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Abstract 

The emerging field of soundscape ecology views ecosystems in terms of biophony, geophony and 

anthrophony. Soundscape ecology considers the effects of sound on fauna, and this research focuses 

on anuran breeding lek soundscapes. The sensitivity of anuran breeding leks to acoustic disturbances 

makes breeding leks an important venue for a comparative soundscape study. We made long-term (> 

24 h) sound recordings in three representative wetlands and short-term (< 30 min) recordings in ten 

sites in the Pannonian Biogeographical Region of the Hungary and Slovakia border. Long-term 

soundscapes of the floodplain stretch, where there is relatively minor anthrophonical disturbance, 

showed an obvious circadian change in sound intensities. The site with moderate sound contamination 

exhibited a disturbed pattern of circadian sound variation, while the site with heavy traffic noise 

displayed an apparently random temporal soundscape. At different amphibian breeding sites during 

mating season, our short-term recordings were dominated by anuran calls and wind noise, while bird 

song, insect calls, and rain were present to a lesser degree. Our study indicates that vehicle traffic 

noise is a severe imposition to the natural soundscape, and suggests that soundscape monitoring can 

provide a reliable and sensitive index of environmental change for both short-term and long-term 

periods. 

Key words: soundscape monitoring, anuran breeding site, biophony, geophony, anthrophony. 
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Introduction 

Soundscape ecology, the science of sound in the landscape, is an emerging field which 

encompasses the causes and consequences of biological (biophony), geophysical (geophony), and 

human-produced (anthrophony) sounds (Pijanowski et al., 2011) to understand coupled animal and 

human dynamics across different scales of distance and time. It is an integrative framework that aims 

to describe how climate, land transformation, biodiversity patterns, and human activities interact 

through time to form dynamic acoustic landscapes. Monitoring and studying soundscapes may 

illuminate physical mechanisms for ecological processes and identify courses of landscape change 

accurately, sensitively, and economically. 

Furthermore, the landscape has been reconceived as a dynamic system composed of matter, 

structured energy, information and meaning (Cosgrove 2003; Farina 2010), thus expanding upon the 

more classical, geographical-ecological orientated perspective (Risser et al., 1984; Forman and 

Godron 1986; Pickett and Cadenasso 1995; Wu and Hobbs 2002; Turner 2005). In detail, sound 

produced in the landscape derives from various sources including human, weather, geophysical, and 

bioacoustic sources (Francis et al., 2011). Soundscape ecology overlaps with landscape ecology since 

some ecological processes occurring within landscapes can be tightly linked to and reflected in 

patterns of soundcape (Forman and Godron, 1981; Urban et al., 1987; Turner, 1989; Turner et al., 

2001; Farina, 2006).  

In bioacoustics, four animal taxa are well known for intense acoustic emissions: birds, most 

anurans, some insects, and a few mammals. Most of these animals produce intense sounds during 

their breeding seasons to attract potential mates and to repel rivals, and they are usually silent at other 

times. Those sounds are generally the main components of the local soundscape in areas such as 
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ponds and leks, (Runkle et al., 1994; Catchpole and Slater, 2003; Farina, 2011; Wang JC et al., 2012). 

The severe consequences of anthropogenic noise on wildlife have been shown recently over a diverse 

array of taxa (Barber et al., 2010). Nevertheless, ecological changes in response to noise at 

broad-scales have not yet been examined or tracked over time. In the present study, we compare 

soundscapes of three wetlands where frogs reproduce in differing levels of anthropogenic noise, and 

report acoustic analyses of soundscapes at numerous sites around the Pannonian Biogeographical 

Region. 
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Materials and Methods 

Acoustic recording 

Study areas include floodplains, wetlands and ponds in Pannonian Biogeographical Region in 

Hungary and Slovakia. Long-term recordings were made at two sites along the River Ipoly (Hugyag 

and Hont), northeast Hungary and one site at Lake Balaton (Balatonederics). Short-term recordings 

were made at seven sites in total with some sites containing two ponds (Budapest, Hont, Hugyag, 

Ipolydamázsd, Ipolyság/Hont, Ipolyszög, Letkés) (Fig. 1). 

Long-term acoustic recordings were made with a portable recorder (Sony, Japan) placed in a 

nearby tree and oriented to the center of the wetland. The recording volume was fixed at the level of 

25 and the soundscapes were recorded continuously for more than 24 hours. The frequency response 

of the Sony recorder was from 100 Hz to 16,000 Hz with the sample rate was set to 44,000 Hz. 

Fifteen-minute short-term recordings were made with the Marantz PMD670/U1B recorder (USA) 

connected to an AE3300 microphone (Audio-Technica, USA) at each of ten locations. The recording 

sensitivity, via the gain knob, was set specifically for each recording to optimize SNR. The 

frequency response of the Marantz recorder was flat to 20,000 Hz, +/- 0.25 dB. Gain knob settings, 

address, time, temperature, relative humidity and GPS information were recorded at each site.  

Data analyses 

For measuring the intensity, creating the sonogram and analyzing the acoustic component, 

long-term recordings were first segmented manually into sixty-minute sections. Then, the first 

five-minutes of each one-hour segment was analyzed further. Because the soundscape was changing 

quite slowly, the five-minute segments represented the complete hour to a large extent. 

PRAAT (an open-source program released by University of Amsterdam) was used to measure 
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relative sound intensities in dB and to create sonograms. For intensity measurement, the “To 

Intensity” function was used with “Down to Intensity Tier” and “Down to Table Of Real” operations. 

These relative intensity data were saved as txt files which in turn were loaded into MS Excel in order 

to calculate means for each segment.  

PRAAT was also used to create sonograms using the “Analyse Spectrum” function with a 

Hanning window length of 30 milliseconds. Sonograms were displayed conventionally -- as 

two-dimensional figures (x-axis: time; y-axis: frequency) with warmer hues indicating 

frequency-specific energy. Sounds were identified by experimenters through visual inspection of the 

sonograms and listening to the recordings. 

To derive SPL at each site, using the short-term recordings, it was necessary determine the 

overall sensitivity of the Audio-Technica microphone and Marantz recorder. Since those recordings 

were made with different gain knob settings, it was necessary to establish the sensitivity of the 

microphone and the recorder as sounds are picked up by the microphone and digitized by the recorder, 

and then compare recorded levels to a reference sound level. This was done in two steps – a 

calibration step, and a measurement step.  

In the calibration step, a 1-KHz tone was played into the microphone at 71.3 dB SPL 

(unweighted), measured by Bruel & Kajer 2250G Integrating Sound Level Meter. Reference 

recordings were made for a range of recorder gain knob settings (“gain settings”) of 3 through 7, in 

steps of 0.5, and digital RMS levels were computed for each reference recording. Gain settings were 

plotted against the RMS levels, as shown in Figure 2. An interpolating polynomial (made with Matlab) 

was fitted to the data to allow computation of digital RMS levels corresponding to the reference 71.3 

dB tone for any gain setting between 3.0 and 7.5. 
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In the measurement step, representative segments of the site recordings were chosen, and average 

RMS levels were computed for each segment. For each segment, the linear ratio of the segment RMS 

level to the RMS level of the reference tone recording was computed, taking into account the gain 

setting used at each recording site. The site-specific unweighted SPL levels were then computed by 

converting the linear ratios to dB levels, and adding these dB levels to the original SPL measured 

during the calibration step (71.3 dB). A-weighted SPL levels were computed in exactly the same way, 

except that the site-specific segments were filtered with an A-weighting filter (in Matlab) before the 

corresponding digital RMS levels were computed. 
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Results 

Different circadian patterns of soundscape 

Circadian soundscape variations were examined at three wetland sites: the Hugyag site, the Hont 

site, and the Balaton site. The Hugyag site (N 48° 05’ 874”; E 019° 26’ 533”; H 147 m) is located in a 

remote border area with almost no anthropogenic noise. Similarly, the Hont site (N 48° 03’ 494”; E 

018° 58’ 264”; H 119 m) is located along the floodplain of the River Ipoly, near the border between 

Hungary and Slovakia but, unlike at Hugyag, it is only 120 meters away from highway E77, so there 

is heavy traffic noise. The Balaton site (N 46° 48’ 231”; E 017° 24’ 226”; H 110 m) is situated along 

Lake Balaton at Balatonederics, and has a medium level of traffic noise. 

The soundscape in Hugyag varied daily in intensity from 50 to 80 dB. The peak sound intensity 

occurred precisely at 21:30, but no obvious intensity valley could be seen. Low intensities started at 

4:30 and lasted to 13:30, with variations between 50.4 and 62.5 dB (Fig. 3A). The relative sound 

intensities in Hont varied irregularly between 70 to 90 dB (Fig. 3B ). The fact that the minimal 

intensity in Hont was higher than that in Hugyag was attributed to the difference in high background 

of traffic noise. At Lake Balaton a 24-hour variation in sound intensities could be found even with 

masking of the traffic noise (Fig. 3C). Because of the moderate traffic noise, the lowest sound 

intensity at Lake Balaton was higher than that at Hugyag but lower than that at Hont. 

Temporal changes in biological components 

The dominant species of anuran communities in the Pannonian Biogeographical Region is 

Bombina bombina, a poisonous toad. At Hugyag this species produced advertisement calls 

nocturnally and diurnally, while circadian variations in intensity peaked around 20:00. The main call 

energy was concentrated at 470 Hz (Fig. 4A). The species of Hyla arborea contributed largely to the 
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soundscape from 21:00 to 1:00, displacing B. bombina as the loudest call, with dominant frequency 

around 2,600 Hz (Fig. 4B). At Lake Balaton Pelophylax esculentus and P. ridibundus called 

simultaneously and formed a chorus consisting of two frog species and traffic cars. Interestingly, 

vocal activities of the two Pelophylax species were evoked frequently by the traffic noise (Fig. 4C). 

Crickets and rain contributed some energy to the soundscape at the Balaton site. 

Varied structures of soundscape at different sites 

Soundscapes at the ten sites in the Pannonian Biogeographical Region show variation in intensity 

(average, maximum and minimum) and major components (Table 1). For the anuran breeding sites, 

the principal bioacoustic sources were some anuran species, while birds, insects, and other frogs were 

minor sound sources (Fig. 4D). Other acoustic sources were direct wind and wind in plants. We found 

no correlations among biological sounds and environmental elements such as temperature and relative 

humidity; this was probably due to differences in species composition at each site. Five anuran 

species’ calls were recorded in June in the Pannonian Biogeographical Region: B. bombina, H. 

arborea, P. esculentus, P. ridibundus, and P. lessonae, the latter two species contributing only slightly 

to the soundscapes. 
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Discussion 

In spatial dimension, a diverse array of sounds produced by mammals, birds, amphibians, and 

insects might be the main components of the soundscape in forests, grasslands and wetlands (Marler 

and Slabberkoorn 2004), while the urban soundscapes are composed of sounds generated by vehicles, 

machines and other human-produced sounds (Botteldooren et al., 2004; Raimbault and Dubois 2005). 

Abiological parts of the soundscape include gushing rivers flowing over terrain, rain falling through 

canopies, and wind (Swanson et al., 1988). Time scales of the soundscape vary daily, seasonally and 

annually in habitats (Tang et al., 2001; Wang et al., 2012), reflecting circadian, reproductive periods, 

and habitat and/or climate changes, respectively. Soundscapes change dramatically as environments 

change, and animal vocalizations account for most of these changes. In addition, long-term ecological 

changes in landscape, e.g., those accompanying desertization, global climate change, construction of 

transportation thoroughfares and other human activities, are reflected by soundscape changes too.  

It is well known that most anurans, if not all, complete for mate selection through vocalization 

(Kelley, 2004). Wetlands or ponds are commonly leks where anuran vocal advertisement, competition, 

mating, egg laying, and tadpole development occur. There is usually a high acoustic noise background, 

since other animals make sounds around these sites. Circadian and seasonal changes in anuran 

vocalization can be expected in order to mitigate the interference effects of bio-noise. 

Many frog-eating waders forage at the sites where we set up our study from 9:00 to 19:00. 

Bombina species secrete poison which protects them from birds, thus allowing this toad to make 

advertisement calls day and night with a slight decrease during bird predation. H. arborea, P. 

esculentus and P. ridibundus produced calls most intensively after midnight when birds are at rest. 

Why these two Pelophylax species overlap their calling times, and the breadth of sounds that are 
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observed to elicit calling from the species are both enigmas. At the sites, calling was often initiated by 

traffic noise, and we could cause males to start calling by orally mimicking their calls. 

Man-made noise from vehicles and machines might vary in a circadian rhythm, but not with a 

seasonal period. No site of nature reserves in the continental US is free from this man-made noise 

(Barber et al., 2011), and the same is most probably true for Europe. An international road, busy with 

trucks day and night, crosses the border between Hungary and Slovakia near the Hont site. A national 

road, occupied with relatively few cars at night, runs along Lake Balaton, while no roads exist near 

the Hugyag site. Soundscapes at these three sites exhibit different temporal patterns, mostly correlated 

with the traffic noise. Our study indicates a large influence of noise contamination on the anuran 

bioacoustic components in the soundscape, which would mask the auditory signals of anurans (Bee 

and Swanson, 2007). A parallel situation exists for birds (Francis et al., 2011). In general, chronic 

environmental noise substantially changes animal foraging and anti-predator behavior, reproductive 

success, and density and community structure (Barber et al., 2009). 



 12 

References 

Barber JR, Crooks KR, Fristrup KM. 2010. The costs of chronic noise exposure for terrestrial 

organisms. Trends Ecol Evol 25:180–189 

Barber JP, Burdett CL, Reed SE, Warner KA, Formichella C, Crooks KR, Theobald DM, Fristrup 

KM. 2011. Anthropogenic noise exposure in protected natural areas: estimating the scale of 

ecological consequences. Landscape Ecol 26:1281–1295 

Bee MA, Swanson EM. 2007. Auditory masking of anuran advertisement calls by road traffic noise. 

Anim Behav 74, 1765–1776  

Botteldooren D, Coensel B, De Meur T. 2004. The temporal structure of the urban soundscape. J 

Sound Vib 292:105–123 

Catchpole CK, Slater PJB. 2003. Bird song: Biological themes and variations. 2nd Edition. 

Cambradge Press 

Cosgrove D. 2003. Landscape: ecology and semiosis. In: Palang H, Fry G (eds) Landscape interfaces: 

cultural heritage in changing landscapes. Kluwer, Dordrecht, pp 15–20 

Farina A. 2006. Principles and methods in landscape ecology. Springer, NY 

Farina A. 2010. Ecology, cognition and landscape. Springer, Dordrecht 

Farina A, Lattanzi E, Malavasi R, Pieretti N, Piccioli L. 2011. Avian soundscapes and cognitive 

landscapes: theory, application and ecological perspectives. Landscape Ecol 26:1257–1267 

Forman RTT, Godron M. 1981. Patches and structural components for a landscape ecology. 

BioScience 31:733–740 

Forman RTT, Godron M. 1986. Landscape ecology. John Wiley, New York.  

Francis C. D., Paritsis J., Ortega C. P., Cruz A. 2011. Landscape patterns of avian habitat use and 



 13 

nesting success resulting from chronic gas well compressor noise in NW New Mexico, USA. 

Landscape Ecol. doi:10.1007/s10980-011-9609-z 

Kelley D. B. 2004. Vocal communication in frogs. Current Opinion in Neurobiology 14: 751–757 

Marler P, Slabberkoorn H. 2004. Nature’s music: the science of birdsong. Elsevier Academic Press, 

San Diego, USA 

Pickett STA, Cadenasso ML. 1995. Landscape ecology: spatial heterogeneity in ecological systems. 

Science 269: 331–334 

Pijanowski BC, Farina A, Gage SH, Dumyahn SL, Krause BL. 2011. What is soundscape ecology? 

An introduction and overview of an emerging new science. Landscape Ecol 26:1213–1232 

Raimbault M, Dubois D. 2005. Urban soundscapes: experiences and knowledge. Cities 22(5):339–350 

Risser PG, Karr JR, Forman RTT. 1984. Landscape ecology: Directions and approaches. Illinois 

Natural History Survey Special Publication 2, Champaign 

Runkle LS, Wells KD, Robb CC, Lance SL. 1994. Individual, nightly, and seasonal variation in 

calling behavior of the gray tree frog, Hyla versicolor: implications for energy expenditure. Behav 

Ecol 5: 318-325 

Swanson FJ, Kratz TK, Caine N, Woodmansee RG. 1988. Landform effects on ecosystem patterns 

and processes. BioScience 38(2):92–98 

Tang YZ, Zhuang LZ, Wang ZW. 2001. Advertisement Calls and Their Relation to Reproductive 

Cycles in Gekko gecko (Reptilia, Lacertilia). Copeia Vol. 2001, No. 1, pp. 248-253  

Turner MG. 1989. Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 

20:171–197 

Turner MG, Gardner RH, O’Neill RV. 2001. Landscape ecology in theory and practice: pattern and 



 14 

process. Springer Press, New York  

Turner MG. 2005. Landscape ecology: what is the state of the science? Annu Rev Ecol Syst 

36:319–344  

Urban DL, O’Neill RV, Shugart HH. 1987. Landscape ecology. BioScience 37:119–127 

Wang, JC, Cui JG, Shi HT, Brauth SE, Tang YZ. 2012.  Effects of Body Size and Environmental 

Factors on the Acoustic Structure and Temporal Rhythm of Calls in Rhacophorus dennysi. Asian 

Herpetological Research 3: 205-212 

Wu J, Hobbs R. 2002. Key issues and research priorities in landscape ecology: an idiosyncratic 

synthesis. Landscape Ecol 17:355–365 



 15 

Table 1. Sound intensities and acoustic components of the soundscape 

recorded at different times from different sites within the Pannonian region. 

Address GPS 
FLAT 

Weighting 

A 

Weighting 

Temper

ature 

Relative 

Humidity 

Record 

Time 

Major 

Component 

Minor 

Component 

IPOLYDAMÁSD 
N 47° 50’ 149”; E 18° 

49’ 943”; H 105 m 
68.8544 dB 45.1775 dB 18.9°C 71% 17:00 Wind, frogs Birds 

IPOLYSZÖG 
N 48° 03’ 704”; E 19° 

13’ 129”; H 142 m 
65.6312 dB 56.592 dB 20°C 63% 20:40 Frogs, birds Rain 

HUGYAG 
N 48° 05’ 867”; E 19° 

26’ 786”; H 152 m 
51.0225 dB 53.3395 dB 18.6°C 84% 22:15 Frogs, birds Insects 

HUGYAG 
N 48° 05’ 877”; E 19° 

26’ 642”; H 151 m 
61.2634 dB 57.0121 dB 16°C 82% 22:30 Wind, frogs Birds 

LAKE NAPLAS 
N 47° 30’ 288”; E 19° 

14’ 483”; H 121 m 
44.5298 dB 36.2721 dB 18.9°C 72% 19:30 Frogs Birds 

HONT 
N 48° 03’ 494”; E 18° 

58’ 265”; H119 m 
43.305 dB 32.3396 dB 24.9°C 50% 10:50 Birds Frogs 

IPOLYSÁG/HONT 
N 48° 03’ 577”; E 18° 

57’ 299”; H123 m 
49.733 dB 38.281 dB 29.4°C 43% 12:35 Wind, birds Frogs 

LETKÉS 
N 47° 51’ 338”; E 18° 

47’ 561”; H 111 m 
51.0582 dB 40.1345 dB 28.4°C 36% 14:04 Winds, frogs Birds 

IPOLYDAMÁZSD 
N 47° 50’ 093”; E 18° 

50’ 002”; H 109 m 
55.383 dB 39.5342 dB 27.6°C 33% 15:10 Frogs Winds 

IPOLYDAMÁZSD 
N 47° 50’ 105”; E 18° 

49’ 592”; H 109 m 
59.844 dB 51.4804 dB 30.8°C 31% 15:27 Frogs, birds Insects 

Legends  

Figure 1. Acoustic recording sites in the Pannonian Biogeographical Region.  

triagle: only long-term recording (Balatonederics), circle: only short-term recordings (Budapest, 

Ipolydamázsd, Ipolyság/Hont, Ipolyszög, Letkés), rhombus: bots types of recording 

Figure 2. Plots of recorded root mean square (RMS) in volts to knob settings of the recorder used 

to compute SPL of site soundscapes. 

Figure 3. Circadian changes in sound intensity from three wetlands where anurans reproduce. A. 

Evident variation in pattern of sine wave in Hugyag; B. Irregular pattern of alteration in Hont; C. A 

pattern with regular wave disturbed by random noises in Lake Balaton. 

Figure 4. Waveforms and spectrograms of advertisement calls from three anuran species. A. Calls 

of Bombina bombina; B. Calls of Hyla arborea and B. bombina; C. Calls of Pelophylax esculentus 

and P. ridibundus; D. Sound recorded from a small pond to show acoustic components. To clearly 

depict these different vocalizations, sonogram frequencies are from 0 to 5k Hz for A, 0 to 10k Hz for 

B and C, and 0 to 8.5k Hz for D. 


