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 Abstract 

 

The rate of rotation of the rotor of the yeast vacuolar proton-ATPase (V-ATPase), relative to 

the stator or the steady parts of enzyme, is estimated in native vacuolar membrane vesicles of 

Saccharomyces cerevisiae under standardised conditions. Membrane vesicles are spontaneously 

formed after exposing purified yeast vacuoles to osmotic shock. The fraction of the total 

ATPase activity originating from V-ATPase is determined using the potent and specific inhibi-

tor of the enzyme, concanamycin A. Inorganic phosphate liberated from ATP in the vacuolar 

membrane vesicle system, during 10 min of ATPase activity at 20 °C, is assayed 

spectrophotometrically for different concanamycin A concentrations. A fit to the quadratic 

binding equation, assuming a single concanamycin A binding site on a monomeric V-ATPase 

(our data is incompatible with models assuming more binding sites) to the inhibitor titration 

curve determines the concentration of the enzyme. Combining it with the known rotation:ATP 

stoichiometry of V-ATPase and the assayed concentration of inorganic phosphate liberated by 

V-ATPase leads to an average rate of ~9.53 Hz of the 360 degrees rotation, which, according to 

the time-dependence of the activity, extrapolates to ~14.14 Hz for the beginning of the reaction. 

These are low limit estimates. To our knowledge this is the first report of the rotation rate in a 

V-ATPase that is not subjected to genetic or chemical modification and it is not fixed on a solid 

support, instead it is functioning in its native membrane environment. 
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Introduction 

 

The proton-translocating adenosine-triphosphatase (first observed in vacuolar membranes, 

hence called vacuolar proton-ATPase or V-ATPase) is nature’s most universal proton pump 

found in all eukaryots (Finbow and Harrison 1997; Nishi and Forgac 2002; Cipriano et al. 

2008; Jefferies et al. 2008). Similarly to the more familiar and related F-ATP synthase (F-

ATPase) there are 3 catalytic sites, here for ATP hydrolysis, in the water soluble V1 domain (F1 

domain in F-ATPase), and trans-membrane proton transport takes places in hydrophilic chan-

nels (or sacks) in the interface between the “c ring” and subunit a of the membrane bound Vo 

(Fo) domain (Wilkens et al. 1999; Grabe et al. 2000; Kawasaki-Nishi et al. 2001; Kawasaki-

Nishi et al. 2001; Wang et al. 2004; Beyenbach and Wieczorek 2006) (Fig. 1). Crucial for pro-

ton transport are the unique glutamic acid residues, one on each subunit c: binding, e.g., di-

cyclohexyl-carbodiimide to this glutamic acid blocks both proton transport and ATP hydrolysis 

(Linnett and Beechey 1979; Wada et al. 2000; Perez-Sayans et al. 2009), proving that catalysis 

and transport are strongly coupled (Futai et al. 2000; Kawasaki-Nishi et al. 2001). In both en-

zymes this coupling involves a rotation of the rotor relative to the rest of the protein that can be 

considered as the stator (Yasuda et al. 1997; Fillingame et al. 2000; Futai et al. 2000; Yasuda et 

al. 2001; Rondelez et al. 2005; Ueno et al. 2005). The rotor vs. stator subunits of V-ATPase are 

not the same as those of the Vo vs. V1 domains, since subunits a and d of Vo belong to the stator, 

and subunits D and F of V1 belong to the rotor (other subunits of Vo and V1 belong to the rotor 

and stator, respectively) (Ubbink-Kok et al. 2000). 

 Rotation is needed to bring protons, bound to the protonated glutamic acid, from the input 

channel to the output channel through the hydrophobic interface between the lipid matrix and 

the c ring (Fig. 1). In the case of V-ATPase rotation is driven by ATP binding and hydrolysis. 

One ATP molecule drives a 120 degrees rotation of the rotor and a transport of two protons 

from the cytoplasmic side to the “other” side, which can be the lumen of intracellular organs or 

the extracellular space, depending on the cellular location of V-ATPase (Finbow and Harrison 

1997; Nishi and Forgac 2002; Beyenbach and Wieczorek 2006; Cipriano et al. 2008; Jefferies 

et al. 2008). This stoichiomerty is different form that of F-ATPase, in which there are ~12 c 

subunits, which have only 2 trans-membrane helices, each with a unique glutamic acid. So in F-

ATPase a synthesis of one ATP also drives 120 degrees rotation, which, however, requires a 

movement of 4 subunits c, hence 4 protons (Van Walraven et al. 1996; Panke and Rumberg 

1997; Stock et al. 1999; Ferguson 2000; Seelert et al. 2000; Stahlberg et al. 2001). In the case 

of F-ATPase rotation and ATP synthesis is driven by trans-membrane delta pH, but it should be 

noted that both enzymes can work in both directions depending on the conditions (Yoshida et 

al. 2001; Itoh et al. 2004; Rondelez et al. 2005; Feniouk et al. 2007; Nakano et al. 2008). An-

other difference between these related rotary engines is that whereas the c ring of the F-ATPase 

is built from identical c subunits, each having two trans-membrane alpha helices (Dmitriev et 

al. 1999; Fillingame et al. 2000), the c ring in V-ATPase consist of 4 c subunits and one copies 

of c’ and c” subunits each (Hirata et al. 1997; Powell et al. 2000). The reason for this heteroge-



 

 

neity is not known but it might have to do with the regulation of V-ATPase and the fact that c 

ring appears in different tissues in roles as, e.g., gap junctional and neurotransmitter release 

channels, or parts of membrane fusion machineries, not related to V-ATPase (Holzenburg et al. 

1993; Baars et al. 2007; El Far and Seagar 2011; Strasser et al. 2011). In addition, subunit c” 

has 5 transmembrane helices (Hirata et al. 1997; Gibson et al. 2002). Nevertheless, despite the 

size difference between the subunit c of the Fo and Vo, the first and second two trans-membrane 

helices of the V-ATPase are highly homologous to each other (but the unique glutamic acid is 

only present on helix 4) and to subunit c of the F-ATPase. Indeed, these and other highly ho-

mologous proteins belong to the same class, that we termed ductins (Finbow et al. 1994; Dun-

lop et al. 1995; Finbow et al. 1995; Saito et al. 1998; Bohrmann and Bonafede 2001). In a num-

ber studies on a 16kDa gap junctional protein isolated from lobster, which is not only a ductin 

protein but it can substitute subunit c of the yeast V-ATPase functionally in a hybrid construct 

(Finbow et al. 1993; Finbow and Harrison 1997), we have shown that the c ring is a hexameric 

assembly of 4-helix trans-membrane bundles (Holzenburg et al. 1993; Pali et al. 1995), deter-

mined the vertical membrane location of the unique glutamic acid and shown it to contact lipids 

(Pali et al. 1997; Pali et al. 1999), and discovered a metal binding site (Pali et al. 2006). 

 Specific inhibitors of V-ATPase are important because the enzyme is a potential thera-

peutic target in certain diseases, e.g., osteoporosis, deafness and cancer (Linnett and Beechey 

1979; Farina and Gagliardi 1999; Bowman and Bowman 2005; Lu et al. 2005; Morimura et al. 

2008; Otero-Rey et al. 2008; Supino et al. 2008; Hinton et al. 2009; Perez-Sayans et al. 2009; 

McHenry et al. 2010; Nishisho et al. 2011). The macrolide antibiotics concanamycin A and 

bafilomycin are the most potent and most selective inhibitors of V-ATPase, with IC50 values 

down to the nM region (Bowman et al. 1988; Farina and Gagliardi 1999; Gagliardi et al. 1999; 

Huss et al. 2002; Dixon et al. 2008). We have demonstrated recently that concanamycin A and 

its synthetic indole analogues (Dixon et al. 2003) incorporate readily into membranes (Dixon et 

al. 2004; Pali et al. 2004) and interact with amino acid side chains of the 16kDa lobster 

(Nephrops norvegicus) protein and also with subunit c of yeast V-ATPase (Pali et al. 2004; 

Dixon et al. 2008). It was not subject of those studies to probe interaction of the inhibitors with 

subunits c’, c” and a of the yeast V-ATPase, but they do interact with polypeptides based on 

sequences of the putative interfacial trans-membrane helices of these subunits (Kota et al. 

2008). The inhibitors have also been shown to perturb the lipid-protein interface around the c 

ring (Pali et al. 2004). 

 The most logical question with respect to the rotary mechanism, namely what is the rate 

of rotation of the rotor, is a most difficult one to answer, because it can only be measured di-

rectly only if the enzyme is modified to a great extent. All direct measurements (see (Nakani-

shi-Matsui et al. 2010) for a recent review), both on V- and F-ATPase, rely on gene-engineered 

modification of the enzyme in order to do single molecule fluorescence resonance energy trans-

fer experiments, or, more commonly attach a visualisation elements, e.g., fluorescent filament 

or polystyrene or gold bead, to the rotor (or stator) and fix the stator (or rotor) on a solid sup-

port, followed by visualisation of the rotation (Noji et al. 1997; Tsunoda et al. 2001; Nishio et 

al. 2002; Hirata et al. 2003; Nakanishi-Matsui et al. 2006; Xie 2009; Sekiya et al. 2010; Furuike 



 

 

et al. 2011; Kohori et al. 2011; Okuno et al. 2011). Such modifications may add or remove bar-

riers to the rotation not present in the native system. Consequently, the reported rotation rates 

vary greatly in such studies, depending on the gene-engineered construct and the details of the 

artificial environment of the enzyme (Panke and Rumberg 1997; Masaike et al. 2000; Itoh et al. 

2004; Imamura et al. 2005; Adachi et al. 2007; Takeda et al. 2009). Such studies are not possi-

ble on a native enzyme in a native membrane, but since the ATP/rotation stoichiometry is 

known, one could assay the inorganic phosphate liberated from ATP hydrolysis by V-ATPase 

in unit time and relate it to the concentration of V-ATPase. However, reliable estimates on the 

rotation in native V-ATPase in a native membrane are still lacking because of several problems 

with this approach: (i) how to separate the activity of V-ATPase from other ATPases, (ii) how 

to determine its concentration, (iii) how to determine the fraction of inactive V-ATPases? (In 

some cases there are as much as ten-fold differences reported by direct and indirect methods, 

based on activity measurements on the F-ATPase, even in the very same artificial system, in 

which the enzyme concentration is known. This discrepancy was attributed to the fraction of as 

high as 90% inactive F-ATPases (Yasuda et al. 2001; Ueno et al. 2005; Nakanishi-Matsui et al. 

2006; Sekiya et al. 2009; Nakanishi-Matsui et al. 2010; Furuike et al. 2011). 

 In the present study ATPase activity in yeast vacuolar membrane vesicles was measured. 

The activity of V-ATPase from other ATPases was separated with the help of the specific V-

ATPase inhibitor concanamycin A. Typically about 60% of the total activity comes from V-

ATPase in our system. The conditions were standardised and the absorbance was calibrated for 

phosphate liberated in unit time. The concentration of the enzyme was determined from the in-

hibitor titration experiment, fitted with a model of one inhibitor binding site per V-ATPase. 

Combination of the data yields a rate of 9.53 Hz for the 360 degrees rotation of the rotor, hence 

the complete catalytic cycle. This is a low limit estimate, considering the probably less than 

100% activity of the inhibitor and V-ATPases (even in the absence of inhibitor). 

 



 

 

 Materials and Methods 

 

Materials 

The lyticase enzyme (crude, from Arthrobacter luteus), concanamycin A, bafilomycin, ascorbic 

acid, sodium dodecyl sulphate (SDS), DL-Dithiothreitol (DTT), sodium orthovanadate 

(Na3VO4), 2-(N-Morpholino)ethanesulfonic acid hydrate (MES) were purchased from Fluka 

(Sigma), Na2ATP (adenosine 5′-triphosphate disodium salt hydrate) from Serva, ficoll from 

Fluka. D(-)-sorbitol, yeast extract, glucose and peptone were purchased from Molar, 

Tris(hydroxymethyl)aminomethane (TRIS), sodium azide (NaN3), ammonium molybdate 

tetrahydrate form Reanal (Hungary). All standard chemicals were of analytical grade purity. 

 

Yeast cell culture 

Cells (Saccharomyces cerevisiae EMY 74.7) were grown in YPD medium (2% glucose, 2% 

peptone and 1% yeast extract) at 30 °C in a water bath shaker (New Brunswick Scientific Co. 

Inc.) with consistent agitation. For vacuolar membrane vesicles isolation, overnight cultures 

were diluted to OD600 = 0.1 in 1 L YPD media, and cells were harvested when cultures reached 

OD600 = 0.8-1. 

 

Isolation of vacuoles and preparation of vacuolar vesicles 

Preparation of yeast vacuolar membrane vesicles were based on (Ohsumi et al. 1983; Uchida et 

al. 1985) with some modifications. Briefly, exponentially growing cells were harvested by cen-

trifugation at 5400 rpm for 30 min at 4 °C. The pellet was resuspended in TRIS buffer (100 

mM TRIS, 10 mM DTT, 10 mM NaN3, pH 9.4) and centrifuged in a SS-34 rotor (Sorvall rotors 

were used in a Sorvall RC-5C centrifuge unless stated otherwise) at 6500 rpm for 5 min at 4 °C. 

The pellet was resuspended in spheroplast buffer (1.5 M sorbitol, 50 mM TRIS, 2 mM MgCl2, 

10 mM NaN3, pH 7.2), which was supplemented with lyticase to a final concentration of 1 

unit/mL. The suspension was incubated at 30 °C for 90 min, during gentle shaking. 

Spheroplasts were cooled on ice and layered on the top of 5 ml 1.9 M sorbitol and centrifuged 

in a HB-4 rotor at 2100 rpm for  5 min at 4 °C. The so recovered spheroplasts were washed by 

centrifugation (3800 rpm, 5 min at 4 °C) with 1 M sorbitol. The pellet was re-suspended in 

buffer A (10 mM MES/TRIS, 0.1 mM MgCl2, 12% Ficoll-400, pH 6.9) supplemented with pro-

tease inhibitor cocktail tablet (Roche). The resulting mixture was then homogenised by a 

Dounce homogenizer with 30 strokes and centrifuged at 5200 rpm for 5 min at 4 °C. For the 

isolation of vacuoles 5 ml of the supernatant was transferred into an ultracentrifuge tube, 5 ml 

of buffer A was gently layered on the top, and centrifuged in TH-641 rotor at 12500 rpm for 30 

min at 4 °C (in a Sorvall Discovery 90SE ultracentrifuge by Hitachi). Vacuoles, the white layer 



 

 

on the top, were recovered. Vacuolar membrane vesicles were formed following osmotic shock 

by diluting the vacuole suspension ten-fold with buffer C (10 mM MES/TRIS, 5 mM MgCl2, 25 

mM KCl, pH 6.9) and gently shaking up the pellet. The vesicle suspension was centrifuged in 

AH-627 rotor at 15000 rpm for 30 min at 4 °C in the same centrifuge. The vesicles were col-

lected as the pellet in the same buffer. The total protein content was determined according to 

(Lowry et al. 1951) and the vesicles were stored at -80 °C in buffer C and 10% glycerol. 

 

Light microscopy of yeast vacuoles 

Transmitted light mode microscopy images of the vacuole suspensions were observed using 

differential interference contrast optics of Olympus IX81 inverted microscope. Images were 

captured with F-View 12-bit monochrome CCD camera using Olympus Cell-R software and 

UPlanSApo 60x oil immersion objective with a numerical aperture of 1.35. 

 

Freeze-fracture electron microscopy of vacuolar membrane vesicles 

Freeze-fracture electron microscopy was used for direct visualisation of the membrane struc-

tures evolved from the vacuoles. Glycerol was added to the vesicle dispersion as cryoprotectant 

at a final concentration of 20 %. Addition of glycerol does not alter the bilayer structure, but 

inhibits the aggregation and ice crystal damage of the vesicles during the freezing process 

@<should come a ref. form Zoltan Varga>@. The gold sample holders used in freeze fracture 

were pre-incubated at 24 °C at the same temperatures as the samples. Droplets of 1-2 μL of the 

sample were pipetted onto a gold sample holder and frozen by plunging it immediately into par-

tially solidified Freon for 20 s and stored in liquid nitrogen. Fracturing was performed at -100 

°C in a Balzers freeze-fracture device (Balzers BAF 400D, Balzers AG, Vaduz, Liechtenstein). 

The replicas of the fractured faces etched at -100 °C for 30 s were made by platinum-carbon 

shadowing then cleaned with a water solution of surfactant and washed with distilled water. 

The replicas were placed on 200 mesh copper grids and examined in a Morgani 268D (FEI, 

Eindhoven, the Netherlands) transmission electron microscope. 

 

ATPase activity assay 

Vesicle suspension of 10 μg of total protein was used to assay ATPase activity in 250 μl of as-

say mixture. Our activity assay and the use of inhibitors was based on (Serrano 1978; Clelland 

and Saleuddin 2000; Lunde and Kubo 2000; Padilla-Lopez and Pearce 2006), with modifica-

tions, as follows. The assay mixture contained the activity buffer (50 mM MES/TRIS, 5 mM 

MgCl2, pH 7.0), 5 mM sodium azide (to inhibit mitochondrial ATPase), 0.2 mM ammonium 

molybdate (to inhibit acid phosphatases), 100 μM sodium orthovanadate (to inhibit plasma 

membrane proton-ATPase). In some of the substrate titration experiments (Fig. 4) the MgCl2 

concentration was adjusted twice to that of Na2ATP. Except for the inhibitor titration experi-



 

 

ment (Fig. 6), the final concentration of the specific V-ATPase inhibitor concanamycin A was 1 

μM. Vacuolar vesicles were incubated in the activity buffer at room temperatures for 30 min. 

ATP hydrolysis was started by adding 2 mM Na2ATP and was going on at 30 °C for 20 min, 

except that it was 10 min in the inhibitor titration experiment (Fig. 6) and it was varied in the 

time dependence (Fig. 5). The reaction was stopped with a solution containing 0.5% SDS, 2% 

H2SO4, 0.5% ammonium molybdate tetrahydrate and 10% ascorbic acid. The acid was added to 

start the colour development of the reaction due to inorganic phosphate production, a product of 

ATP hydrolysis. The vesicle suspension was incubated in this stopping buffer at room tempera-

ture for 20 min. Absorbance was measured at 750 nm in a Thermo Spectronic (USA) spectro-

photometer. All data analysis and curve fitting was done with the IGOR scientific graphing and 

data analysis program (WaveMetrics, Lake Oswego). 

 



 

 

 Results and discussion 

 

Fig. 2A shows a typical bright field transmitted light microscopy image of intact vacuoles as we 

purified them from yeast Saccharomyces cerevisiae. We did not use vacuoles for activity meas-

urements because (i) the ATPase activity originating from other ATPases is rather high in com-

parison to that of V-ATPase (data not shown), (ii) these vacuoles were rather unstable and (iii) 

the osmotic conditions needed to keep the vacuoles intact were not optimal for administering 

other compounds, in general for washing, and for the activity assays. Therefore, it was decided 

to wash the vacuoles and let the osmotic shock break them. Interestingly, simply this step alone 

led to the spontaneous formation of vesicles from vacuolar membrane fragments. Fig. 2B 

shows a typical freeze-fracture electron microscopic image of such vesicles. This vesicular sys-

tem turned out to be rather stable, as it tolerated storage up to 10 weeks (not tested longer) 

at −80 oC @<Pali: how long was the longest storage?>@. In addition, and most importantly, 

this step allowed us to wash away most of the water-soluble ATPases from the suspension, 

maximising the relative contribution of V-ATPase to the total ATPase activity of the sample, as 

proven in Fig. 3, which shows ATPase activities of yeast vacuolar vesicles in the presence and 

absence of different ATPase inhibitors. In this experiment, the concentration of inorganic phos-

phate was assayed after 20 min of incubation of the vacuolar vesicles at 30 °C in the presence 

of 2 mM Na2ATP and 5 mM MgCl2 (except for the first two bars). Since the substrate of the re-

action is MgATP and MgCl2 is in excess to Na2ATP, the substrate concentration was close to 2 

mM (at least in the beginning of the reaction). Several inhibitors that are known to inhibit other 

ATPases (Serrano 1978; Clelland and Saleuddin 2000; Lunde and Kubo 2000; Padilla-Lopez 

and Pearce 2006) were tested. These ‘other’ inhibitors removed only about 20% of the total 

ATPase activity, even at relatively high inhibitor concentration. Di-cyclohexyl-carbodiimide, 

which inhibits proton translocation also in the related F-ATPase (see, e.g., (Kopecky et al. 

1981; Kopecky et al. 1982; Kopecky et al. 1983; Hermolin and Fillingame 1989; Wada et al. 

2000)), was more potent, but the most potent inhibitors were, as expected, concanamycin A and 

bafilomycin, even when applied at the lowest concentrations (Bowman et al. 1988; Drose et al. 

1993; Gagliardi et al. 1999; Huss et al. 2002; Dixon et al. 2008). In this system, and under the 

present conditions, these inhibitors removed ~60% of the total ATPase activity, which varied to 

some extent from isolation to isolation. Since these two inhibitors are known to be very potent 

and very selective inhibitors of V-ATPase  (Bowman et al. 1988; Farina and Gagliardi 1999; 

Huss et al. 2002; Dixon et al. 2008) ~60% of the total ATPase activity comes from V-ATPase 

in these vesicular preparations. 

 In order to standardise the conditions for the activity measurements the optimal substrate 

concentration has to be determined. This has been done by measuring the absorbances (at 750 

nm) of inorganic phosphate liberated by ATP hydrolysis in the vacuolar vesicles, and assayed 

after 20 min incubation at 30 °C, as a function of the concentration of exogenously added 

Na2ATP, both at fixed (5 mM) MgCl2 concentration (circles) or when it was set to 2-fold that of 

the Na2ATP (squares). Fig. 4 shows the concentration dependence of the whole system (no in-



 

 

hibitor, white symbols) and that of V-ATPase alone (black symbols). The latter one is obtained 

as the difference in absorbance ± (1 µM) concanamycin A. The data are normalised such that 

the maximum activity is the same, i.e., unity, in the absence of the inhibitor. The whole system 

saturates at ~2 and ~10 mM Na2ATP, in the excess and fixed MgCl2 concentration case, respec-

tively, and the production of inorganic phosphate decreases at high substrate concentrations 

(only measured for the latter case). The reason for the downward shift of the saturation lies 

most probably in the different ATP/Mg stoichiometries in the two cases. This, however, does 

not influence the point of maximum activity of V-ATPase (= 2 − 3 mM Na2ATP) because at 

that concentration even 5 mM MgCl2 can be considered as in excess. Note that 2 mM substrate 

is considered as high ATP or full speed condition (see, e.g.,  (Noji et al. 1997; Yasuda et al. 

1997; Yasuda et al. 2001; Ueno et al. 2005; Furuike et al. 2011)). We don’t know the exact rea-

son of the drop of the activity, also in the case of V-ATPase, at higher substrate concentrations, 

but one can speculate that, due to the ATP  ADP + Pi dissociation and maybe even ADP im-

purities in the ATP stock, the ADP concentration might reach a level at which it significantly 

inhibits ATPases (De la Cruz et al. 2000; Nakano et al. 2008). Nevertheless, a choice of 2 mM 

Na2ATP and 5 mM MgCl2 ensures that this kind of inhibition is negligible, and that V-ATPase 

is running at highest speed with respect to substrate concentration, at least at the beginning of 

the incubation period, which also needs to be standardised in order to avoid consumption of all 

substrate during the reaction. 

 Fig. 5 shows the time-dependence of (delta) absorbances obtained as the difference be-

tween the absorbances of assayed inorganic phosphate liberated by ATP hydrolysis by yeast 

vacuolar vesicles in the absence and presence of 1 µM of the specific V-ATPase inhibitor 

concanamycin A, at 20 °C and in the presence of exogenously added 2 mM Na2ATP and 5 mM 

MgCl2. As shown above the absorbance difference of ± (1 µM) concanamycin A measures 

phosphate liberated exclusively by V-ATPase. Since the substrate concentration decreases dur-

ing the reaction, the rate of ATP hydrolysis by V-ATPase decreases monotonically too. The 

semi-kinetic curve does not follow a single exponential, as demonstrated by the poorness of the 

single exponential fit over the whole incubation period. The reason is that the product, ADP, 

inhibits the enzyme (De la Cruz et al. 2000; Nakano et al. 2008). Obviously, the fit over the 

first 20 minutes, where the concentration of the product is much lower, is closer to a single ex-

ponential. It should be noted that the exponential fits are presented just for the visualisation and 

they were not used in this study for any further analysis. Based on this experiment, the duration 

of the reaction was chosen to be 10 min, as it is short enough to avoid significant consumption 

of the substrate but long enough to obtain a conveniently high yield of Pi liberated by V-

ATPase. Comparing the ∆A/∆t slope of the fit to the first 5 points (onset slope) with the slope 

of the line connecting the points at 1 and 10 min (straight lines in Fig. 5), one can estimate the 

rate of ATP hydrolysis at the beginning of the incubation period if the mean is known. The ratio 

between the two slopes is 1.48. 

 Under the above standardised conditions, and including the spectrophotometric calibra-

tion for  inorganic phosphate (Fig. 6, see below) and using the specific inhibitor concanamycin 

A, one can determine the concentration of ATP hydrolysed exclusively by V-ATPase in unit 



 

 

time. The enzyme concentration, needed to convert this data into revolutions of the rotor per 

second can be determined from the experimental inhibitor titration curve (Fig. 6) fitted with the 

appropriate binding equation, because the concentration of the inhibitor is known and the shape 

of the curve depends (differently) on the enzyme concentration and the dissociation constant of 

the enzyme-inhibitor binding. The general case is presented below with n independent and 

identical inhibitor binding sites per enzyme, assuming non-cooperative binding. Further, it is 

assumed that all inhibitor molecules (I) are active and all V-ATPase molecules are active if no 

inhibitor is bound (it is considered later the case when these assumptions don’t hold), but are 

inactivated when at least one inhibitor is bound. The data on Fig. 6 should follow the equation 

 A(It) = (A0 - ∆A) + ∆A * Pf / Pt , [1] 

where A(It) is the absorbance considered as a function of the total inhibitor concentration, It. A0 

is the absorbance in the absence of inhibitor, a constant (3 measurements gave an average of 

1.248). ∆A is the difference of the absorbances at zero and saturating concentration of the in-

hibitor. It could be determined experimentally but it is also a fitting parameter in the present 

study because the inhibitor concentration is not sufficiently high. Pt is the (total) enzyme con-

centration and Pf is the concentration of the enzyme without any inhibitor bound (the indices t, 

f, b mean all, free and bound sites or molecules, respectively, and the letters indexed with these 

mean concentrations). The relevant binding equations need to be solved to derive Pf / Pt as a 

function of It (the formalism is similar to that presented in, e.g., (Sandermann 1982)). If the 

binding sites (B) are equivalent and independent the binding reaction is 

 B + I  BI , 

where BI means occupied binding site, i.e., bound inhibitor. The corresponding binding equa-

tion is 

 Bf * If = Ib * K , [2] 

where K is the dissociation constant of the inhibitor binding to an independent binding site. 

Since Bf = n * Pt - Ib and If = It - Ib it follows that 

 (n * Pt - Ib) * (It - Ib) = Ib * K . [3] 

This quadratic equation can be solved for the concentration of the bound inhibitor: 

 Ib = (It + n * Pt + K - sqrt((It + n * Pt + K)2 − 4 * n * Pt *It)) / 2 . [4] 

If there is only a single binding site per enzyme (n = 1), then Bf = Pf = Pt - Ib, and therefore 

 Pf / Pt = (Pt - Ib )/ Pt = (Pt - It - K + sqrt((It + Pt + K)2 − 4 * Pt *It)) / (2 * Pt). [5] 

Substituting the right side of Eq. [5], with n = 1, in place of Pf / Pt in Eq. [1] yields the function 

suitable for fitting the data in Fig. 6 with the single binding site model: 

 A(It) = (A0 - ∆A) + ∆A * (Pt - It - K + sqrt((It + Pt + K)2 − 4 * Pt *It)) / (2 * Pt) . [6] 



 

 

In these fits It is the independent variable and Pt, K and ∆A are fitting parameters. 

Let us now consider the binding stoichiometries and reaction at the level of the enzyme with n 

binding sites: 

 P0 + I  PI1 , PI1 + I  PI2 , … PIn-1 + I  PIn , 

where P0 is the enzyme without any inhibitor bound. PIi represents the enzyme with i inhibitors 

bound (i = 1, 2, … n) and Pi is its concentration, so Pf = P0. Considering the free and occupied 

binding sites in the above reactants and the transport balance of the inhibitors, one can write the 

binding equations for the corresponding concentrations in a generalised recursive form as 

 If * Pi-1 * fon * (n + 1 - i) = Pi * foff * i , with i = 1, 2, … n , 

Where fon and  foff are the intrinsic on and off rates, respectively. The factor (n + 1 - i) is the 

number free binding sites on PIi-1 and i is the number of the occupied (bound) sites on PIi. The 

intrinsic dissociation constant is K = foff / fon, and since If = It - Ib, we define Ik = (It - Ib) / K, and 

the recursive form simplifies to 

 Pi = Pi-1 * Ik * (n +1 - i) / i , with i = 1, 2, … n . [7] 

Since Pt = P0 + P1 + P2 … + Pn, this leads to the polynomial expansion and therefore the closed 

form of the result is  

 Pf / Pt = P0 / Pt = 1 / (1 + Ik)
n
 . [8] 

Note that if n = 1 Eq. [8] simplifies to  

  1 / (1 + P1 / Pf) = 1 / (1 + If / K) from which P1 / Pf = If / K , 

and since in this case P1 = Ib this expression is identical with Eq. [3] (with n = 1), i.e., it correct-

ly reduces back to the single binding site situation above. Combining Eq. [8] with Eq. [1] leads 

to a function that is suitable for fitting the experimental data in Fig 6 with the multiple binding 

site model, such as 

 A(It) = (A0 - ∆A) + ∆A * (1 + Ik)
-n  . [9] 

(One needs to substitute the definition of Ik and Ib (from Eq. [4]) into Eq. [9] for the complete 

expression.) The fitting parameters are the same as in the case of n = 1 (Eq. [6]). 

 A fit to Eq. 9, where all parameters are released (not shown), including the number of 

binding sites n, yields n = 0.75 ± 0.58. Since non-integer number of binding sites on a mono-

meric enzyme is impossible, and there is no reason to assume a binding of 3 inhibitors to 4 en-

zymes, one can fix n = 1, i.e., settle on the single binding site situation. Indeed, as a test, neither 

the n = 2 nor the n = 5 model gives a better fit (n > 5 would not make sense because no more 

than 5 c ring subunits are available for binding). In fact, the fits with these models yield physi-

cally impossible parameters, e.g., negative enzyme concentration (Pt), even if some of the pa-



 

 

rameters (∆A or K) are fixed at their values from the above fit with n = 1. To illustrate this, Fig. 

6 also shows the best fit with n = 5 (dotted line) when, however, Pt is fixed at the value from the 

fit to n = 1 model. Obviously, ∆A is wrong and the fit is much worse than that with n = 1. One 

can conclude that our data is only compatible with the single binding site, n = 1 model. The fit 

with this model (solid curve in Fig. 6) yields the following results when all parameters are re-

leased (except that n = 1 is fixed): Pt = 44.9 ± 31.6 nM, K = 49.26 ± 18.2 nM, ∆A = 0.871 ± 

0.023 (errors are ± standard errors from the fit). If ∆A (the most accurate fitting parameter) is 

then fixed at 0.871 the other parameters do not change but their standard deviation become 

smaller: Pt = 44.9 ± 24.6 nM and K = 49.25 ± 11.5 nM. The absolute amount of inorganic 

phosphate corresponding to ∆A is liberated exclusively by 44.90 ± 24.6 nM V-ATPase. The in-

set in Fig. 6 shows the phosphate calibration in the very same system. The slope of the linear 

regression is 0.00452 OD/nmole Pi, with which the concentration of Pi liberated by V-ATPase 

is 769.96 μM. Taking the ratios of the mean concentrations one concludes that in 10 min 

17149.5 Pi molecules, i.e., 28.58 per second, were liberated by each V-ATPase molecules. Cur-

rent understanding of the V-ATPase catalysis assume a hydrolysis of 3 ATP molecules in a 

complete 360 degrees rotation cycle (see., e.g., (Beyenbach and Wieczorek 2006)), which 

means that the rotation rate in V-ATPase in our vacuolar membrane vesicle system is 9.53 Hz 

at 20 °C and under excess ATP condition. If we consider the ± standard deviation of the fitting 

parameter Pt, i.e., the one with the largest relative fitting error, the range of rotation rates is 6.2 

− 21.1 Hz. Comparing the slopes in the time dependence (Fig. 5) at the onset of the reaction 

and that connecting the 1-10 min points, the mean rotation rate extrapolates to ~14.14 Hz and to 

a range of rotation rates of 9.2 − 31.2 Hz, for the beginning of the reaction. 

 It should be noted that the dissociation constant, K, of concanamycin A binding to V-

ATPase is much larger than in some early reports (Bowman et al. 1988; Drose et al. 1993) but 

similar to a more recent report (Whyteside et al. 2005; Dixon et al. 2008). In addition to the dif-

ference in the host systems, this discrepancy might be caused by several factors as explained in 

(Whyteside et al. 2005), of which, the most likely might be a potential removal of a structural 

component (e.g., polypeptide or lipid) required for a higher affinity binding. The state of the 

membrane might play a role here, since concanamycin A have been demonstrated to penetrate 

into the membrane and interact directly with both the lipids and side chains of subunits c (Pali 

et al. 2004; Pali et al. 2004; Dixon et al. 2008; Kota et al. 2008). There is no reason to assume 

that the composition and the concentration of the lipids changed significantly from preparation 

to preparation (the samples were taken to have the same mass of total protein) but the mem-

brane environment of V-ATPase might be very different in different studies. 

 

 



 

 

Conclusions 

 

Reports on the rate of rotation in V-ATPase vary widely. One reason is that the enzyme is in a 

very different state and environment in activity measurements in native like membranes versus 

direct observations of the rotation of attached fluorescent or gold particles when it is fixed on a 

solid support. In some cases there are as large as ten fold differences between activity based es-

timates and direct observations even for the very same system (Nakanishi-Matsui et al. 2010). 

Such discrepancies are explained by the differences in the ratio of inactive/active V-ATPase, an 

unknown factor, in different systems. In view of the preparation to preparation variations and in 

comparison with other ATPases in the system (Fig. 2), we believe that so big variations in the 

inactive/active ratio are unlikely. The present approach, to use the inhibitor titration curve in 

order to determine the concentration of the enzyme and the dissociation constant of the inhibi-

tor, depends on the chemistry of the inhibitor-V-ATPase interaction. Our data is compatible on-

ly with a single binding site per monomeric enzyme. Since concanamycin A most likely binds 

to intramembranous subunits (Pali et al. 2004; Pali et al. 2004; Whyteside et al. 2005; Bowman 

et al. 2006; Dixon et al. 2008), the present result suggests that an interaction with a single subu-

nit c is not sufficient for concanamycin A binding: it either binds to more than one subunits or it 

binds to either subunit a, c’ or c” (Huss et al. 2002), of which there are only one copies in the 

structure, although its interaction with the lobster c ring and other recent data (Pali et al. 2004; 

Bowman et al. 2006; Dixon et al. 2008) argue against c’ and c’’ being the binding sites. The ac-

curacy of our approach could be further improved by adding more points to the inhibitor titra-

tion curve. However, it would not change the fact that the estimated rotation rate is a low limit, 

because the activity of the inhibitor, which can not be determined easily, is most probably less 

than 100%. In addition, it is also very likely that not all enzymes are active in the preparations, 

and we don’t know whether the inhibitor binds to otherwise already inactive V-ATPases. Since 

we assumed 100% activities, for both the inhibitor and the enzyme, smaller activities would 

scale up the estimated rotation rate. For instance, assuming that the activities of the inhibitor 

and the enzyme were both 80% (and the inhibitor only binds to the active enzyme), this would 

mean ~14.89 Hz average rotation rate, instead of ~9.53 Hz, i.e., a factor of 0.8-2 larger, for the 

very same data. Obviously, these uncertainties cause larger errors in the estimation of the rota-

tion rate than those in the titration experiment. Although our approach allows us to report the so 

far most accurate estimate of the rotation rate in a native V-ATPase in its native membrane en-

vironment, it should be concluded that there is still a great demand for an even more accurate 

measurement that is independent of the chemistry of any inhibitor binding to the enzyme. 
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Figure 1. A membrane-bound molecular rotary engine, the vacuolar proton-ATPase (V-

ATPase). The subunits of the water-soluble V1 domain are shown in green, whereas those of the 

membrane-bound Vo domain are shown in orange-grey colours. For better visibility, subunit a 

is transparent, not all subunits of the two domains are shown, and the c, c’ and c’’ subunits are 

not discriminated. Missing are the the d and e subunits of Vo and the C, E, G, and H subunits of 

V1. Binding and hydrolysis of one ATP molecule drives 120 degrees rotation of the rotor (con-

sisting of the “c ring” of a hexameric assembly of subunits c (4 copies), c’ and c’’ and the d 

subunits of the Vo domain plus D, F of the V1 domain) with respect to the stator, driving the 

transport of two protons from the cytoplasmic side to either intracellular compartments or to the 

lumen, depending one the location of the V-ATPase, via the hydrophilic input and output chan-

nels (or sacks) formed between subunit a and the c ring. 

 



 

 

  
 

Figure 2. (A) Bright field transmitted light microscopy image of intact vacuoles purified from 

yeast Saccharomyces cerevisiae. The image was taken with differential interference contrast 

optics. Scale-bar: 2 µm. (B) Freeze-fracture electron microscopic image of yeast vacuolar vesi-

cles formed from yeast vacuoles after osmotic destruction and washing. The vesicles were fixed 

in glycerol. Scale-bar: 1 µm. 

 

 

Figure 3. Comparison of ATPase activities of yeast vacuolar vesicles in the presence and ab-

sence of different ATPase inhibitors. ATP hydrolysis was stopped after 20 min of incubation at 

30 °C in the presence of 2 mM Na2ATP and 5 mM MgCl2 (except for the first two bars), and 

the medium was assayed for inorganic phosphate, in all cases. Abbreviations: blank, no vesi-

cles, no ATP, no inhibitor; No ATP, no Na2ATP, no inhibitor; all ATP, no inhibitors; AMV, 5 

mM Na-azide + 0.2 mM molybdenate + 0.1 mM vanadate; AMV + NEM, as AMV plus 2 µM 



 

 

n-ethyl-maleimide; AMV + DCCD, as AMV plus 2 µM di-cyclohexyl-carbodiimide; AMV + 

ConcA, as AMV plus 1 µM concanamycin A; AMV + BAF, as AMV plus 1 µM bafilomycin. 

Results were normalised to the same “all ATP” activity. Bars indicate averages, errors mean a 

range of ± standard deviation (n = 3). 

 

 

Figure 4. Relative absorbance (at 750 nm) of inorganic phosphate (Pi) liberated by ATP hydrol-

ysis in yeast vacuolar vesicles, and assayed after 20 min incubation at 30 °C, as a function of 

the concentration of exogenously added Na2ATP (open symbols, right y-axis). The data were 

normalised to the same maximum absorbance. Delta absorbance obtained as the difference be-

tween the above normalised absorbances in the absence and presence of 1 µM of the specific 

V-ATPase inhibitor concanamycin A (black symbols, left y-axis). MgCl2 concentration was ei-

ther kept constant at 5 mM (circles) or was set to 2-fold of the Na2ATP concentration (squares). 

Each dataset, at constant or varying concentration of MgCl2, was measured twice from inde-

pendent cell cultures. 

 



 

 

 

Figure 5. Delta absorbances obtained as the difference between the absorbances (at 750 nm) of 

assayed inorganic phosphate (Pi) liberated by ATP hydrolysis by yeast vacuolar vesicles in the 

absence and presence of 1 µM of the specific V-ATPase inhibitor concanamycin A, as a func-

tion of the time of incubation at 20 °C and in the presence of exogenously added 2 mM Na2ATP 

and 5 mM MgCl2. The dotted and dashed lines are single exponential fits over the 0-10 min and 

0-50 min regions, respectively, and are shown just as guides for the eye. The solid line above 

the 1-3 min time interval is a linear fit to the first 5 points. The solid line over the 0-10 time in-

terval connects the means of the two data points at 1 and 10 min. Over the first 1-20 min re-

gion, absorbances were measured twice from independent cell cultures. 

 

 

 



 

 

 

Figure 6. The absorbance (at 750 nm) of inorganic phosphate (Pi) liberated by ATP hydrolysis 

by yeast vacuolar vesicles, as assayed after 10 min incubation at 20 °C in the presence of 2 mM 

Na2ATP (and 5 mM MgCl2), as a function of the concentration of the specific V-ATPase inhibi-

tor, concanamycin A. Three points at zero inhibitor are invisible because of the logarithmic ax-

is. The solid curve is a released fit according to the quadratic binding equation assuming a sin-

gle binding site per monomeric enzyme (Eq. [6]). The dotted curve is a fit according to the 

model with 5 binding sites per monomer V-ATPase enzyme (Eq. [9]), but with an enzyme con-

centration fixed at 44.9 nM. The inset shows the corresponding photometric calibration of ab-

sorbance versus the molarity of exogenously added inorganic phosphate [Pi], in the same prepa-

rations, same reaction volume and under the same conditions as the titration with the inhibitor, 

except that no Na2ATP was added. 
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