Market participation by smallholder rice farmers in Tanzania: a double hurdle analysis

Smallholder farmers account for over 90 per cent of domestic rice production in Tanzania. Their participation in markets provides opportunities for growth through income and employment. However, their ability to participate is hampered by personal, household and institutional constraints. We adopt the double hurdle model to explore determinants of market participation by rice farmers using data collected from selected rice growing regions in Tanzania. The decision to participate in the market is affected by the cropped area, yield, distance to the market and type of variety grown. Besides these factors, the quantity marketed is affected by the existence of a market within the village. There is need for labour-saving technologies for area expansion and yield improvement.

Keywords: average partial effects, rice marketing, developing country

* Africa Rice Center, Tanzania Station, P.O. Box 33581, Dar es Salaam, Tanzania. Corresponding author: g.mujawamariya@cgiar.org

Introduction

Product marketing plays a key role in the process of agricultural development and in stimulating and extending development opportunities (Abbott, 1993). The increase in production of food crops requires effective demand from outside the farming area in the form of population growth or demographic change (von Braun et al., 1994). Such demand increases commodity prices. The importance of markets to smallholder farmers entails several facets: (a) households derive benefits such as income and open opportunities for rural employment (Dorward et al., 2003), and (b) marketing activities such as processing, transportation and selling provide avenues of employment for smallholder farmers willing to exit the farming sector (Jari and Fraser, 2009).

In spite of the market importance, a farmer’s ability to take advantage of the existing market opportunities is highly dependent on personal and institutional factors. For instance, age can have a positive or negative effect on market participation: older farmers may be more concerned about food security while the young farmers may want to enhance the quality of their lives through participating in the market (Musah et al., 2014). Furthermore, households that have more dependants may be associated with higher levels of consumption, thus lowering their marketable surplus (Ehui et al., 2009). The gender of the household head can also affect market participation, with male headed households expected to participate more in the market (Reyes et al., 2012) while female headed households are less likely to participate in the market due to higher transaction costs of searching for buyers, contracting and enforcing of sales as compared to their male counterparts (Jagwe et al., 2010). Jaleta et al. (2009) find that household crop market participation is determined by the literacy level of the head of household and household’s market orientation. Namazzi et al. (2015) further explain that literacy level of a farmer has a positive effect on the level of participation in the market as it determines how the farmer makes marketing decisions and interprets market signals. Makhura et al. (2001) and Gebremedhin and Jaleta (2010) find that distance to the market negatively influences both the decision to participate in the market and the proportion of output that is sold. Furthermore, Fafchamps and Hill (2005) show that wealthy farmers can sell their produce at distant markets given that they can afford high transport costs as compared to poorer farmers.

Despite the highlighted importance of marketing, key factors that can boost commercialisation of rice in the developing world are less well known, even in a situation where rice is recognised as a major cash crop.

The objective of this paper is to determine the key factors that affect smallholder farmers’ decisions to market as well as those that affect quantities sold when they participate in the market. The study takes the case of the rice sector in Tanzania where there has been much emphasis on production but where pertinent marketing information is lacking. Rice is the second most important crop after maize and 90 per cent of all rice production is undertaken by smallholder farmers. Annual milled rice consumption is estimated at 25-30 kg per capita and the growth rate of rice consumption is estimated at an average of 4 to 7 per cent for the period 2007-2012 as a result of income growth, urbanisation and the perception of its ease of cooking and storage (MAFC, 2009; Stryker, 2013). Locally-produced rice has wider market potential as it is preferred to imported rice, especially due to its aromatic attributes.

Methodology

Marketing studies are plagued with the possibility of recording zero sales or purchases for certain commodities. These observed zeros are in some cases genuine corner solutions, for instance when some farmers decide not to participate in the market in an optimising behaviour. The outcome is continuous for other farmers in terms of the intensity of participation. Two distinct decisions are observed: a participation decision and a supply volume decision, also described as the extent of participation (which is measured in quantities). While some authors take these decisions as being simultaneous, implying that the same vector of parameters determines both decisions, other studies in the literature assume sequential decisions. In this case, the two decisions are determined by a different set of explanatory variables (Bellemare and Barrett, 2006).

The Tobit model (Tobin, 1958) is sufficient to accommodate the zero observed figures alongside other positive val-
ues if simultaneity of decisions is assumed. The participation
decision hence becomes irrelevant and the observed zeros
imply that the producer does not participate in market. This
limitation undermines the sufficiency of the Tobit model for
empirical analysis. Cragg (1971) proposed a two-tiered pro-
cess, namely the double hurdle model, which incorporates
relevance of the participation decision to the Tobit model
with the probability of participation and the intensity of par-
ticipation being determined by separate processes. The idea
behind the double hurdle model is looking at an event that
may or may not occur. Occurrence of the event is associated
with a continuous positive random variable while if the event
does not occur, the random variable takes a value of zero.
Such is the decision about market participation. It is guided
by a latent variable model linking unobserved utility derived
from market participation to the behaviour observed.

The individual’s decision to participate in rice marketing
can be represented by:

$$d_i = Z_i'\alpha + u_i$$ \hspace{1cm} (1)$$

where d_i is a latent variable indicating whether or not the
individual participates in marketing, α is a vector of unob-
erved parameters to be estimated, Z_i is a vector of observed
independent covariates that explain an individual’s decision
and u_i is an unobserved error term capturing all other factors.

The extent of participation is indicated by:

$$y_i = X_i'\beta + v_i$$ \hspace{1cm} (2)$$

where y_i is the amount marketed, X_i is a vector of covari-
ates that explain this amount, β is a vector of unobserved
parameters to be estimated and v_i is a random variable indi-
cating all other factors apart from X. An individual will par-
ticipate in marketing if $u_i > -(Z_i'\alpha)$ with the probability of
observing the individual participate in marketing given as
$P(u_i > -(Z_i'\alpha))$. The model gives room for possible differ-
ences between factors that affect participation ($u_i, Z_i'\alpha$) and
factors that affect extent of participation ($v_i, X_i'\beta$).

The interaction between the two decisions leads to the fol-
lowing estimation for the model:

$$y_i = X_i'\beta + v_i, \text{ if } y_i > 0 \text{ and } d_i > 0$$
$$y_i = 0 \text{ otherwise}$$ \hspace{1cm} (3)$$

While the double hurdle model provides us with an
understanding of which factors affect each stage in the deci-
se making process, Yen and Jones (1996) highlight its key
limitation, namely that it decomposes the effects of the first
 hurdle onto the second hurdle while interpreting the results.
Consequently, to understand the overall effect of explanatory
variables in the first and second hurdles, we follow Burke’s
(2009) approach by incorporating the likelihood function
and the partial effects of both hurdles in the calculation of
the average partial effects (APE) of these variables and using
bootstrapped standard errors.

For the variables that explain participation in the mar-
ket and extent of participation, data were collected from
seven major rice growing agroecological zones of Tanzania.
Twenty one districts were proportionately sampled based on
the 2002/03 and 2004/05 rice production data. About five vil-
lages were randomly selected from each district, and ten rice
growing households were selected from each village giving
target sample size of 1040 smallholder farmers. After drop-
outs and missing data considerations and aggregation at the
household level, the effective sample was 676 households.

Results

The results do not reveal any influence of personal char-
acteristics on the decision to participate in the market or
quantity of rice that is sold. Cropped area and yield posi-
tively affect the decision of the household to market rice,
while growing an improved variety and distance to the
market negatively affect decision to participate in the mar-
ket.

Table 1: Descriptive statistics of the non-marketing and marketing rice growing households surveyed in the study and maximum likelihood
estimates of double hurdle model for market participation (total n = 676).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-marketing (n = 115)</th>
<th>Marketing (n = 561)</th>
<th>ANOVA/Chi-square</th>
<th>First hurdle (participation)</th>
<th>Second hurdle (quantity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paddy sold (tonne)</td>
<td>0</td>
<td>2.09 (2.07)</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of sold rice over production (%)</td>
<td>0</td>
<td>0.67 (0.26)</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>43.7 (12.0)</td>
<td>44.5 (13.0)</td>
<td>NS</td>
<td>-0.04 (0.03)</td>
<td>0.10 (0.09)</td>
</tr>
<tr>
<td>Age squared</td>
<td>0</td>
<td>0.00 (0.00)</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender of household head, HH (1 = male)</td>
<td>0.83 (0.38)</td>
<td>0.81 (0.40)</td>
<td>NS</td>
<td>-0.24 (0.20)</td>
<td>-0.23 (0.56)</td>
</tr>
<tr>
<td>Marital status of HH (1 = married)</td>
<td>0.81 (0.40)</td>
<td>0.82 (0.39)</td>
<td>NS</td>
<td>0.18 (0.20)</td>
<td>-0.59 (0.59)</td>
</tr>
<tr>
<td>Education (1 = above primary)</td>
<td>0.17 (0.37)</td>
<td>0.12 (0.33)</td>
<td>NS</td>
<td>-0.19 (0.17)</td>
<td>0.64 (0.50)</td>
</tr>
<tr>
<td>Ecology (1 = irrigated)</td>
<td>0.30 (0.46)</td>
<td>0.32 (0.47)</td>
<td>NS</td>
<td>0.15 (0.13)</td>
<td>-0.29 (0.39)</td>
</tr>
<tr>
<td>Cropped area (ha)</td>
<td>2.21 (2.23)</td>
<td>2.65 (2.23)</td>
<td>*</td>
<td>0.06 (0.03)**</td>
<td>0.94 (0.08)***</td>
</tr>
<tr>
<td>Variety grown (1 = improved')</td>
<td>0.29 (0.45)</td>
<td>0.22 (0.41)</td>
<td>NS</td>
<td>-0.28 (0.14)*</td>
<td>0.98 (0.42)**</td>
</tr>
<tr>
<td>Yield (tonne/ha)</td>
<td>1.17 (1.42)</td>
<td>1.41 (1.28)</td>
<td>*</td>
<td>0.11 (0.05)**</td>
<td>1.40 (0.13)**</td>
</tr>
<tr>
<td>Existence of market within the village (1 = market exists)</td>
<td>0.28 (0.45)</td>
<td>0.29 (0.46)</td>
<td>NS</td>
<td>-0.06 (0.14)</td>
<td>0.97 (0.43)**</td>
</tr>
<tr>
<td>Distance to nearest market (km)</td>
<td>6.97 (12.57)</td>
<td>5.21 (6.81)</td>
<td>**</td>
<td>-0.01 (0.01)*</td>
<td>0.06 (0.03)**</td>
</tr>
</tbody>
</table>

ANOVA test is performed for continuous variables and Chi-square test is performed for categorical variables

* ** *** statistically significant at the 10%, 5% and 1% levels respectively

NS: not significant

† Varieties classified as improved are TXD 306 (commonly known as SARO5), TXD 85, TXD 88, IR54, IR56, IR64, Improved ADRAO Nerica and Improved ADRAO non-Nerica
while other 105 varieties were classified as non-improved.

Source: own calculations
ket. The quantity of rice sold is positively influenced by the cropped area, variety type, yield, existence of a market and distance to the market (Table 1).

The unconditional APE for continuous variables that were significant in affecting quantity of milled rice sold are shown in Table 2. For each additional hectare of cropped area, the sale of rice increases by 0.32 tonnes on average. The variable yield bears the expected sign with an increase of 1 tonne per hectare leading to an increase in the quantity of milled rice sold by 0.47 tonnes on average. Following this process however, distance is now found to be not statistically significant in affecting quantity of rice sold.

For the nominal and ordinal variables that affect quantity of rice sold, we compare the average values of milled rice by category in Table 3. Married household heads sell more rice than the non-married household heads. Male-headed households sell on average more rice than the female-headed households. The less-educated household heads sell more rice than the more-educated household heads. Smallholder farmers who grow rice on irrigated land also sell more on average than those who grow rice in rainfed lowland areas. When a market exists within the village, farmers sell more rice than when markets do not exist. The average rice marketed varies significantly only across the category of variety type with those growing improved varieties selling more rice.

Discussion

Our findings on the effect of land ownership on market participation corroborate those of Ohen et al. (2014) who found that households with more land have the capacity to cultivate more of the crop and expand their production to ensure adequate supply to the market. Farmers owning small farms may not be able to raise the necessary surplus to sell at the market. Furthermore, higher yields boost the farmer’s likelihood to participate in the market because of the surplus above their household consumption needs. The novelty of our findings is that, contrary to popular belief that growing improved varieties can catalyse farmers to produce intentionally for the market, the reverse has been seen to be true. Indeed, growing improved rice varieties makes the farmer less likely to participate in the market, probably due to consumer preference for traditional aromatic varieties. Consumer preferences for specific rice types and qualities are often entrenched (Calpe, 2006), which limits the scope for substitution between different varieties.

When markets are perceived to be far, the farmer’s decision to produce for the market is negatively affected. This is associated with the high transaction costs of selling in distant markets. Makhura et al. (2001) and Siziba et al. (2011) also found distance to market to have a negative and significant effect on both the farmer’s decision to participate and the extent of farmer participation in the market. We would also expect a negative relationship between distance and the quantity sold, but our result shows the contrary. It may be that rice is sold in markets further away from the villages when the unit transport cost to travel is low, especially for wealthy farmers (Fafchamps and Hill, 2005). Moreover, farmers may not travel to the market if rice is bought from the villages by traders and millers. Indeed, Kilima (2006) indicates that much of the trade in rice is conducted by traders and not farmers. While moving from growing traditional to improved variety has a negative effect on the decision to participate in the market, once the first hurdle is crossed, this has a positive effect on the quantity sold to the market due to the higher yields attained from the improved varieties which translate into marketable surpluses for farmers. The higher yields imply the possibility to grow marketable crops (Smale et al., 1995).

The finding that cropped area and yield affect both the decision to market and the quantities that smallholder farmers actually sell is important as it supports the need for agronomic efforts to improve market-oriented rice production. Labour-saving technologies, such as tractors and power tillers, that can help farmers expand their cropped area are required. However, land expansion is not always achievable, especially where there are other demands on land such as expanding urban area and production of other crops. Rather, the yield enhancing practices can be more promoted, such as rice varieties that meet consumer preferences, and good agricultural practices, including the use of fertilisers and other inputs, that can help in increasing yield and thus enhancing market participation.

References

