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Rare regions of the susceptible-infected-susceptible model on Barabási-Albert networks

Géza Ódor
Research Centre for Natural Sciences, Hungarian Academy of Sciences, MTA TTK MFA, P.O. Box 49, H-1525 Budapest, Hungary

(Received 28 January 2013; revised manuscript received 5 April 2013; published 29 April 2013)

I extend a previous work to susceptible-infected-susceptible (SIS) models on weighted Barabási-Albert
scale-free networks. Numerical evidence is provided that phases with slow, power-law dynamics emerge as
the consequence of quenched disorder and tree topologies studied previously with the contact process. I
compare simulation results with spectral analysis of the networks and show that the quenched mean-field
(QMF) approximation provides a reliable, relatively fast method to explore activity clustering. This suggests
that QMF can be used for describing rare-region effects due to network inhomogeneities. Finite-size study of
the QMF shows the expected disappearance of the epidemic threshold λc in the thermodynamic limit and an
inverse participation ratio ∼0.25, meaning localization in case of disassortative weight scheme. Contrarily, for
the multiplicative weights and the unweighted trees, this value vanishes in the thermodynamic limit, suggesting
only weak rare-region effects in agreement with the dynamical simulations. Strong corrections to the mean-field
behavior in case of disassortative weights explains the concave shape of the order parameter ρ(λ) at the transition
point. Application of this method to other models may reveal interesting rare-region effects, Griffiths phases as
the consequence of quenched topological heterogeneities.
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I. INTRODUCTION

The research of nonequilibrium models has been a central
topic of statistical mechanics [1–3]. A fundamental dynamical
model to understand them is the contact process (CP) [4,5],
in which sites can be either active (infected) or inactive
(susceptible). By decreasing the infection rate of the neighbors
λ/k, where k is the degree of the vertex, a continuous phase
transition occurs at some λc critical point from the active to
the inactive steady state. The latter is also called absorbing,
because no spontaneous activation of sites is allowed and the
density of infection (ρ) is zero.

Recently the interest has been shifted from models, defined
on Euclidean, regular lattices to processes living on general
networks [6,7]. The effects of the heterogeneous topological
structures [8,9] is not yet fully understood. In particular,
in the case of ubiquitous scale-free (SF) networks [10],
exhibiting P (k) ∼ k−γ degree distribution of the nodes [6,7]
the location of the phase transition and the singular behavior
is still a debated issue. Numerical simulations [11–14] and
theoretical approaches based on the heterogeneous mean-field
(HMF) theory [11,12,15] show strong effects of the network
heterogeneity on the behavior of the CP defined on complex
networks.

Although SF-s exhibit infinite topological dimension (d),
defined by N ∝ rd , where N is the number of nodes within
the (chemical) distance r , simple mean-field approximations
cannot capture several important features. Studies of the CP,
as well as other processes [8,9], have shown that quenched
disorder in networks is relevant in the dynamical systems
defined on top of them. Very recently it has been shown [16–18]
that generic slow (power-law or logarithmic) dynamics is
observable by simulating CP on networks with finite d. This
observation is relevant for recent developments in dynamical
processes on complex networks such as the simple model of
“working memory” [19], brain dynamics [20], social networks
with heterogeneous communities [21], or slow relaxation in
glassy systems [22].

Slow dynamics can be the consequence of bursty behavior
of agents connected by small world networks resulting in
memory effects [23]. An independent cause is related to
arbitrarily large (l < N), active rare-regions (RR) with long
lifetimes: τ ∝ exp(l) in the inactive phase (λ � λc). In the
region λ0

c < λ < λc, where λ0
c is the critical point of the impure

system, a so-called Griffiths phase (GP) [24,25] develops,
with algebraic density decay ρ ∝ t−α , α being a nonuniversal
exponent. At and below the λ0

c rare clusters may still form, with
an over-average mean degree, which are locally supercritical
at a given λ and induce a slower-than-exponential but faster-
than-power-law decay of the global density. In the case of
these “weak rare-region effects,” numerical simulations [18]
showed stretched-exponential decay, ρ(t) ∼ e−const×ty with
exponents y varying from values close to 1, for small λ, to
very small values (converging to 0) for λ approaching the GP.
The rare-region induced dynamical behavior can be described
by nonperturbative methods [26–29].

More recently, the possibility of slow dynamics has been
investigated on Barabási-Albert (BA) networks with γ = 3,
possessing infinite d [30]. Very extensive simulations showed
linear leading order density decay and ρ(λ,t → ∞) ∝ |λ −
λc| behavior with logarithmic corrections, in agreement with
the HMF approximations. It was also pointed out that in the
case of BA networks with one link per incoming node the
epidemic propagation slows down, and nontrivial critical den-
sity decay emerges with ρ(t,λc) ∝ t−α , α � 0.5. Furthermore,
when k-dependent weighting was also applied, suppressing
hubs or making the network disassortative, GP-like regions
could be observed in the simulations. A systematic finite
scaling study revealed that these power-laws saturate in the
N → ∞ thermodynamic limit, suggesting smeared phase
transitions [25]. This can be understood via the possibility
of embedding even infinite dimensional, active RR-s in
networks with d = ∞, leading to finite steady-state density:
ρ(t → ∞,N → ∞). A numerical percolation analysis [30]
has strengthened this view indeed.
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I continue the work [30] to explore whether quenched
mean-field (QMF) theory [31] with spectral decomposition
(SD) can help understanding rare-region effects in complex
networks. The QMF differs from HMF by taking into account
variations of the quenched network topology. I study the
susceptible-infected-susceptible (SIS) model [32] instead of
the CP, because the infection rate is independent of k; thus,
the rate equation involves symmetric matrices and a spectral
analysis can be done on an orthonormal basis with real,
nonnegative eigenvalues. The SIS model is a two-state system
in which infected sites propagate the epidemic (venerate all
neighbors) with rate λ or recover with rate 1.

This extension is far from trivial because the epidemic
transmitting capability of the infected nodes is higher than
in CP; i.e., it is not normalized by the number of outgoing
edges. Therefore, the emergence of localized rare regions
(RR) is more difficult. I provide extensive simulation results,
showing numerical evidence for GP-like regions with generic
slow dynamics, similarly as in case of the CP. The QMF and
SD analysis set up for these cases is in good agreement with
the dynamical simulations.

II. NETWORK MODELS

I consider here SIS on BA networks, in particular for
loop-less and weighted cases as described in Ref. [30]. This
permits very simple and fast construction, in contrast with
other standard network generation models; e.g., see Ref [33].
The BA growth starts with a fully connected graph of size
N0 = 10 nodes, but comparisons with N0 = 5 and 20 have also
been done to test any dependence. For BA at each time step s, a
new vertex (labeled by s) with m edges is added to the network
and connected to an existing vertex s ′ of degree ks ′ with
probability �s→s ′ = ks ′/

∑s ′′<s
s ′′=1 ks ′′ . This process is iterated

until reaching the desired network size N . The resulting
network has a SF degree distribution P (k) � k−3. For m = 1
we obtain a BA tree (BAT) topology, while for the looped case,
m = 3 was applied.

Binary (nonweighted) BA networks have been transformed
to weighted ones by assigning to every edge connecting
vertexes i and j a symmetric weight ωij . In Ref. [30],
two different network topology-dependent quenched weight
assignment strategies were introduced in order to slow down
and localize epidemics.

(i) Weighted BA tree I (WBAT-I). Multiplicative weights,
suppressing the infection capability of highly connected nodes

ωij = ω0(kikj )−ν, (1)

where ω0 is an arbitrary scale and ν is a characteristic exponent
with ν � 0. This can model internal limitations of hubs, like
the sublinear Heap’s law [34]. In this paper, I study the case
with ν = 1.5 exponent.

(ii) Weighted BA tree II (WBAT-II). Disassortative weighting
scheme according to the age of nodes in the network construc-
tion

ωij = |i − j |x
N

, (2)

where the node numbers i and j correspond to the time step
when they were connected the network. Since the degree of

nodes decreases as ki ∝ (N/i)1/2 during this process, this
selection with x > 0 favors connection between unlike nodes
and suppresses interactions between similar ones. In Ref. [30],
simulations showed evidence for a phase with power-law
dynamics of the CP for x = 2,3 with CP. This paper is
concerned about x = 2 networks.

The presence of these weights affects the dynamics of the
SIS. Thus, the rate at which a healthy vertex i becomes ill on
contact with an infected (active) vertex j is proportional to
λωij ; therefore, the epidemic can in principle become trapped
in isolated connected subsets. These regions of size l are rare
in general: P (l) ∝ exp(−l) but can exhibit exponentially long
lifetimes τ (l) ∝ exp(l). In the healthy (inactive) phase, they
provide the leading order contribution to the density of infected
sites

ρ(t) ∼
∫

lP (l) exp(−t/τ )dl, (3)

which in the saddle point approximation results in ρ(t) ∼ t−α

decay [16].

III. SPECTRAL ANALYSIS

In Ref. [30], the heterogeneous mean-field (HMF) analysis
of CP was worked out for these network models. However,
extensive simulations showed different dynamical behaviors,
except from the looped BA CP model case. Since HMF can’t
take into account rare region effects, nor models on trees, that
conclusion was not very surprising.

A mean-field theory, capable of describing the effects of
quenched topologies of the network on which SIS is defined is
expected to give better agreement with numerical simulations.
The QMF approach is based on the rate equation for ρi(t), the
infection probability of node i at time t [31]:

dρi(t)

dt
= −ρi(t) + [1 − ρi(t)]

∑
j

Aijλρj (t), (4)

where Aij is an element of the adjacency matrix assigned
with 1, if there is an edge between nodes i and j or 0 otherwise.
This equation can be generalized by replacing the adjacency
matrix with the weighted adjacency matrix Bij = Aijωij ,
having weighted elements: Bij ∈ [0,1].

For t → ∞, the system evolves into a steady state, with the
probabilities expressed as

ρi = λ
∑

j Bijρj

1 + λ
∑

j Bijρj

. (5)

Stability analysis shows that ρi > 0 above a λc epidemic
threshold, with finite-order parameter (prevalence) ρ ≡ 〈ρi〉.

In the SD approach one expands ρi in the space of
eigenvectors of the adjacency matrix Aij (or Bij for weighted
case) as

ρi =
∑



c(
)fi(
). (6)

This extension can be done for real and symmetric weights,
when the eigenvectors f (
) span a complete orthonormal
basis. For nonnegative, symmetric matrices extension of the
Perron-Frobenius theorem asserts that it exhibits real eigenval-
ues, furthermore the largest one 
max ≡ 
1 � 
2 � . . . 
N
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is unique and that the corresponding eigenvector f (
1) has
nonnegative components. In this basis, Eq. (5) can be expressed
by the coefficients c(
) as

c(
) = λ
∑

′


′c(
′)
N∑

i=1

fi(
)fi(
′)
1 + λ

∑

̃ 
̃c(
̃)fi(
̃)

. (7)

This gives λc = 1/
1 for the epidemic threshold and in its
neighborhood the order parameter can be approximated by the
eigenvectors of the largest eigenvalues,

ρ(λ) ≈ a1� + a2�
2 + ..., (8)

where � = λ
1−1
1, with the coefficients [35]

aj =
N∑

i=1

fi(
j )/

[
N

N∑
i=1

f 3
i (
j )

]
. (9)

A homogeneous solution implies that a finite fraction of
vertexes are infected right above λc and a1 is the order of O(1).
That would mean that the components of f (
1) are localized.
On the other hand, quenched inhomogeneous topologies can
also imply inhomogeneous ρi distributions and one can assume
that they result in rare region effects, as in Refs. [16–18,30].

To describe localization in the components of f (
1),
Ref. [31] suggested to use the inverse participation ratio

IPR(
) ≡
N∑

i=1

f 4
i (
), (10)

which in the limit N → ∞ is of the order of O(1) when
the eigenvector is localized. Contrary, when IPR(
) → 0, this
state is delocalized. Equation (9) implies that for localized prin-
cipal eigenvector a1 ∼ O(1/N), thus ρ ≈ a1� ∼ O(1/N ),
the disease is localized on a finite number Nρ of vertexes.
On the other hand, when f (
1) is delocalized, the disease
infects a finite fraction of vertexes for λ > λc.

Goltsev et al. [31] analyzed artificial and real SF networks
and found that in the case of localized cases, the epidemic
threshold was actually absent and a real epidemic affecting a
finite fraction of vertexes occurred after a smooth crossover at
higher values of λ. This is in agreement with the smeared phase
transition scenario proposed to explain the numerical results
for CP on weighed BA trees in Ref. [30]. In those systems,
rare-regions effects seemed to arise, causing power-law density
decays, which ultimately crossed over to saturation to finite ρ-s
in the N → ∞ limit. Right above λc similar concave shaped
ρ(λ) was obtained as in the localized cases of Ref. [31]. Here
I investigate the situation for SIS instead of CP models, to see
if this relation holds on. This has been done using finite-size
scaling analysis of the quantities: λ = 1/
1, IPR and ai for
i = 1,2,3.

It has been proven [36] that for random, unweighted SF
networks, with power-law degree distribution P (k) ∝ k−γ

the maximal eigenvalue scales as 
1 ∝ √
kmax for γ > 2.5.

Furthermore, the maximal degree of the network satisfies
kmax = min[N1/2,N1/(γ−1)], due to the structural cutoff of a
finite network with γ � 3. Therefore, 
1 should scale with
the network size as


1(N ) ∝ N1/4 (11)

for γ = 3 considered here.

TABLE I. Spectral QMF analysis results for SIS in different
networks

Network λ c IPR a1 a2 a3

BA 0.02(3) 0.32(4) 0.015(3) 4 × 10−4 10−7 10−8

BAT − 0.001(2) 0.24(1) 0.06(1) 10−4 10−7 10−9

WBAT-I 0.0001(3) 0.9(1) 0.001(2) 0.35(1) 5 × 10−8 10−6

WBAT-II 0.001(1) 0.23(2) 0.23(2) 4 × 10−3 3 × 10−5 10−3

Using the software package OCTAVE I [37] generated the
Bij matrices of BA, BAT, WBAT-I, and WBAT-II networks
for several sizes up to N = 200.000 and calculated the three
largest eigenvalues and the corresponding eigenvectors. From
these I deduced 1/
1, IPR, and ai . The whole SD analysis was
done using the sparse matrix functions of OCTAVE to handle
Bij -s of the networks within reasonable computing times. For
the largest sizes, 1–2 weeks of a CPU time was needed. Least-
squares fitting with the form

1/
1 = λc + X(1/N )c (12)

has been applied for the largest eigenvalues. As Table I shows,
a good agreement was obtained with the finite size scaling
expectation limN→∞ 1/
1 = λc = 0 of the QMF method. The
N → ∞ extrapolated critical threshold values converge to
zero using the three parameter fitting form Eq. (12). The fitted
power c agrees with an exponent of Eq. (11) reasonably well,
except from the WBAT-I case, where QMF results for only
N � 6000 could be achieved.

The IPR values decrease with 1/N and remain very small
for the unweighted BA (IPR < 0.02) and BAT (IPR < 0.07)
networks, albeit in the latter case the tendency seems to change
for N � 32 000 as shown on Fig. 1. This suggests an agreement
with the anomalous scaling behavior of CP on the BA tree
reported in Ref. [30]. Here, some clustering may be expected,

0 0.0001 0.0002 0.0003
1/N

0

0.01
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0.04
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0.06

0.07

FIG. 1. (Color online) Finite-size scaling of QMF SD results for
BAT model for N = 4000, 8000, 16 000, 32 000, 64 000, 100 000.
Bullets, λc; boxes, IPR; up-triangles, a1; down-triangles, a2; right-
triangles, a3. Lines: least-squares fitting for with the form Eq. (12).
Closed symbols correspond to N0 = 10; open ones to N0 = 20.
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FIG. 2. (Color online) Finite-size scaling of QMF SD results for
WBAT-II model for N = 2 000, 4 000,... 200 000. Bullets, λc; boxes,
IPR; up-triangles, a1; down-triangles, a2; right-triangles, a3. Lines:
least-squares fitting for with the form Eq. (12).

which should be checked further by studying networks with
N � 105 nodes. Unfortunately, this is out of the scope of
the present study using OCTAVE but is in preparation using
high performance graphics cards. For the WBAT-II case, IPR
stabilizes to � 0.23(2) (see Fig. 2), advocating strong epidemic
localization.

One can speculate that the initial compact seeds, from
which the BA graphs originate, can influence the clustering
behavior of the epidemic in the steady state. By varying the
seed size, N0 = 5, 10, 20, no measurable effects were found on
the WBAT results. For the unweighted BA and BAT networks
one can see differences between the finite-size results of the
N0 = 20 and N0 = 10 cases (see Fig. 1), but the N → ∞
asymptotic behavior appears to be the same.

For the unweighted BA and BAT networks, the eigenvalue
analysis provides a1 � a2 � a3 for all sizes in agreement
with the β = 1 HMF results for ρ slightly above the critical
threshold. In the N → ∞ limit, a1(N ) ∼ (1/N)0.5 and a2 �
a3 � 0 already for small sizes. For the weighted WBAT-I case,
a1 remains constant ∼0.35(1) while a2 ∼ a3 ∼ (1/N). In the
case of the WBAT-II tree, ai are of the same order of magnitude
and vanish linearly with 1/N (see Fig. 2), meaning a strong
corrections to the leading-order linear scaling. When one plots
ρ(λ) with these values, one gets a concave curve from above
and a tangential approach to λc. Such steady-state behavior
has already been seen by simulations of CP on weighted BA
networks [38]. In the next section, I compare these QMF results
with simulations of SIS on WBAT-I and WBAT-II networks.

IV. SIS MODEL SIMULATIONS ON WEIGHTED TREES

In simulations, I considered the SIS model in continuous
time as in Ref. [39], to be in accordance with the rate equations.
At each time step, a randomly chosen infected node recovers
with probability ni/(ni + λnn), where ni is the the number of
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FIG. 3. (Color online) Density decay as a function of time for the
SIS model on weighted BA trees generated with the WBAT-I scheme
with exponent ν = 1.5. Network size N = 2 × 106. Different curves
correspond to λ = 37.72, 37.73, 37.74, 37.75, 37.76, 37.77 (from
bottom to top). Inset: The same data plotted on the ln{− ln[ρ(t)]} vs.
ln(t) scale (with parameters from top to bottom order).

infected nodes and nn is the total number of links emanating
from them. Complementary, one of the links is selected and
the infection is transmitted, with probability λni/(ni + λnn).
Following the reaction, Ni and Nn are updated and the time is
incremented by �t = 1/(ni + λnn). The time is measured by
these Monte Carlo steps (MCs) and shown to be dimensionless
on the figures. These processes are iterated until t < tmax or
until the epidemic stops (Ni = 0).

The networks were generated via the BA linear preferential
attachment rule [10], following an initial fully connected
seed of N0 = 20. Neighbor indices of sites are stored in a
dense matrix to save memory; thus, up to N = 6 × 106-sized
networks could be studied. The initial state was fully active
and the concentration of infected sites was followed up to
tmax = 4 × 106 MCs. Density decay runs were repeated and
averaged over ∼104 and up to 105 independent network
realizations for WBAT-I and WBAT-II, respectively. I have
also calculated the effective decay exponents, defined as the
local slopes of ρ(t) as given by

αeff(t) = − ln[ρ(t)/ρ(t ′)]
ln(t/t ′)

, (13)

where t and t ′ have been chosen in such a way that the discrete
approximate of the derivative is sufficiently smooth. The static
scaling behavior in the active steady state has also been
investigated by measuring ρ(λ,t → ∞) deep in the saturation
region.

Figure 3 suggests that ρ(t) of the WBAT-I model exhibits
λ-dependent power-laws for t > 3 × 105 MCs. This can be
observed in networks with N = 2 × 106 nodes in the region
37.72 � λ � 37.77. The final slope at the lowest λ = 37.72
power-law curve is α � 0.343(4). By increasing the system
size, these curves become ultimately constant, as in the case
of the CP [30], meaning that the transition smears in the
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FIG. 4. (Color online) Density decay as a function of time for
the SIS on weighted BA trees generated with the age-dependent
(disassortative) WBAT-II scheme with exponent x = 2. Network size
N = 106. Different curves correspond to λ = 1.657, 1.66, 1.661,
1.663, 1.67, 1.68, 1.69 (from bottom to top). Dashed line: power-law
fit. Left inset: Local slopes of the same curves showing level-off
for large times. Right inset: Steady-state density (bullets) above the
epidemic threshold. The line shows power-law fitting with the form
Eq. (14).

thermodynamic limit. However, the above range is narrow both
in λ and the effective exponent α. Furthermore, some down cur-
vature can also be seen on the log-log plots in this region, which
makes the power-law dynamics assumption questionable.
Since the QMF SD analysis suggests only weak rare-region
effects, I plotted the same data on the ln{−ln[ρ(t)]} versus
ln(t) scale. As the inset of Fig. 3 shows, straight lines appear
asymptotically, corresponding to stretched exponential decay
behavior. In comparison, CP power laws with 0.3 � α � 1
could be seen clearly in the region 140 � λ � 145 [30].

In the case of WBAT-II network, power-laws decays of
ρ(t,λ) appear already for t > 50.000 MCs as shown in Fig. 4.
To see corrections to scaling, I have plotted the effective decay
exponents Eq. (13) in the left inset of Fig. 4. The final slope
of the lowest λ = 1.657 curve tends to α � 0.70(2), which is
far away from the HMF critical exponent value: α = 1. The
dynamical scaling behavior appears in the 1.657 � λ < 1.68
region, at much lower infection rates than in the case of the
CP [30]. However, a smeared transition is expected again, since
the densities in the steady state ρ(t → ∞) increase with N .
As the inset of Fig. 4 shows, ρ(λ,t → ∞) can be fitted using

ρ(λ,t → ∞) = C(λ − λc)β, (14)

with an order parameter exponent β = 1.22(1) near λc =
1.64(1) for networks with size N = 4 × 106.

V. DISCUSSION AND CONCLUSIONS

Understanding effects of heterogeneities in nonequilibrium,
dynamical systems is a challenging open field. References
[16,18] concluded that finite topological dimension is a neces-

sary condition for observing Griffiths phases and activated
scaling in the case of the basic model of nonequilibrium
system, the contact process. In the case of CP on certain
weighed networks, numerical evidence was shown for generic
power laws, but in the thermodynamic limit this phase seems
to disappear and a smeared phase transition exists, due
to the infinite-dimensional correlated rare regions [30]. In
contrast with these, strong disorder renormalization studies
of the random transverse-field Ising model found Griffiths
singularities [40] even in the infinite-dimensional Erdős-Rényi
random graphs [41].

Very recently, Griffiths phases have been reported in a
study of the random transverse Ising model on complex
networks with a scale-free degree distribution regularized
by and exponential cutoff p(k) ∝ k−γ exp[−k/ξ ] [42]. This
model was devised to understand the relation between the
onset of the superconducting state with the particular optimum
heterogeneity in granular superconductors. On quenched
networks, a phase transition at zero temperature and a Griffith
phase with decreasing size as the function of the cutoff ξ was
found. The scenario is similar to our case, because increasing
the value of the cutoff is like going to the thermodynamic limit
of the SF network. Another fresh model study [43] argues
again for the existence of GP in the SIS model defined on
unclustered, deterministic SF networks, with γ > 3, below
the percolation threshold of the network.

In this work, I provided spectral decomposition and QMF
approximation to SIS models on different scale-free networks.
This analysis has been supplemented with extensive numerical
simulations showing dynamical effects of the topological dis-
order. Activity localization of the eigenvectors characterized
by the IPR number predicts strong rare-region effects in
the case of weighted WBAT-II trees. Numerical simulations
exhibit a λ parameter region, with continuously changing
power-laws decays. Still, in the N → ∞ limit the ρ(t)
curves saturate, as for smeared phase transitions, discussed in
Ref. [30]. For the WBAT-I tree, the picture is less clear. There
is a narrow GP-like region at very late times (t > 3 × 105

MCs), but the ln{ρ[ln(t)]} curves exhibit downward curvature
and stretched exponential dynamics looks more reasonable.
This scenario is strengthened by the QMF SD analysis, which
results in a vanishing IPR, suggesting only weak rare-region
effects here. One can accept this because the neighbor infection
in the SIS is more homogeneous than in the CP; thus, the
disorder is weaker. This means that reducing the hub-hub
weights is not enough in SIS to find strong rare region effects,
but disassortativity can make the job.

This study goes one step further than Ref. [31] by analyzing
spectral data of different graphs via finite size scaling. In
particular, numerical evidence is shown for the disappearance
of λc with the expected scaling law in the N → ∞ limit.
Fluctuations, omitted by the QMF approximation can be
relevant, indeed simulations of SIS on finite graphs show
λc > 0. However, finite-size study suggests λc = 0 in all cases,
in accordance with smeared phase transition. Still the QMF
SD analysis seems to be a relatively fast, promising way
to explore topological rare-region effects, GPs in networks,
especially with infinite topological dimension. Extension of
this method for using more powerful numerical techniques is
under way.
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