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ABSTRACT 

 Ten different polymers were selected as possible matrices for zeolite containing 

desiccant composites in order to prepare functional packaging material. A 5A type zeolite 

was used as desiccant. Composites containing the zeolite up to 50 vol% were prepared. 

Interfacial adhesion was estimated by various means including the measurement of 

surface characteristics, cyclic loading experiments and evaluation of composition 

dependence of mechanical properties by appropriate models. The results showed that 

composite properties change in a wide range. The deformability of most composites is 

small and decreases with increasing zeolite content. Interfacial adhesion between the 

matrix polymer and the zeolite is not very strong, although quantitative determination is 

hampered by various factors. Most of the composites fail by debonding, brittle matrices 
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by debonding and/or matrix fracture, while considerable shear yielding has been observed 

in LDPE composites. Composite properties are determined mainly by matrix 

characteristics; interfacial adhesion plays only a relatively minor role.  

Keywords: Multifunctional composites (A), Debonding (B), Mechanical properties (B), 

Interface/interphase (B) 

 

1. INTRODUCTION 

 Structural materials are being replaced in increasing quantities by functional 

materials, which, besides their excellent mechanical properties, also fulfill some function 

thus increasing their value [1]. A wide range of functions can be introduced into these 

materials like electrical and thermal properties, piezoelectric response, desiccant 

characteristics, antiseptic properties, etc. Desiccant characteristic are used mainly in the 

packaging industry, the most frequently in electronics [2] and pharma [3-5]; they can be 

achieved by combining polymers with fillers which adsorb or absorb water. The simplest 

and industrially most viable solution is the use of a desiccant filler, usually a silica gel [6] 

or zeolite [7]. The fillers adsorb water on their large, high energy surface thus preventing 

the contact of the packaged ware with humidity. Occasionally the filler may fulfill more 

than one function as in the preparation of breathable films, in which they help the 

formation of voids to let vapor pass through the film, but prevent the permeation of 

liquids, while act as desiccant at the same time. Zeolites were used for this purpose in 

more than one case [8-12]. 

 Obviously, the components of the material and the ensuing composite must meet 

some requirements in order to fulfill their functions. Desiccant characteristics require 

large specific surface area and high surface energy to bind efficiently as much water as 

possible. On the other hand, matrix-filler adhesion cannot be excessively strong, 

otherwise debonding does not occur during the preparation of breathable films, and the 

required voids do not form. All packaging materials must possess certain mechanical 

properties to fulfill their role, stiffness, strength, deformability and fracture resistance 

must exceed certain minimum values. The mechanical properties of all heterogeneous 
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materials are determined by four factors: component properties, composition, structure 

and interfacial interaction [13]. This latter characteristic plays an important role in the 

preparation of breathable films, but interactions influence desiccant properties as well. 

 Because of the importance of interactions and adhesion, several attempts have 

been made to determine or estimate them. Unfortunately, published information is 

controversial sometimes coming even from the same authors. Biswas et al. [8-11, 14, 15] 

prepared zeolite composites with various matrices including linear low density (LLDPE), 

low (LDPE) and high density (HDPE) polyethylene as well as polypropylene (PP). They 

drew their conclusions about adhesion from the composition dependence of tensile 

properties and from scanning electron micrographs (SEM). They claim strong interaction 

in LLDPE, but weak in the rest of the polyolefins. The conclusion is difficult to believe, 

since the surface energy of all polyolefins is small and very similar, interaction is created 

by van der Waals forces, thus it must be practically the same for all the polymers tested. 

Moreover, the authors neglected the fact that the composition dependence of mechanical 

properties is influenced also by matrix characteristics thus reinforcement is much stronger 

in a soft than in a hard matrix even at the same level of adhesion [16]. Similarly 

contradictory and confusing conclusions were published by other groups as well. 

Upadhyay et al. [17] claim strong adhesion between zeolite and polyamide (PA) based 

on the simple argument that both are polar. Similarly to Biswas et al. [14, 15], Balkose et 

al. [7, 12, 18] used the composition dependence of mechanical properties to estimate 

interactions in polypropylene/zeolite composites and found that they are weak. Other 

groups [19, 20] used SEM micrographs to evaluate interfacial adhesion and based on the 

fact that on fracture surfaces the filler is covered by the polymer they claim strong 

adhesion even when the surface of the zeolite was treated with aliphatic carboxylic acids 

[19] that are known to decrease surface energy and interactions [21].  

 The results are clearly contradictory and one of the reasons is that the composition 

dependence of tensile properties and SEM do not allow the reliable estimation of 

interfacial adhesion. In view of these contradictions the goal of our study was to estimate 

interfacial interactions and reinforcement in polymer zeolite composites potentially used 
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as desiccant packaging materials. The desiccant characteristics of the composites have 

been evaluated and reported in another paper [22]. In this communication we focus on 

interfacial interactions and try to point out the difficulties in their estimation, show the 

effect of matrix characteristics and discuss some practical consequences. 

 

2. EXPERIMENTAL 

2.1. Materials 

 Polymers with various chemical compositions, mechanical and rheological 

properties were selected for the study to cover a wide range of properties important in 

fulfilling their function in desiccant composites. A low (LDPE, Tipelin FA 24451, TVK, 

Hungary) and a high density (HDPE, Tipelin BA 55013, TVK, Hungary) polyethylene, a 

polypropylene (PP, Tipolen H 649 F, TVK, Hungary), a polystyrene homopolymer (PS, 

Sytron 686 E, Dow, USA), two high impact polystyrenes (HIPS1, Styron 485, HIPS2, 

Styron 1175, Dow, USA), a styrene-acrylonitrile copolymer (SAN, Tyril 880, Dow, 

USA), a polycarbonate (PC, Macrolon 2658, Bayer, Germany), a poly(methyl 

methacrylate) (PMMA, Ortoglas HFI 7, Arkema, France) and a PVC compound based on 

the Ongrovil S 5258 suspension grade powder of BorsodChem, Hungary were used as 

matrix polymers. Their most important characteristics are compiled in Table 1. A 5A 

type zeolite was selected as desiccant (Luoyang Jianlong Chem. Ind. Co., China). Its 

average particle size was 4.5 m, density 1.66 g/cm3 and specific surface area 533 g/m2 

as determined by nitrogen adsorption (BET). The theoretical pore diameter of this zeolite 

is 4.3 Å.  

 

2.2. Sample preparation 

 Before composite preparation the zeolite was dried at 300 °C for 16 h in vacuum. 

The components were homogenized in a Brabender W 50 EH internal mixer attached to 

a Haake Rheocord EU 10 V driving unit at 190 °C for 10 min. PC was mixed with the 

zeolite at 240 °C. For further studies 1 mm thick plates were compression molded from 

the homogenized material at 190 or 240 °C using a Fontijne SRA 100 laboratory machine. 
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The zeolite content of the composites changed between 0 and 50 vol%. 

 

2.3. Characterization 

 The molecular weight of the polymers was determined by gel permeation 

chromatography (Waters e2695 Separation Module) in THF or TCB, respectively, at 0.5 

ml/min flow rate and 35 C using a Water 2414 refractive index detector. The Styragel 

columns used were calibrated with polystyrene standards. Density was measured by using 

a pycnometer at room temperature. The zeolite content of the composites was checked by 

thermal gravimetry (TGA). 15 mg samples were heated to 650 °C at 80 °C/min rate in 

oxygen and kept there for 5 min to burn off the polymer. 

 The surface tension of the polymers was determined by static contact angle 

measurements. Normal alkanes were used for the determination of the dispersion 

component of surface tension, while six different solvents (water, glycerol, ethylene 

glycol, dimethyl sulfoxide, formamide, and 1-bromonaphthalene) were applied for the 

estimation of the polar component. The surface tension of the zeolite was determined by 

inverse gas chromatography (IGC). The filler was agglomerated with water and the 800-

1200 m fraction was used for the packing of the column. The dispersion component of 

surface tension was determined by the injection of n-alkanes at various temperatures 

between 200 and 280 °C. Unfortunately, none of the polar solvent eluted from the column 

thus the polar component of surface tension of the zeolite could not be determined with 

this method. 

 The mechanical properties of the composites were characterized by tensile testing 

using an Instron 5566 universal testing equipment at a gauge length of 115 mm. Cross-

head speed was 0.5 mm/min during the determination of stiffness, while properties at 

larger deformations, i.e. yield stress and strain as well as tensile strength and elongation-

at-break were determined at 5 mm/min. Debonding stress was estimated by cyclic loading 

experiments. The specimen was deformed up to different, increasing deformations at 0.5 

mm/min cross-head speed. After reaching the desired deformation it was removed from 

the grips, was let to relax for 15 min and then deformed to the next, larger elongation. 
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Young's modulus was determined in each deformation step and debonding stress as well 

as the amount of debonded filler were derived from the deformation dependence of 

stiffness. The distribution of the zeolites in the composites and fracture mechanism were 

studied by scanning electron microscopy using a Jeol JSM 6380 LA apparatus. 

Micrographs were recorded on fracture surfaces created during tensile testing. 

 

3. RESULTS AND DISCUSSION 

 The results are presented in several sections. First the composition dependence of 

properties are shown and then the reinforcing effect of zeolite in the various polymers is 

discussed next. Cyclic loading and the debonding of the desiccant is described in the 

following section, while issues related to interfacial adhesion are discussed in the last part 

of the paper. 

 

3.1. Properties 

 As mentioned in the introductory part, besides desiccant characteristics, i.e. the 

capacity and rate of water adsorption [22], other properties are also important for the 

application of polymer/zeolite composites as packaging materials. Usually stiffness, 

strength and deformability are the mechanical properties to consider. The Young's 

modulus of selected composites is plotted against composition in Fig. 1. Only a few of 

the ten polymers is shown in the figure to facilitate viewing; the presentation of all results 

in a single figure results in a very confusing graph. The continuous lines are drawn only 

to guide the eye in this and in all other figures, they are not fitted correlations. 

Accordingly, the number of lines often do not correspond to the number of series in a 

given figure.  

 The stiffness prepared from the four polymers presented in Fig. 1 covers a very 

wide range; it changes from about 0.3 up to around 10 GPa. The values for the composites 

produced with the other polymers are located between the two correlations bounded by 

LDPE and SAN. Stiffness increases with increasing zeolite content, as expected, the slope 

of the increase depends very much on the polymer used as matrix. As a consequence, a 
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product with practically any stiffness can be prepared from the polymers studied in this 

work, but of course functional characteristics as well as other mechanical properties must 

be also considered. 

 Composite strength is presented in Fig. 2 for the same composites as in the 

previous figure. Composition dependence is different from that shown by stiffness, 

strength decreases in some matrices while increases in others. The decrease of strength is 

often interpreted as a sign of weak interaction between the matrix and the reinforcement, 

while the increase as strong interfacial adhesion. Such a simplistic explanation is 

completely misleading, composition dependence and the extent of reinforcement depends 

on the stiffness of the matrix as well. The filler or reinforcement carries much more load 

in a weak matrix than in a stiffer one [16]. Similarly to stiffness, strength values measured 

for the rest of the composites prepared with the remaining polymers as matrix are located 

within the boundaries set by LDPE and SAN.  

 The deformability of the composites characterized by their elongation-at-break is 

plotted as a function of composition in Fig. 3 for the composites of the two previous 

figures. Elongation is plotted in a logarithmic scale because of the very large differences 

among the composites; ultimate deformation is almost 1000 % for LDPE, while only a 

few percent at most for stiffer composites. Only two lines are presented here, since the 

deformability of three of the composites is very similar to each other and very small. In 

fact most of the composites prepared from the other polymers not shown in the figure 

have very small deformability, thus one expects also their fracture resistance being quite 

small. If composites with considerable deformability and impact resistance must be 

prepared for a certain application, the choice is limited since the desiccant decreases the 

deformability of the matrix polymers very much. 

3.2. Reinforcement 

 The strength and deformability of composites depends very much on the strength 

of interfacial interactions. Reinforcement cannot be judged by the mere observation of 

the composition dependence of stiffness, yield stress or strength. One must consider the 

fact that the polymer always wets the high energy surface of mineral fillers and a certain 
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interaction always develops between the components. Reinforcement, i.e. the load-

bearing capacity of the second component, can be estimated quantitatively by the use of 

models; a model was developed earlier to describe the composition dependence of tensile 

yield stress [23], tensile strength [24] or fracture resistance [25] of particulate filled 

polymers. The model takes the following form for tensile strength 

  (1) 

where T and T0 are the true tensile strength (T =  and  = L/L0, where L is the 

ultimate and the L0 initial gauge length of the specimen) of the composite and the matrix, 

respectively, n is a parameter taking into account strain hardening,  is the volume 

fraction of the filler and B is related to its relative load-bearing capacity, i.e. to the extent 

of reinforcement, which, among other factors, depends also on interfacial interactions. If 

Eq. 1 is transformed into a linear form and the natural logarithm of reduced tensile 

strength is plotted against filler content, a linear correlation is obtained, the slope of which 

is proportional to the load-bearing capacity of the reinforcement and under certain 

conditions to the strength of interaction. The tensile strength of two of the composite 

series is plotted in this way in Fig. 4. The correlations are linear indeed and their slope 

depends on the properties of the matrix, steep for the soft matrix (LDPE) and small for 

the stiff polymer (SAN). Accordingly, zeolite reinforces soft polymers much more than 

stiff materials, as discussed above.  

 B values calculated for the composites prepared with all the matrix polymers 

studied are collected in Table 2. It can be seen that parameter B covers a wide range from 

1.5 to about 6, depending on the polymer in question. The second column of Table 2 

contains the calculated tensile strength of the composites, 0 (see Eq. 1). If these values 

is compared to parameter B it can be seen that they are not independent of each other; 

they express the principles mentioned above, i.e. reinforcement is stronger in weaker, soft 

matrices.  

 The model represented by Eq. 1 was created using the assumption that in all 
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heterogeneous materials, including polymer composites, an interphase forms 

spontaneously which considerably influences properties. According to the model 

parameter B depends on the thickness (ℓ) and strength (i) of the interphase and on the 

size of the interphase (Af) in the following way 

   (2) 

where Af is the specific surface area and f the density of the filler. According to Eq. 2, a 

linear correlation exists between parameter B and the natural logarithm of matrix strength. 

 Parameter B is plotted against matrix strength in Fig. 5 and it can be seen that it 

corresponds to the prediction; a relatively close linear correlation is obtained with a 

negative slope for the ten polymers studied. The close relationship clearly proves that 

reinforcement depends on the characteristics of the matrix and cannot be judged from the 

composition dependence of tensile yield stress or strength. Fig. 5 also proves that 

although parameter B depends also on interfacial interactions determining the thickness 

and properties of the interphase [26], it is dominated by matrix properties thus the effect 

of interactions is difficult or impossible to deduce from it. Deviations from the linear 

correlation indicate the effect of experimental error, but also that of interactions. In order 

to compensate for the effect of the matrix, a quantity taking into consideration matrix 

strength was calculated and listed in the last but one column of Table 2. It can be seen 

that the difference is much smaller in this quantity than either in parameter B or matrix 

strength, but it still does not help much to estimate matrix/filler interaction. Further 

approaches are needed for this purpose, some of which will be presented in the next 

sections. 

 

3.3. Cyclic loading, debonding 

 If the interaction between the matrix and the filler results from secondary, van der 

Waals bonds, they are not very strong and under the effect of external load the matrix and 

the filler may separate at the interface, i.e. debonding occurs. Debonding stress depends 
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on the strength of interaction and can be estimated with the model developed by 

Vollenberg [27, 28] and Vörös [29], respectively. According to both models initiation 

stress depends on the strength of interfacial interaction, on the size of the particles and on 

the stiffness of the matrix [29], i.e. 

       (3) 

where D and T are debonding and thermal stress, respectively, WAB the reversible work 

of adhesion, E the Young’s modulus of the matrix, R the radius of the particles, while C1 

and C2 are constants. Accordingly, larger initiation stress is needed for debonding with 

increasing adhesion of the components, with increasing stiffness of the matrix and with 

decreasing particle size. Debonding experiments were carried out with increasing pre-

strains as described in the experimental part and some results are presented in Fig. 6. 

Modulus decreases when debonding starts, thus debonding stress can be determined from 

the deviation of stiffness from the first, horizontal part of the correlation.  

 Debonding results in a three-component material consisting of the matrix, 

particles and voids. The amount of debonded zeolite can be estimated with the help of 

Hartingsveldt's approach [30]. The model assumes that bonded particles increase 

stiffness, while debonded particles do not. The dependence of composite modulus is 

expressed by the following expression [31] 

        (4) 

where Em is the modulus of the matrix polymer, b is the volume fraction of bonded 

particles and  is defined as  

         (5) 

where m is the Poisson’s ratio of the matrix. Since debonded particles cannot carry any 
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load, modulus must be corrected by the effective load-bearing cross-section of the matrix, 

thus composite stiffness becomes  

       (6) 

and the amount of bonded particles is defined as 

         (7) 

where f is total filler content, while d is the volume fraction of debonded particles. If 

the modulus (Ec) of pre-strained composite samples is determined and m is known, the 

amount of bonded (b) and debonded (d) particles can be calculated from Eqs. 4-7. The 

amount of debonded particles is plotted against pre-strain in Fig. 7 for the composites 

presented in the previous figure. It can be seen that debonding starts very early, at very 

small strains for PVC, while only at larger deformations for the two polyolefins presented 

in the figure, then proceeds almost to completion for all three of them. Practically all the 

particles are separated from the matrix yielding voids, if the strain is sufficiently large. 

 According to Eq. 3, debonding stress depends on the stiffness of the matrix and 

Fig. 8 confirms this effect. Debonding stress determined from cyclic loading (D
c) is 

plotted against the square root of matrix stiffness as suggested by Eq. 3. Although some 

of the points are grouped together, the correlation agrees well with the prediction of the 

model. Unfortunately, debonding stress could not be determined for all the matrices, since 

very stiff materials broke at very small deformations, before debonding started. Since D
c 

is influenced also by thermal stresses, matrix stiffness and particle size, the determination 

of the strength of interaction is difficult, requires the knowledge of the parameters of Eq. 

3. 

 

3.4. Interactions 

 The results presented in the previous sections and the related discussion showed 

that interfacial interactions play a role in the determination of composite properties, but 

their estimation is not obvious in the present case. Various methods can be used for the 

estimation of the strength of interfacial adhesion. One approach used occasionally is the 
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determination of debonding stress from acoustic emission experiments [32], but could not 

be detected any signals during the tensile testing of the 1 mm thick specimens used in this 

study. Cyclic experiments could supply information for some of the composites, but 

debonding stress could not be determined for stiff and especially for brittle polymers.  

 Occasionally we try to draw conclusions about interfacial interactions from 

changes in parameter B. Parameter B is definitely influenced by the strength of 

interaction, which determines the thickness and properties of the interphase [26]. In the 

absence of structural effects like the orientation of anisotropic particles or aggregation, 

parameter B depends very much on interfacial adhesion and can be estimated from 

changes in B. In the present case, however, the strong influence of matrix properties on 

parameter B makes any estimate of the strength of interaction difficult. Nevertheless, 

based on the results it can be concluded that interfacial interactions are not very strong, 

since cyclic experiments yielded debonded particles and debonding strength could be 

determined by the method for some of the polymers. The strength of interaction differ for 

the polymers used shown by their dissimilar surface tension (see Table 1), but also by the 

deviation from the linear correlation in Fig. 5.  

 SEM is used quite frequently for the estimation of interfacial adhesion in polymer 

composites and the results obtained partially support our conclusions presented above. 

Fig. 9 shows micrographs recorded on the fracture surface of selected composites.  

Debonding and considerable matrix yielding occurs in the LDPE composite (Fig. 9a), 

and clean debonding can be observed in the PP composite (Fig. 9b). The danger of using 

SEM for the estimation of interactions is demonstrated excellently by Fig. 9c, showing 

the micrograph taken from another PP composite at 50 vol% zeolite content. Particles are 

covered by the matrix thus one could easily draw the conclusion from the micrograph that 

interaction between the filler and the matrix is strong. However, the conclusion would be 

wrong and the micrograph is deceiving, since interactions cannot depend on composition, 

on the one hand, and all evidence (see Fig. 6) indicate weak interaction between PP and 

the zeolite, on the other. Finally the fracture surface of a SAN composite is shown in Fig. 

9d showing again some debonding, although interpretation is not completely 



 

 

13 

 

unambiguous and up to opinion in this case as well. Apparently debonding initiated the 

failure of the composite at very small deformation that resulted also in the failure of the 

cyclic test for this polymer. 

 The usual and obvious route of using the reversible work of adhesion for the 

characterization of the strength of interaction could not be followed directly, because we 

encountered various problems during the determination of the surface tension of the 

zeolite. Because of its high surface energy, the apolar component of surface tension could 

be determined only at 280 °C by IGC and the polar component could not be measured 

even at this temperature because none of the polar solvents eluted from the column. On 

the other hand, this characteristic could be calculated from spreading pressure derived 

from the adsorption isotherm of water on the zeolite. Accordingly, 181.9 mJ/m2 was 

obtained for the apolar (IGC) and 440.9 mJ/m2 for the polar (adsorption) component of 

surface tension. Using these values in further calculations is somewhat questionable 

because they were determined at different temperatures. However, since the same zeolite 

was used in all composites, an approximate value is acceptable for comparative purposes. 

Accordingly, the reversible work of adhesion was calculated for all polymer/zeolite pairs 

and the results are listed in the last column of Table 2. It is obvious that interfacial 

adhesion is different in the composites, WAB changes from around 200 to 280 mJ/m2. The 

corrected parameter B (B ln T0) used for the estimation of interactions above is plotted 

against the reversible work of adhesion in Fig. 10. A clear correlation exists between the 

two quantities proving that interfacial interactions influence composite properties and 

reinforcement indeed. On the other hand, the slope of the correlation is negative, although 

one would expect an increase in B with increasing interfacial adhesion. The apparent 

contradiction can be explained, and proves at the same time, that interactions are not very 

strong and composite properties, as well as reinforcement is determined mainly by matrix 

characteristics. 
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4. CONCLUSIONS 

 The study of the characteristics of polymer/zeolite desiccant composites prepared 

with ten different matrices showed that their properties change in a wide range. Stiffness 

varies between 0.3 and 10 GPa, while strength between l0 and 80 MPa. The deformability 

of most composites is small and decreases with increasing zeolite content. Interfacial 

adhesion between the matrix polymer and zeolite is not very strong although quantitative 

determination is hampered by various factors. Most of the composites fail by debonding 

thus debonding stress could be determined in cyclic loading and relaxation experiments. 

Brittle matrices fail by debonding and/or matrix fracture, while considerable shear 

yielding has been observed in LDPE composites. Composite properties are determined 

mainly by matrix characteristics and interfacial adhesion plays only a relatively minor 

role. Accordingly, the matrix of such desiccant composites must be selected mainly 

according to functional properties and always in view of matrix characteristics.  
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7. CAPTIONS 

Fig. 1 Young's modulus of selected polymer/desiccant composites plotted against 

zeolite content. Symbols:  

Fig. 2 Effect of zeolite content on the tensile strength of composites prepared with 

various matrices. Symbols:  

Fig. 3 Dependence of deformability on zeolite content in polymer/desiccant 

composites. Symbols:  

Fig. 4 Reduced tensile strength of polymer/desiccant composites plotted against 

zeolite content according to Eq. 1. Determination of the extent of 

reinforcement. Symbols:  

Fig. 5 Linear correlation between the extent of reinforcement (parameter B) and 

matrix strength for polymer/zeolite composites. 

Fig. 6 Cyclic loading test for the determination of debonding stress in polymer 

zeolite composites. Changes in modulus as a function of pre-strain. 

Symbols: () PVC, () PP, () HDPE. 

Fig. 7 Dependence of the amount of debonded particles on the pre-strain used in 

the cyclic loading experiment. Symbols: () PVC, () PP, () HDPE. 

Fig. 8 Correlation between debonding stress and matrix stiffness in 

polymer/zeolite composites. 

Fig. 9 SEM micrographs recorded on the fracture surface of polymer/zeolite 

composites; a) LDPE, 50 vol%, b) PP, 20 vol%, c) PP, 50 vol%, d) SAN, 

50 vol%. 

Fig. 10 Correlation between quantities related to interfacial adhesion in 

polymer/zeolite composites. 

 

 

() LDPE, () PS, () HIPS1, () SAN. 

() LDPE, () PS, () HIPS1, () SAN. 

() LDPE, () PS, () HIPS1, () SAN. 

() LDPE, () SAN. 
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Table 1 The most important characteristics of the polymers used in the experiments 

Polymer Source 
MFI (g/10 min) Mn 

(g/mol) 
Mw/Mn 

Density 

(g/cm3) 

Surface tension 

(mJ/m2) 

Value Conditions S
d S

p S 

LDPE TVK, Hungary   0.28 190 °C, 2.16 kg 17160 6.89 0.92 32.5 0.3 32.8 

HDPE TVK, Hungary   0.35 190 °C, 2.16 kg 18620 6.57 0.96 33.2 0.6 33.8 

PP TVK, Hungary   2.50 230 °C, 2.16 kg 92620 4.84 0.90 32.0 0.8 33.0 

PS Dow, USA   2.50 200 °C, 5 kg 127970 2.44 1.04 40.8 1.6 42.4 

HIPS1 Dow, USA 12.00 200 °C, 5 kg 77525 2.68 1.02 38.5 1.8 40.3 

HIPS2 Dow, USA   2.80 200 °C, 5 kg 95840 2.54 1.04 38.1 1.6 39.7 

SAN Dow, USA   3.50 230 °C, 3.8 kg 75510 2.39 1.07 37.3 2.3 39.6 

PC Bayer, Germany 13.00 300 °C, 1.2 kg 24730 2.07 1.20 34.8 3.6 39.7 

PMMA Arkema, France 11.00 230 °C, 3.8 kg 43470 1.88 1.16 40.3 0.7 41.0 

PVC Borsodchem, Hungary – – 55270 2.41 1.44 34.7 4.2 38.7 
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Table 2 Parameters characterizing reinforcement in polymer/zeolite composites 

calculated from their tensile strength 

Polymer 
0

a 

(MPa) 
B R2(b) Bln0 

WAB 

(mJ/m2) 

LDPE 13.5 6.08 0.9905 15.8 207.0 

HDPE 30.2 5.09 0.9884 17.3 218.5 

PP 39.6 4.72 0.9773 17.4 220.1 

PS 38.3 1.80 0.9837 6.6 259.3 

HIPS1 11.9 4.56 0.9926 11.3 256.6 

HIPS2 14.3 3.91 0.9993 10.4 252.3 

SAN 79.9 1.50 0.9951 6.6 260.8 

PC 54.8 1.96 0.9519 7.8 270.1 

PMMA 42.2 1.98 0.9582 7.4 240.0 

PVC 34.7 1.73 0.9342 6.1 276.2 

a) matrix strength calculated from the intersection of the linear correlations (see. Eq. 1) 

b) determination coefficient indicating the accuracy of the fit 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8 
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Figure 9. 
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