer); the results are shown in Fig.3. The first is a 

test with a dummy cell whose impedance is similar to those of supercap cells in the audio-

frequency range (a 7 ohm + nominally 4700 μF electrolytic condenser serial RC). Apart the 
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couple of outlier points, the spectra measured with the two setups are practically the same 

(Fig.3a). Fitting the parameters of a serial RC circuit to the spectra within the 5Hz-2kHz 

frequency yield fairly good fits (the fitting residuals are within the 1% absolute value and 1 

degree margins, see Fig.3c); the fitted values of capacitance are 5.4 mF (for the Solartron 

setup data) and 5.1 mF (for the portable multisine setup data). That is, the multisine setup 

yields approximately the same capacitance (in two seconds) as the precise Solartron setup 

(in about one minute). 

  

  
Fig.3: Impedance spectra of (a) a serial-RC dummy cell (7 ohm+4700 µF) and (b) of a CNT-
on-Ni supercap (see the text), measured with a Solartron 1250+1286 setup (open symbols) 
and with the setup of multisine perturbation (full symbols). (c) and (d) are the fitting 
residuals for the two spectra. Circles and squares are magnitudes and phase angles, 
respectively, on all figures. 
 

The other test was performed on a “real supercapacitor cell”, that is, with CNT covered Ni 

sheets electrodes. The impedance spectra are shown in Fig.3b. Just as in the case of the 

dummy cell, disregarding the noise around 1 kHz, the spectra measured with the two setups 

are practically the same. Fitting the parameters of a serial RWC circuit to the spectra within 

the 5Hz-2kHz frequency range resulted in sufficiently good fits (the fitting residuals are 

within the 2% absolute value and 2 degrees margins, see Fig.3d); the fitted capacitance 

values are 23.6 mF/cm2 (for the Solartron setup data) and 21.6 mF/cm2 (for the multisine 

setup data). The difference is around 10% – which is still an acceptable error limit for the 

given purpose. 
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Summary 

We have constructed a simple instrument (for the simplest, inexpensive version the required 

components are a two-channel ADC, some operational/instrumentation amplifiers, and a PC 

with appropriate programs) to measure and analyze audio-frequency impedance spectra in a 

short time (seconds) following a single mouseclick. Due to the use of the multi-sine 

perturbing signal, the measurement system is fast – on the expense of accuracy. However, 

its accuracy might be sufficient for certain purposes, like in the present case of characterizing 

CNT layers produced in a continuous process.  
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