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Supplement of common fertilizers with selenium (Se) for crop production will be an effective way to 
produce selenium-rich food and feed. The value of green pea seeds and forages as alternative protein 
source can be improved by using agronomic biofortification. Therefore, biological changes of green pea 
(Pisum sativum L.) and influences of inorganic forms of Se (sodium selenite and sodium selenate) at dif-
ferent concentrations on the accumulation of magnesium (Mg) and phosphorus (P) were investigated in 
greenhouse experiment. 3 mg kg–1 of selenite had positive effects to enhance photosynthetic attributes and 
decrease lipid peroxidation significantly. At the same time, Se accumulation increased in all parts of plant 
by increasing Se supply. Moreover, Mg and P accumulations were significantly increased at 3 mg kg–1 
selenite and 1 mg kg–1 selenate treatments, respectively. By contrast higher selenite concentrations (≥30 
mg kg–1) exerted toxic effects on plants. Relative chlorophyll content, actual photochemical efficiency of 
PSII (ФPSII) and Mg accumulation showed significant decrease while membrane lipid peroxidation 
increased. Thus, the present findings prove Se biofortification has positive effects on biological traits of 
green pea to provide it as a proper functional product.
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INTRODUCTION

Deficiencies in mineral micronutrients, including iron (Fe), zinc (Zn), selenium (Se), 
and iodine (I), are affecting more than 50% of the world population [50]. Other min-
erals, such as calcium (Ca), magnesium (Mg), phosphorus (P), and copper (Cu) can 
also be deficient in the diets of some populations [42].

Biofortification, with aims of increasing micronutrient amounts in the edible parts 
of plants via breeding or the applying of biotechnology, is considered to be a cost-
effective way to diminish micronutrient malnutrition in the rural populations in devel-
oping countries where the problem is most common [23, 27]. Biofortification may 
also include other approaches, such as the use of micronutrient fertilizers (agronomic 
biofortification) or enhancement of micronutrient bioavailability by manipulating the 
levels of pronutrient or antinutrient components in foods [10].
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Se is an essential element absorbed mostly from dietary sources in animals and 
humans. It is important in the prevention of several cancers, protection against viral 
infections oxidative stress, inflammation and suppression of HIV progression to 
AIDS [7]. Crop plants play an important role as a source of Se. Agronomic bioforti-
fication with Se enriched fertilizer has been widely tested based on field, pot and 
hydroponic experiments [3, 5, 9, 20, 40]. Currently, possible interactions and compe-
tition between Se and other major and trace elements are key scientific issues, too [13, 
18, 45]. In plants, Se influences enzymatic antioxidant activities [8, 14], in which 
essential cations acted as enzyme co-factors. These cations play crucial roles in plant 
metabolism. Mg is involved in the maintenance of membrane stability and plant tis-
sues integrity. Mg is also essential for the enzymatic activity of glutathione synthetase 
and ATPases [22]. In addition, phosphorus (P) is an essential macronutrient for plant 
growth and development [38, 44], too. As P is often deficient in soil or exists in una-
vailable forms that cannot be directly utilized by plants [1, 32], crops require a large 
amount of P fertilizer to maintain normal growth in more than 30% of the world’s 
arable land [39]. The application of P fertilizer improves crop production, but at the 
expense of causing severe environmental pollution and depletion of non-renewable P 
rocks [38, 39].

Plant species belonging to Fabaceae family are the second most important crops 
after cereals. Legumes are known as primary plant protein source. Pisum sativum, the 
common pea plant is one of the most important legumes. Pea is valued protein source 
primarily for the nutritional quality of its seeds for animal feed and human consump-
tion while its pods and shoots can be used, as forage, too. Both pea seeds and forages 
are rich in protein including lysine and other essential amino acids [2]. Se can easily 
enter into amino acids instead of sulphur hence an elevated protein content of plants 
can contribute to the higher accumulation of Se [29]. This fact gives green pea the 
potential to be used in Se biofortification programs [36].

The objective of this study was to investigate the biological changes of green pea 
by sodium selenite and sodium selenate enrichment at different concentrations and 
also to evaluate the effects of them on the uptake and accumulation of macronutrients 
(Mg and P) in different plant tissues.

MATERIALS AND METHODS

The greenhouse pot experiments were performed with calcareous chernozem soil 
obtained from the Látókép Experimental Station of Debrecen University (N: 47°33’, 
E: 21°27’, 113–118 m above of sea level). The parameters of this soil (Table 1) were 
essentially the same as previously described by Nagy et al. [26].

Eleven kg soil was weighed into Mitscherlich type pots (50 × 50 cm2). A 100 mL 
additional NPK fertilization (contain 1.43 g nitrogen as KNO3, 0.2291 g P2O5 as 
KH2PO4 and 0.1487 g K2O as K2SO4 per pot) and 100 mL Se (as two forms of 
sodium selenite (Na2SeO3; active form: SeIV) and sodium selenate (Na2SeO4; active 
form: SeVI) in five and four different concentrations, respectively, as follows: 0 (con-
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trol), 1, 3, 10, 30 and 90 mg kg–1 and 0 (control), 1, 3, 10 and 30 mg kg–1, prepared 
with distilled water) were mixed and manually sprayed and supplemented to the soil 
as an aqueous solution – as evenly as possible – using dispenser bottles of 0.5 L 
(nominal volume). Green peas (Pisum sativum L.) were sown in separate experiments 
with three replications and the bi-factorial trials were arranged in a randomized com-
plete block design. Pots were weighed daily and water loss was supplemented with 
ion exchanged water. At the third principal stage of growth; Stem elongation (the 
third true leaf has unfolded at the third node), immature plants were removed so that 
eight intact and mature plants were remained in every pot. Growing period lasted 50 
days in May and June and the plants were harvested at the end of the seventh princi-
pal stage of growth; Development of fruit [Pods have reached typical size (green 
ripe)-peas fully formed].

Three mg kg–1 SeVI treatments stayed at flowering stage (sixth principal stage of 
growth) and did not grow more; 10 and 30 mg kg–1 SeVI treatments did not even grow 
and stayed at the end of 0 principal stage of growth; Germination (Emergence: shoot 
breaks through soil surface).

Table 1
Characteristics of the experimental soil

Depth 0–0.3 m

pH (KCl) 5.71

pH (H2O) 6.58

Soil texture category loamy clay

Total water-soluble salt 0.015%

CaCO3 0.202%

Humus (organic matter) 3.54%

KCl-soluble NO3-N+NO2-N 8.04 mg kg–1

AL-soluble P2O5 199 mg kg–1

AL-soluble K2O 451 mg kg–1

AL-soluble Na 332 mg kg–1

AL: 0.1 mol dm–3 ammonium-lactate and 0.1 mol dm–3 acetic-acid

KCl-soluble Mg 176 mg kg–1

KCl-soluble SO4
2–-S 6.04 mg kg–1

KCl-EDTA-soluble Cu 5.79 mg kg–1

KCl-EDTA-soluble Zn 7.9 mg kg–1

KCl-EDTA-soluble Mn 262 mg kg–1
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Relative chlorophyll content (SPAD value)

SPAD values as a relative chlorophyll content in the leaf were measured under natu-
ral conditions by using the SPAD chlorophyll meter (SPAD-502; Konica Minolta 
Sensing, Inc., Japan). The last fully developed leaves were measured at the end of 
growing period in 5 repetitions per pot.

Chlorophyll fluorescence parameters

Based on fluorescence induction kinetics, fluorescence parameters and ratios have 
been established to assess photochemical activity of plants. The parameters of in vivo 
chlorophyll fluorescence were detected with a PAM 2100 (Heinz Walz GmbH, 
Germany) modulated light fluorometer as described [33]. Samples were dark-adapted 
for 20 minutes. After dark adaptation, the initial fluorescence (F0) was excited by 
weak light (0.1 μmol m–2 s–1) and the maximal fluorescence (Fm) was induced by 
white saturating flash light (8000 μmol m–2 s–1). The actual photochemical efficiency 
of PSII as yield (∆F/Fm’=(Fm’ – Ft)/Fm’) was measured on the last fully developed 
leaves – at the end of growing period – on light-acclimated conditions under natural 
light between 11:00–12:00 h. The photosynthetically active radiation was around 
1200 μmol m–2 s–1 and the temperature was around 30 °C.

Malondialdehyde content

Lipid peroxidation (LPO) was determined – at the end of growing period – from leaf 
blade by the method of Zhang and Huang [49], by measuring the amount of malon-
dialdehyde (MDA). The leaf tissues (~100 mg) were homogenized in 1 mL 0.1% 
(w/v) trichloroacetic acid (TCA) solution using cold mortar and pestle. The homoge-
nates were centrifuged at 10,000× g for 10 min. And then 4 mL of 0.5% thiobarbitu-
ric acid (TBA) in 20% TCA solution was added into 1 mL of supernatant and incu-
bated at 96 °C for 30 min. The tubes were cooled by transferring into an ice bath. The 
absorbance of the supernatant was recorded at 532 nm. Standard curve was generated 
from MDA standard. The concentration of MDA in samples was calculated from 
absorbance calibration curve.

Peroxidase (POX) activity

Peroxidase activity of leaves was assayed by the method followed by Sanchez et al. 
[31]. The activity of peroxidase was expressed as:

Specific activity (UA mg–1 protein) = Unit activity (U min–1 g–1 FM)/Protein con-
tent (mg g–1 FM).
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Quantification of total Se, Mg and P

Element analysis was carried out by inductively coupled plasma optical emission 
spectroscopy (ICP-OES) (Perkin Elmer OPTIMA 3300 DV) and inductively coupled 
plasma mass spectrometry (ICP-MS) (Thermo Elemental X7). Dried samples 
(1 ± 0.01 g) were homogenized and decomposed by HNO3–H2O2 treatment as previ-
ously described [16]. Briefly, samples were kept in 10 mL concentrated HNO3 over-
night, then heated to 60 °C for 45 min in a LABOR MIM OE 718/A block digestion 
apparatus. Following the first digestion step, 3 mL 30% H2O2 was added to the sam-
ples and digestion was continued at 120 °C for another 90 min. After cooling the 
samples to room temperature, volume was adjusted to 50 mL with deionized water. 
Samples were then mixed by shaking and filtered through FILTRAK 388 filters.

Data analysis

Data were statistically analyzed using SPSS, 19.0 software (2010). Standard error 
was calculated and analysis of variance (ANOVA) was performed on the data to 
determine the least significance difference (Tukey test) between treatment means with 
the level of significance at P ≤ 0.05.

RESULTS

Photosynthetic parameters

Although chlorophyll content is sensitive to environmental changes, no significant 
difference in relative chlorophyll content was shown in green pea leaves treated with 
SeIV in 1–30 mg kg–1 concentration range (Fig. 1A). In contrast, 90 mg kg–1 SeIV 
significantly decreased the relative chlorophyll content by 34.7% in comparison to 
control.

The maximal photochemical efficiency of PSII (Fv/Fm) is derived parameter of 
chlorophyll a fluorescence transient, point out to maximal quantum yield of PSII did 
not change significantly in case of SeIV 0–90 mg kg–1 and SeVI 1 mg kg–1 concentra-
tion range, respectively (Fig. 1B). On the other hand, 3 mg kg–1 SeIV increased the 
actual photochemical efficiency of PSII (ФPSII) significantly, whereas; 30 and 90 mg 
kg–1 SeIV treatments decreased this value (Fig. 1C).

Malondialdehyde content

The concentration of MDA in the shoot tissues can indicate the level of oxidative 
damage caused by Se added to the soil. The accumulation of MDA in the green pea 
leaves was stimulated after the Se treatment, by 13% in the presence of 90 mg kg–1 
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SeIV, as compared to the control plants (Fig. 1D). On the other hand, in plants sup-
plied individually with 3 mg kg–1 SeIV, the MDA concentration significantly decreased 
by 18.4% in comparison to the control plants.

Fig. 1. Effect of different concentration of applied Se forms induced changes in (A) SPAD chlorophyll 
content, (B) maximal photochemical efficiency of PSII (Fv/Fm) (C) actual photochemical efficiency of 
PSII (ФPSII), (D) concentration of MDA in leaves (E) activity of peroxidase in leaves at 50 days stage of 
growth. T1 = control; T2 = SeIV (1 mg kg–1); T3 = SeIV (3 mg kg–1); T4 = SeIV (10 mg kg–1); T5 = SeIV 
(30 mg kg–1); T6 = SeIV (90 mg kg–1); T7 = SeVI (1 mg kg–1). Significant differences in the mean value of 
each treatment group are indicated by different lower case letter based on Tukey test (p < 0.05, n = 5 ± s.e.) 

and the same lower case letters shows no significant difference between the treatments
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Peroxidase (POX) activity

The treatment of plants with various concentration of SeIV (1, 3, 10, 30, 90 mg kg–1) 
and 1 mg kg–1 SeVI increased the POX activity of leaves by 10.9%, 18.6%, 16.9%, 
18.8% 42.1% and 39% over the control (Fig. 1E).

Quantification of total Se

The total Se content in all of the green pea organs increased when enhancing both 
SeIV and SeVI concentrations in the soil (Table 2). The relationship between the total 
Se content and the SeVI dose (0 and 1 mg kg−1) was linear, and in the 1 mg kg–1 SeVI-
exposed green pea the total Se content in roots was 1.3-, 6.8- and 5.7-fold higher 
than in shoots, pods and seeds, respectively. A 30 and 90 mg kg–1 SeIV treated sam-
ples displayed significant differences at lower concentrations of SeIV in all of the 
organs and roots, seeds, shoots and pods had the order of the most to the least total 
Se content.

Total Se contents of green pea plants in different parts of roots, shoots, pods, and 
seeds showed an significant increase after biofortification, with respect to the initial 
concentrations of Se in plants not supplemented with Se (controls); without supple-
mentation only traces of Se could be detected (Table 2).

Table 2
The accumulation of Se in the green pea plant’s organs (mg kg–1 DM) cultivated with different 

concentration of applied Se forms (selenite: SeIV and selenate: SeVI) for a growing period of 50 days

Applied Se 
(mg kg–1) Root Shoot Pod Seed

Control 0.84±0.23c 0.32±0.03d 0.19±0.01d 0.25±0.1c

1 SeIV 3.87±0.00c 0.36±0.01d 0.23±0.02d 0.26±0.3c

3 SeIV 49.35±4.88c 3.83±0.35d 2.80±0.10d 7.39±1.13c

10 SeIV 147±64c 10.02±0.36c 7.85±0.22c 16.5±0.62c

30 SeIV 541±81b 20.97±0.93b 18.90±0.56b 41.5±5.17b

90 SeIV 1401±64a 56.37±4.61a 54.07±3.52a 343±16a

Applied Se
(mg kg–1) Root Shoot Pod Seed

Control 0.84±0.23 0.32±0.03 0.19±0.01 0.25±0.1

1 SeIV 1220±0 886±6.08 178±4 214±16

Significant differences in the mean value of each treatment group are indicated by different lower case letter 
based on Tukey test (p < 0.05, n = 3 ± s.e.).
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Quantification of total Mg and P in the aboveground organs

The total Mg content in the 3 mg kg–1 of SeIV treated green pea was the highest and 
98% increase was observed in all of the aboveground organs, in comparison to the 
controls (Table 3). Moreover, in all concentrations, the order according to the highest 
amounts was shoot, pod and seed. Whereas the total P content in the 1 mg kg–1 of SeVI 
was the highest in all of the organs and by 98% increase was seen comparing with the 
controls. In contrast, total amount of P accumulated in the highest degree, into the 
seed, followed by pod and shoot, respectively.

Treatments with 90 mg kg–1 of SeIV caused a significant decrease in both Mg and 
S levels in different parts of the plant. In addition, the total Mg and S contents in dif-
ferent parts of green pea situated above the ground such as shoots, pods, and seeds 
showed a significant increase after biofortification, with respect to the initial concen-
trations of them in plants not supplemented with Se (controls) (Table 3).

DISCUSSIONS

There is increasing evidence that Se can have beneficial effects on the growth, yield 
formation and stress tolerance of plants [11]. The physiological, biochemical or 
molecular mechanisms behind the stimulated growth and improved tolerance have 
not yet been determined completely. Nevertheless, enhanced antioxidant capacity 
(reviewed in 11) and more efficient accumulation of carbohydrates [37] are thought 
to be contributing factors in the better performance of the plants.

The response of green pea plants to Se exposure has been previously described by 
only a few authors [29, 35], hence the literature in this field is quite limited.

It is believed that improved growth is the result of efficient chlorophyll florescence 
parameters and enhanced chlorophyll synthesis. The findings of the present study 
revealed that effective quantum yield of PSII photochemistry (ФPSII) increased sig-
nificantly in the presence of SeIV (3 mg kg–1) whereas, increasing the concentration 
of Se lowered this parameter and also chlorophyll content. Our findings are in line 
with work that corroborated low doses of Se enhanced photosynthesis in rice seed-
lings [41]. However, Se toxicity induces the damage of photosynthetic apparatus, 
inhibits photosynthesis, and results in the over-production of starch [41].

MDA formation in plants exposed to adverse environmental conditions is a con-
sequence of lipid peroxidation caused by oxidative stress [17]. In green pea plants 
supplied with 3 mg kg–1 SeIV, MDA concentrations in the leaf tissues decreased 
significantly, as compared to the control plants. In the plants supplied with the 
higher dose of SeIV (90 mg kg–1), the level of MDA was the highest. Consistent with 
our results, several studies have also shown that Se supplementation may counteract 
the accumulation of harmful lipid peroxides in the plant cells [28, 30, 46]. These 
results can be attributed to the anti-oxidative effects of Se on plants reported previ-
ously [11, 12, 28].
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POX is a type of antioxidant enzymes that is triggered in plants to balance the 
excess of reactive oxygen species (ROS) [4]. This antioxidant can react with ROS 
directly or indirectly via enzyme catalysis to counteract the production of ROS, under 
stress conditions, as Mittler [24] believed that ROS, under control conditions, act as 
signals for the activation of the stress response and defence pathways. In the present 
investigation, under excess of Se, enzymatic POX antioxidant system increased to 
scavenge the Se induced excess ROS. It has been shown that excess Se gives rise to 
the robust accumulation of ROS in plants, although the actual role of Se in plants has 
not yet been resolved [25]. Feng et al. [8] proposed that the increased production of 
ROS at high Se levels may be partially related to an imbalance in the levels of glu-
tathione (GSH), thiols (SH), ferredoxins (Fdred) and/or NADPH, which can play 
vital roles in the assimilation of Se. If these substances are not sufficient to simultane-
ously meet the needs of Se-assimilation and ROS quenching, the addition of Se may 
lead to a ROS burst and the inhibition of plant growth. However, in the present study, 
treatment of plants with 90 mg kg–1 SeIV enhanced the participation of antioxidant 
POX at protective mechanisms.

Different parts of green pea plants exposed to (treated with) SeVI presented higher 
concentrations of total Se, as a likely consequence of selenite using the sulphate path 
through plants [51], other than its generally higher uptake/retention and translocation 
efficiencies [13, 15]. Also, Se levels in the root tissues were much higher than in the 
aboveground parts in case of all SeIV concentrations applied and in case of 1 mg kg–1 
SeVI as well.

Based on this study we can conclude that 3 mg kg–1 of SeIV increases the accumu-
lation of Mg in green pea plants and especially in its shoots but high concentration of 
SeIV (≥30 mg kg–1) inhibits this process. A number of literature data [6, 21, 43, 47, 
48] confirm these findings. Also, 1 mg kg–1 of SeVI caused the highest accumulation 
of P in all the aboveground parts of green pea plants and particulares in the seeds. On 
the other hand, excessive uptake of Se (90 mg kg–1 SeIV) by the plant made a reverse 
condition. Earlier results of Sing [34] and Liu and Gu [19] are in agrement with our 
findings, too.
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