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RThe hypothalamus–pituitary–adrenal-axis is strongly controlled by the endocannabinoid system. The specific
impact of enhanced 2-arachidonoylglycerol signaling on corticosterone plasma levels, however, was not
investigated so far. Here we studied the effects of the recently developed monoacylglycerol lipase inhibitor
JZL184 on basal and stress-induced corticosterone levels in male CD1 mice, and found that this compound
dramatically increased basal levels without affecting stress responses. Since acute changes in corticosterone
levels can affect behavior, JZL184 was administered concurrently with the corticosterone synthesis inhibitor
metyrapone, to investigate whether the previously shown behavioral effects of JZL184 are dependent on
corticosterone. We found that in the elevated plus-maze, the effects of JZL184 on “classical” anxiety-related
measureswere abolishedby corticosterone synthesis blockade. By contrast, effects on the “ethological”measures
of anxiety (i.e. risk assessment) were not affected by metyrapone. In the open-field, the locomotion-enhancing
effects of the compound were not changed either. These findings show that monoacylglycerol lipase inhibition
dramatically increases basal levels of corticosterone. This endocrine effect partly affects the anxiolytic, but not
the locomotion-enhancing effects of monoacylglycerol lipase blockade.

© 2013 Published by Elsevier Inc.
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Introduction

There is an increasing amount of information suggesting that the
activity of the hypothalamus–pituitary–adrenal axis (HPA-axis)—a
crucial element in maintaining homeostasis under stress—is partly
regulated by the endocannabinoid system. In laboratorymodels, cannabi-
noids seem to alter HPA-axis activity in a bidirectional manner. It was
consistently shown, that basal levels of corticosterone are increased
by treatments with phytocannabinoids (e.g. Δ9-tetrahydrocannabinol,
cannabidiol or cannabinol), endocannabinoids (e.g. anandamide (AEA))
and synthetic cannabinoids (e.g. WIN55,212-2, HU210 or CP55,940)
(Barna et al., 2009; Johnson et al., 1978; Martin-Calderon et al., 1998;
Romero et al., 2002; Weidenfeld et al., 1994; Zuardi et al., 1984). Dispa-
rate data suggest that enhancement of endocannabinoid activity via the
blockade of AEA degrading enzyme fatty acid amide hydrolase (FAAH)
by the selective inhibitor URB597 also result in elevated basal corticoste-
rone levels (Saber-Tehrani et al., 2010), however, thesefindingswere not
replicated (Hill et al., 2010; Kerr et al., 2012) and the effect of increased
AEA levels on corticosterone was shown not to be mediated by signaling
via the CB1 cannabinoid receptor (CB1R) (Wenger et al., 2003). In contrast
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with the effects of cannabinoids on basal HPA-function, increased
endocannabinoid activity via treatment with CB1R agonists or inhibition
of FAAH activity seem to dampen the activation of the HPA-axis in
acute stress (Ganon-Elazar and Akirav, 2009; Hill et al., 2009, 2010;
Patel et al., 2004). While there is a large amount of information available
on the effects of CB1R agonists and FAAH blockade on corticosterone
levels under basal or stressful conditions, similar effects resulting from
the blockade of monoacylglycerol lipase (MAGL), the enzyme hydrolyz-
ing 2-arachidonoylglycerol (2-AG), the other main endocannabinoid,
are still to be studied. Recently, behavioral effects of MAGL inhibition
were reported to depend on the stressfulness of the testing environment
(Aliczki et al., 2012; Sciolino et al., 2011), which can suggest that MAGL
blockade can alter HPA-axis function.

Endocannabinoids affect both brain areas involved in emotional be-
havior (e.g. the prefrontal cortex, amygdala and hippocampus; (Rubino
et al., 2008a; Zarrindast et al., 2008) and the HPA-axis (at all levels, the
hypothalamus, hypophysis, and adrenal cortex; (Cota et al., 2007; Di
et al., 2003, 2005; Pagotto et al., 2001). It is likely that the ultimate
effects of endocannabinoid action result from an interaction between
the neural and endocrine effects, as glucocorticoids are also powerful
modulators of behavior (Mikics et al., 2004).

In the present study, we assessed the effects of JZL184-induced
MAGL blockade on basal and stress-induced activity of the HPA-axis
by the measurements of corticosterone levels. The findings showed
that JZL184 treatment increases basal levels of plasma corticosterone,
on-induced changes in plasma corticosterone levels, anxiety and loco-
0.1016/j.yhbeh.2013.03.017
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therefore we studied whether the behavioral effects of MAGL inhi-
bition that we reported earlier (Aliczki et al., 2012) depended on
corticosterone-synthesis. To study this issue, we inhibited corticosterone-
synthesis with the steroid 11β-hydroxylase inhibitor metyrapone.

Material and methods

Subjects

Subjects were twomonth-old male CD1 (Charles River laboratories,
Budapest, Hungary) mice weighting 30–35 g. They were kept under a
light/dark cycle of 12 h with the lights on at 0700 h. Food and water
were available ad libitum, temperature and humidity were kept at
23 ± 2 °C and 60 ± 10%, respectively. In contrast to rats that are highly
social, individual housing is not stressful in the mouse, which is a
solitary species (Arndt et al., 2009; Benton and Brain, 1981; Capanna
et al., 1984). Moreover, mice establish strong dominance hierarchies
(Capanna et al., 1984; Poshivalov, 1980), which may have constituted
a confounding factor in this study. Therefore, animalswere housed indi-
vidually for 2 weeks before experimentation.Micewere experimentally
naïve, had no drug history, and were used in one experiment only.

Experiments were carried out in accordance with the European
Communities Council Directive of 24 November 1986 (86/609/EEC)
and were reviewed and approved by the Animal Welfare Committee
of the Institute of Experimental Medicine.

Drugs

The MAGL inhibitor JZL184 (Cayman Chemical, Ann Arbor, MI)
was dissolved in 0.2 ml dimethylsulfoxide (DMSO) and was diluted
to the final volume with saline containing 0.4% methylcellulose. It
was injected intraperitoneally in doses 0 (Vehicle), 8 and 16 mg/kg
body weight, respectively, in a volume of 10 ml/kg body weight.
JZL184 doses were selected based on earlier studies (Aliczki et al.,
2012; Long et al., 2009a; Sciolino et al., 2011). The corticosterone syn-
thesis blocker metyrapone (2-Methyl-1,2-di-3-pyridyl-1-propanone)
(Sigma Aldrich, Saint Louis, MO) was dissolved in saline containing
5% Tween 80 and administered in doses 0 (Vehicle) and 30 mg/kg
intraperitoneally in a volume of 5 ml/kg body weight. The selection
of the metyrapone dose was based on preliminary experiments (see
Supplementary data).

Behavioral tests

All behavioral tests were conducted in the early light phase of the
day in a separate quiet testing room under approximately 400 lx light
intensity, which was similar to that employed in the maintenance
rooms. Behavioral testswere video recordedwith a SonyDCR-SR75 dig-
ital camcorder and later analyzed with the H77 computer based event
recorder software (Jozsef Haller, Institute of Experimental Medicine,
Budapest, Hungary).

In the forced swimming procedure, mice were placed in a glass
cylinder (40 cm high, 14 cm diameter) filled with 35 °C temperature
water for 6 min. Water was changed and cylinders were cleaned and
between subjects. Immediately after swimming, blood was sampled
to assess the effects of JZL184 on stress responses. To avoid confounds
from locomotor behavior, behavior was also analyzed. We scored
time spent with floating (subject do not show movement except the
ones needed to keep the head over the surface of water), struggling
(vigorous limb movement, forelimbs break the surface of water,
subjects attempts to climb up on the inner wall of the cylinder) and
swimming (coordinated movement, involving movements with all
four limbs, limbs do not break the surface of water). We mention that
we did not pre-expose animals to forced swimming, i.e. no “behavioral
despair”was studied and, in addition a single treatment was employed.
Because of these large differences from the “behavioral despair”
Please cite this article as: Aliczki, M., et al., Monoacylglycerol lipase inhibiti
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paradigm developed by Porsolt et al. (1977), the behavior of subjects
was not necessarily indicative of depression-like states. The test was
used exclusively to stress the subjects.

The open-field was a white non-transparent plastic box of 45 ×
45 × 25 cm (height). Subjects were placed in one of the corners of
the open-field and were allowed to explore it for 5 min. The apparatus
was covered with a transparent Plexiglas lid during testing and was
cleaned with tap water and paper towel between subjects. Locomotor
activity was scored by counting the crossings of the lines that divided
the open-field into 16 equal squares. Exploration in the central area
(i.e. the 4 squares in the center of the apparatus) was also scored as
a measure of anxiety-like behavior in the open-field. The grid was
drawn on the video screen; thus, it was invisible to subjects.

The elevated plus-maze was made of black-painted aluminum.
It consisted of two open arms (30 × 7 cm) and two closed arms
(30 × 7 cm with 30 cm high walls) that were connected by a central
platform (7 × 7 cm). The plus-maze was elevated to 70 cm from the
floor. Subjects were placed on the central platform facing one of the
open arms and were allowed to explore the apparatus for 5 min.
The apparatus was cleaned with tap water and paper towel between
tests. The number of entries into the closed arms was considered as a
measure of locomotor activity, whereas time spent in open arms was
used as an indicator of anxiety (Pellow et al., 1985). Subjects were
considered to enter a compartment when all four legs crossed the
lines separating the compartments. Risk-assessment activities were
also analyzed as “ethological” measures of anxiety (Cole and Rodgers,
1993). Particularly, we scored the frequency and duration of head-
dipping (HD; exploratory movement of head/shoulders over the side
of the maze) and stretched attend posture (SAP; exploratory posture
in which the body is stretched forward then retracted to the original
position without any forward locomotion). HDs and SAPs were dif-
ferentiated based according to their occurrence in different parts of
the maze. As risk assessment from protected areas (i.e. from the closed
arms or central platform)were shown to correlate negativelywith open
arm exploration (Cole and Rodgers, 1993; Cruz et al., 1994; Fernandez
Espejo, 1997), protected SAPs and HDswere studied here as ethological
indicators of anxiety-like behavior, similar to many earlier publications
(Cruz et al., 1994; Navarro et al., 2006; Rodgers et al., 1992; Wall et al.,
2003).

Blood sampling and corticosterone measurement

For pre-stress corticosterone measurements blood was sampled
into EDTA-containing glass capillaries by tail incision 40, 120, and
240 min after pharmacological treatment. The effects of injections
per se were investigated in a separate study, where we compared
plasma corticosterone in undisturbed and vehicle-injected mice. We
found that vehicle injections 40 min before blood sampling caused
no significant changes in plasma corticosterone (see Supplementary
data). In addition, plasma corticosterone levels were normal and
similar in vehicle-treated groups at all time-points. Therefore pre-
stress values were considered to reflect basal corticosterone levels.
Stress levels were measured from trunk blood sampled on EDTA-
containing plastic tubes after the forced swimming test. In the study
that evaluated the efficacy of metyrapone on abolishing the effects
of JZL184 on corticosterone production, blood was sampled by de-
capitation. After sampling, blood was centrifuged at 4 °C, the blood
plasmawas separated, and stored at−20 °C till analysis. Plasma cor-
ticosterone was measured by radioimmunoassay as described earlier
(Toth et al., 2011). The corticosterone antiserum was raised in rab-
bits against corticosterone-carboximethyloxime BSA. 125I-labelled
corticosterone-carboximethyloxime-tyrosine-methyl esther was used
as tracer. The interference with plasma transcortin was eliminated by
inactivating transcortin at low pH. The sensitivity of the assay was
1 pmol/ml. Intra- and inter-coefficient of variation was 10 and 25%,
respectively.
on-induced changes in plasma corticosterone levels, anxiety and loco-
0.1016/j.yhbeh.2013.03.017

http://dx.doi.org/10.1016/j.yhbeh.2013.03.017
Original text:
Inserted Text
" degrees"

Original text:
Inserted Text
"Porsolt et al. ("

Original text:
Inserted Text
","

Original text:
Inserted Text
")"

Original text:
Inserted Text
" "

Original text:
Inserted Text
"x "

Original text:
Inserted Text
" "

Original text:
Inserted Text
"x "

Original text:
Inserted Text
" "

Original text:
Inserted Text
"x "

Original text:
Inserted Text
" "

Original text:
Inserted Text
"x "

Original text:
Inserted Text
"125"

Original text:
Inserted Text
"125"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"45 "

Original text:
Inserted Text
"x "

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"1 "

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"1 "

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki

aliczki
Sticky Note
Accepted set by aliczki



T

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Table 1t1:1

t1:2 The experimental design of Experiments 1 and 2.

t1:3 Treatment After lag time (40, 120, 240 min) Immediately after blood sampling Immediately after forced swimming

t1:4 Experiment 1 0 (vehicle) Blood sampling from tail (baseline) Forced swimming (6 min) Blood sampling from trunk (stress-induced)
t1:5 8 mg/kg
t1:6 16 mg/kg
t1:7

t1:8 Treatment 40 min after treatment Immediately after open-field test Immediately after elevated plus-maze test

t1:9 Experiment 2 0 (vehicle) Open field test (5 min) Elevated plus-maze test (5 min) Blood sampling from trunk (stress-induced)
t1:10 8 mg/kg
t1:11 16 mg/kg
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Experimental design

Two experiments were conducted to assess the effects of JZL184
on baseline and stress-induced plasma corticosterone levels, locomo-
tor activity and anxiety -like behavior in the early light phase of the
day. The experimental design was shown in Table 1.

In Experiment 1 we studied the effects of JZL184 on basal and
stress-induced plasma corticosterone levels. Subjects received JZL184
(0 (Vehicle), 8 and 16 mg/kg, respectively) in a random order and
blood-samples were collected from the tail veins 40, 120 and 240 min
later (Experiments 1a, b and c, respectively). After blood-sampling, mice
were exposed to forced swimming for 6 min then decapitated and
trunk blood was collected for evaluating stress-induced corticosterone
levels. Experiments were performed in several series balanced over
experimental groups. Blood samples for baseline and stress-induced
corticosterone measurements were collected from the same subject at
particular time points, but different animals were used for different
time-points; sample sizes were 6–9 per group.

In Experiment 2, we studied whether metyrapone-induced in-
hibition of corticosterone-synthesis affected the behavioral effects of
MAGL blockade that we reported earlier. In a preliminary experiment,
we selected 30 mg/kg as the dose of metyrapone to be employed in
Experiment 2. This dose decreased basal corticosterone levels but did
not affect locomotor activity (see Supplementary data). In Experiment
2a, we investigated if corticosterone-synthesis blockade can dampen
the corticosterone-increasing effects of MAGL inhibition seen in
Experiment 1. Treatment groups were 0 (Vehicle), 8 and 16 mg/kg
JZL184, respectively, and half of the animals received 30 mg/kg
metyrapone in each group, while other half received the vehicle
of metyrapone. 40 min after treatment, subjects were decapitated
and trunk blood was collected for corticosterone measurements.
The selection of the lag time between treatment and blood sampling
was based on the results of Experiment 1a, where JZL184 significantly
increased basal corticosterone levels at 40 min. In Experiment 2b we
studied if corticosterone-synthesis blockade is able to dampen the
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Fig. 1. Effects of JZL184 treatment on basal and stress-induced plasma corticosterone levels a
control (p b 0.05).
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MAGL blockade-induced anxiolysis and increase in locomotor activity
we reported earlier (Aliczki et al., 2012). Treatment groups were sim-
ilar as described in Experiment 2a, 40 min after treatment subjects
were studied for 5 min in the open-field and for 5 min in the elevated
plus-maze. After behavioral testing, mice were decapitated and trunk
blood was collected for corticosterone measurements. Group sample
sizes were 8–10 in each group.

Statistical analyses

Datawere presented asmean ± standard error of themean. Plasma
corticosterone levels in Experiments 1a–c were analyzed by repeated
measures ANOVA, while corticosterone levels in Experiments 2a–b
and behavioral data in Experiment 2b were analyzed by two-factor
ANOVA (Factor 1: JZL184-treatment; Factor 2: metyrapone-treatment).
ANOVA assumptions were evaluated by the Levene's test; where as-
sumptions were not fulfilled, data were square root transformed.
The Duncan test was performed for post-hoc analysis when main
effect was significant. The Bonferoni correction was applied for mul-
tiple comparisons. P values lower than 0.05 were considered statisti-
cally significant.

Results

In Experiment 1a, there was a significant interactions between
factors (FTreatment ∗ Stress (2,45) = 4.71; p = 0.013). The highest
dose of JZL184 increased basal corticosterone levels 40 min after
treatment, but—albeit some increase was noticed—did not alter
stress-induced increases in corticosterone (Fig. 1). basal corticoste-
rone levels in Experiments 1b and 1c were not affected by JZL184
(120 min: FTreatment (2,16) = 0.76; p = 0.48; FTreatment*Stress (2,16) =
1.30; p = 0.29; 240 min: FTreatment (2,20) = 0.43; p = 0.65;
FTreatment ∗ Stress (2,20) = 0.58; p = 0.56). Stress exposure increased
plasma corticosterone throughout (40 min: FStress (1,45) = 227.21;
pb0.01; 120min: FTime (1,16)=118.35; pb0.01; 240min: FTime (1,20)=
120 240

184 16 mg/kg JZL184

fter treatment

e Stressed Baseline Stressed

t 40, 120 and 240 min after treatment, respectively. *, significant difference from vehicle

on-induced changes in plasma corticosterone levels, anxiety and loco-
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Table 2t2:1

t2:2 Behavioral variables by experimental groups in Experiment 1. Behavior was not affected by JZL184 treatment. The forced swimming procedure was used exclusively to stress the
t2:3 subjects.

t2:4 Lag time Variable Vehicle 8 mg/kg JZL184 16 mg/kg JZL184 ANOVA

t2:5 40 min Floating time % 60.21 ± 6.52 68.54 ± 4.34 54.11 ± 10.14 F(2,21) = 0.85; p = 0.44
t2:6 Struggling time % 12.56 ± 2.86 10.2 ± 2.41 12.58 ± 4.11 F(2,21) = 0.16; p = 0.84
t2:7 Swimming time % 22.57 ± 4.66 17.22 ± 2.21 28.36 ± 7.01 F(2,21) = 1.07; p = 0.35
t2:8 120 min Floating time % 72.36 ± 5.12 64.91 ± 5.07 57.55 ± 10.55 F(2,16) = 0.90; p = 0.42
t2:9 Struggling time % 7.48 ± 1.7 9.08 ± 1.61 10.25 ± 3.58 F(2,16) = 0.28; p = 0.75
t2:10 Swimming time % 16.8 ± 3.62 21.51 ± 3.96 27.72 ± 6.48 F(2,16) = 1.19; p = 0.32
t2:11 240 min Floating time % 83.88 ± 1.72 73.91 ± 3.84 80.4 ± 3.41 F(2,18) = 1.04; p = 0.37
t2:12 Struggling time % 4.82 ± 0.68 10.13 ± 2.57 5.77 ± 1.59 F(2,18) = 0.11; p = 0.89
t2:13 Swimming time % 8.57 ± 1.02 12.38 ± 1.87 10.87 ± 1.67 F(2,18) = 1.28; p = 0.30
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117.53; p b 0.01) (Fig. 1). Behavior in the forced swimming test was not
affected by JZL184 treatment (Table 2).

In Experiment 2a, JZL184 increased baseline corticosterone levels
40 min after injection (FJZL184 (2,52) = 13.38; p b 0.01), while metyr-
apone remarkably decreased corticosterone levels (FMetyrapone (1,52) =
32.67; p b 0.01). A statistically significant interaction between the
JZL184 and metyrapone treatment was also found (FInteraction (2,52) =
4.44; p = 0.01), as JZL184 was unable to increase corticosterone levels
in metyrapone-treated groups (Fig. 2a). In Experiment 2b, JZL184 signifi-
cantly increased locomotion in the open-field (FJZL184 (2,48) = 4.09;
p = 0.02); the effect was independent of corticosterone-synthesis
(FMetyrapone (1,48) = 0.14; p = 0.70; FInteraction (2,48) = 0.21; p =
0.80) (Fig. 2b). Metyrapone treatment did not alter, while JZL184
treatment caused a marginal increase in central area exploration
(FMetyrapone (2,48) = 2.17; p = 0.15; FJZL184 (2,48) = 2.75; p = 0.07).
A marginally significant interaction between the JZL184 and metyr-
apone treatment was also found (FInteraction (2,48) = 2.44; p = 0.09).
This interaction prompted pairwise comparisons, which revealed that
JZL184 increased central area exploration in vehicle-treated groups
but metyrapone abolished these changes (Fig. 2c). In the elevated
plus-maze, neither JZL184 nor metyrapone was able to alter closed
arm entries (FJZL184 (2,48) = 1.04; p = 0.35; FMetyrapone (1,48) =
0.08; p = 0.75; FInteraction (2,48) = 0.09; p = 0.91) (Fig. 2d). The
highest dose of JZL184 increased both the ratio of open arm entries
(FJZL184 (2,48) = 3.29; p = 0.04) (Fig. 2e) and time spent in open
arms (FJZL184 (2,48) = 3.81; p = 0.02) (Fig. 2f). These effects of
JZL184 seem to be corticosterone-synthesis dependent as they
were absent in groups treated with metyrapone (open arm entries
ratio: FInteraction (2,48) = 3.27; p = 0.04; time spent in open arms:
FInteraction (2,48) = 4.04; p = 0.02). (Fig. 2e. and f). JZL184 treat-
ment also decreased risk assessment in protected areas of the elevated
plus-maze (duration SAP: FJZL184 (2,48) = 3.55; p = 0.03; duration
HD: FJZL184 (2,48) = 2.62; p = 0.08), however, these changes were
independent of corticosterone synthesis (SAP: FInteraction (2,30) =
1.30; p = 0.28; HD: FInteraction (2,30) = 0.14; p = 0.86) (Table 3).
Stress-induced levels of corticosterone were unaltered by JZL184 and
were only decreased by metyrapone (FJZL184 (2,50) = 0.73; p = 0.48;
FMetyrapone (1,50) = 75.73; p b 0.01; FInteraction (2,50) = 0.19; p =
0.82) (Table 3).

Discussion

MAGL blockade dose-dependently and dramatically increased
basal corticosterone levels 40 min after treatment. Values returned
to control levels within 2 h. The stress-induced corticosterone levels
were unaltered by inhibition of MAGL. MAGL blockade also increased
locomotor activity in a corticosterone-synthesis independent manner
and exerted anxiolytic-related effects which were at least partly de-
pendent on corticosterone. To our best knowledge, our study is the
first to show that the inhibition of MAGL increases corticosterone
levels under basal conditions. It was reported earlier that CB1R agonists
Please cite this article as: Aliczki, M., et al., Monoacylglycerol lipase inhibiti
motor activity in male CD1 mice, Horm. Behav. (2013), http://dx.doi.org/1
E
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R
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F(e.g. Δ9-tetrahydrocannabinol) and to a lesser extent the inhibition of

AEA degradation by the FAAH inhibitor URB597 increased basal cortico-
sterone levels (Johnson et al., 1978; Weidenfeld et al., 1994; Wenger
et al., 1997, 2003; Zuardi et al., 1984). In addition to basal levels, CB1R
agonists increase stress responses as well (Sano et al., 2009), while
FAAH inhibition decreases the same response (Hill et al., 2009, 2010).
Intriguingly, the effects of MAGL inhibition mimicked the effects of
CB1R agonists on basal levels, but left stress responses unchanged
which is different from the effects of both CB1R agonists and FAAH
inhibition.

The anxiolytic effects of MAGL blockade were in line with those
reported earlier by our laboratory (Aliczki et al., 2012) and other
studies (Busquets-Garcia et al., 2011; Sciolino et al., 2011). A slight
difference occurred as it regards the timing of this effect, as in our ear-
lier study, behavioral effects were evident 80 min after JZL184 admin-
istration only, while a similar effect occurred here after 40 min. This
difference in timing is difficult to reconcile at present. We note how-
ever, that the behavioral effects of MAGL blockade showed similar
slight differences in studies performed by the same group within a
short time interval (Long et al., 2009a, 2009b, 2009c).

The present findings suggest that some, but not all the anxiety-
related effects of MAGL blockade were secondary to the treatment-
induced increase in basal corticosterone levels. The concurrent
application of JZL184 and the corticosterone synthesis inhibitor
metyrapone abolished the effects of MAGL blockade on central area
exploration in the open-field and open arm exploration in the elevat-
ed plus-maze while effects on risk assessment were unchanged. This
finding is especially intriguing, as it was reported earlier that risk
assessment, but not open arm exploration is dependent of acute
changes in corticosterone levels (Mikics et al., 2005). In contrast to
the anxiety-like effects, the locomotion-enhancing effects of MAGL
blockade did not depend on corticosterone, a finding which is in
line with earlier observations on the lack of direct acute effects of
corticosterone on open-field locomotion (Mikics et al., 2005). The
mediation of anxiolytic effects by increased basal corticosterone
might be surprising at the first sight, as stress is believed to enhance
anxiety. This phenomenon, however, is valid for long-term increases
in corticosterone. Acute stress responses promote the coping with
challenging situations on the short run, which results in anxiolytic
effects when the increase in corticosterone is acute (for a review
see (Haller et al., 1998)).

MAGL blockade increased HPA-axis activity under basal but not
under stressful conditions in our study, an endocrine effect that partly
interfered with the behavioral consequences of JZL184 treatment. The
mechanisms of these complex effects may be multiple, as cannabi-
noids affect the function of several brain areas involved in the modu-
lation of emotions (McLaughlin et al., 2007; Rubino et al., 2008a,
2008b; Zarrindast et al., 2008) and also the activity of the HPA-axis
(Cota et al., 2007; Di et al., 2003, 2005). The details of the mechanisms
activated by MAGL blockade remains to be established in subsequent
studies, especially the CB1R-dependence of these mechanisms. It
on-induced changes in plasma corticosterone levels, anxiety and loco-
0.1016/j.yhbeh.2013.03.017
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Fig. 2. Effects of combined JZL184 andmetyrapone treatment on (a) basal corticosterone levels, (b) locomotor activity in the open-field test, (c) locomotor activity and (d and c) anxiety-related
behavior in the elevated plus-maze test. In each panel, the left three columns represent experimental groups treated with the vehicle of metyrapone, while the three columns on the right
represent groups treated with metyrapone. *, significant difference from vehicle control; #, significant difference from 16 mg/kg JZL184 group treated with the vehicle of metyrapone
(p b 0.05 in both cases).
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occurs, however, that those effects of JZL184 that were resistant to
corticosterone synthesis inhibition were mediated by direct actions
on neural processes.

Conclusion

The inhibition of MAGL activity—the indirect upregulation of 2-AG
signaling—causes a rapid increase in basal corticosterone levels which
disappears in less than 2 h. The comparison of this finding with earlier
reports suggests that the overall stimulation of CB1Rs, as well as
the selective increase of AEA and 2-AG signaling produce partially
Please cite this article as: Aliczki, M., et al., Monoacylglycerol lipase inhibiti
motor activity in male CD1 mice, Horm. Behav. (2013), http://dx.doi.org/1
overlapping but still different effects on corticosterone secretion. CB1R
agonists dramatically increase basal and stress-induced corticosterone
secretion; enhanced anandamide signaling slightly increases basal
levels but diminish stress responses, while increased 2-AG secretion
dramatically increases basal levels but does not affect stress responses.
Behavioral findings suggest that some of the putative anxiolytic effects
of MAGL inhibition are in fact secondary to increased corticosterone
secretion. At the same time, the locomotor enhancing effect of MAGL
blockade appears to be an intrinsic effect of enhanced 2-AG signaling.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.yhbeh.2013.03.017.
on-induced changes in plasma corticosterone levels, anxiety and loco-
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Table 3t3:1

t3:2 Variables by experimental groups in Experiment 2b. Bold text indicates statistically significant effect of JZL184 treatment or interaction of the two treatments.

t3:3 Variable Vehicle-Vehicle Vehicle-JZL184
8 mg/kg

Vehicle-JZL184
16 mg/kg

Metyrapone-
Vehicle

Metyrapone-JZL184
8 mg/kg

Metyrapone-JZL184
16 mg/kg

P-value of ANOVA

t3:4 Basal corticosterone levels 475.37 ± 19.29 617.44 ± 23.27 1445.05 ± 37.39 267.47 ± 14.81 153.03 ± 11.66 465.2 ± 21.25 FJZL184(2,54) = 17.43; p b 0.01
FMetyrapone(1,54) = 31.08; p b 0.01
FInteraction(2,52) = 4.44; p = 0.01

t3:7 Stress-induced
corticosterone levels

1374.95 ± 175.4 1206.76 ± 87.62 1348.87 ± 164.14 464.91 ± 52.79 439.76 ± 48.15 542.31 ± 64.02 FJZL184(2,50) = 0.73; p = 0.48
FMetyrapone(1,50) = 75.73; p b 0.01
FInteraction(2,50) = 0.19; p = 0.82

t3:10 Linecrossings 154 ± 22.03 223.8 ± 30.17 209.75 ± 13.1 167.77 ± 16.01 242.6 ± 30.89 231.55 ± 36.66 FJZL184(2,48) = 4.09; p = 0.02
FMetyrapone(1,48) = 0.14; p = 0.70
FInteraction(2,48) = 0.21; p = 0.80

t3:13 Closed arm entries 13.75 ± 7.91 11.8 ± 1.38 13 ± 2.54 14.11 ± 1.61 10.5 ± 1.84 12.55 ± 2.41 FJZL184(2,48) = 1.04; p = 0.35
FMetyrapone(1,48) = 0.08; p = 0.75
FInteraction(2,48) = 0.09; p = 0.91

t3:16 % time Closed arms 73.53 ± 5.99 72.29 ± 6.29 56.43 ± 7.33 52.81 ± 8.83 54.64 ± 7.82 69.9 ± 5.61 FJZL184(2,50) = 3.08; p = 0.05
FMetyrapone(1,50) = 0.15; p = 0.69
FInteraction(2,50) = 1.26; p = 0.29

t3:19 Central platform entries 16.25 ± 2 16.88 ± 2.2 15.4 ± 1.73 14.7 ± 2.49 21.1 ± 2.04 15.88 ± 3.1 FJZL184(2,48) = 1.15; p = 0.32
FMetyrapone(1,48) = 1.35; p = 0.25
FInteraction(2,48) = 0.79; p = 0.45

t3:22 % time Central platform 16.68 ± 4.49 17.16 ± 7.06 33.01 ± 6.74 33.15 ± 9.17 21.17 ± 4.26 18.05 ± 4.56 FJZL184(2,48) = 3.21; p = 0.04
FMetyrapone(1,48) = 0.14; p = 0.71
FInteraction(2,48) = 0.03; p = 0.96

t3:25 Open arm entries 2.25 ± 0.79 3.2 ± 0.91 7.5 ± 1.7 2.66 ± 0.94 4 ± 1.22 3 ± 0.95 FJZL184(2,48) = 2.26; p = 0.11
FMetyrapone(1,48) = 0.81; p = 0.37
FInteraction(2,48) = 1.68; p = 0.19

t3:28 % time Open arms 9.18 ± 2.51 10.01 ± 3.2 26.5 ± 4.27 9.33 ± 3.78 13.48 ± 3.44 11.46 ± 3.41 FJZL184(2,48) = 3.81; p = 0.02
FMetyrapone(1,48) = 0.87; p = 0.35
FInteraction(2,48) = 4.04; p = 0.02

t3:31 % Open/total entries 0.14 ± 0.04 0.2 ± 0.04 0.39 ± 0.08 0.13 ± 0.04 0.27 ± 0.07 0.18 ± 0.04 FJZL184(2,48) = 3.29; p = 0.04
FMetyrapone(1,50) = 0.64; p = 0.42
FInteraction(2,48) = 3.27; p = 0.04

t3:34 Protected SAP 13.25 ± 3.2 15.77 ± 2.61 16.1 ± 3.39 11.3 ± 2.06 9.1 ± 1.2 10.78 ± 2.12 FJZL184(2,48) = 1.73; p = 0.18
FMetyrapone(1,48) b 0.01; p = 0.99
FInteraction(2,48) = 1.23; p = 0.29

t3:37 % time Protected SAP 5.86 ± 1.29 5.58 ± 1.47 2.83 ± 0.69 8.05 ± 1.54 4.03 ± 1.14 4.28 ± 1.01 FJZL184(2,48) = 3.55; p = 0.03
FMetyrapone(1,48) = 0.31; p = 0.57
FInteraction(2,30) = 1.30; p = 0.28

t3:40 Protected HD 15.37 ± 2.45 14.55 ± 3.86 11.2 ± 2.64 10.4 ± 1.77 8.9 ± 1.66 12.33 ± 2.55 FJZL184(2,48) = 1.78; p = 0.18
FMetyrapone(1,48) = 0.05; p = 0.82
FInteraction(2,48) = 0.54; p = 0.58

t3:43 % time Protected HD 4.66 ± 0.7 3.07 ± 0.66 2.67 ± 0.54 4.25 ± 0.87 3.33 ± 0.78 2.98 ± 0.71 FJZL184(2,48) = 2.62; p = 0.08
FMetyrapone(1,48) b 0.01; p = 0.97
FInteraction(2,30) = 0.14; p = 0.86

t3:46 Unprotected SAP 0.5 ± 0.38 0.33 ± 0.33 0.2 ± 0.13 1.6 ± 1.08 0.7 ± 0.3 0.89 ± 0.56 FJZL184(2,48) = 0.64; p = 0.53
FMetyrapone(1,48) = 0.25; p = 0.61
FInteraction(2,48) = 1.08; p = 0.34

t3:49 % time Unprotected SAP 0.12 ± 0.08 0.11 ± 0.11 0 ± 0 0.48 ± 0.29 0.16 ± 0.09 0.13 ± 0.07 FJZL184(2,48) = 0.19; p = 0.82
FMetyrapone(1,48) = 0.93; p = 0.33
FInteraction(2,48) = 2.16; p = 0.12

t3:52 Unprotected HD 4.37 ± 1.59 4 ± 1.55 6.8 ± 2.22 7.7 ± 2.52 9.9 ± 2.03 5.33 ± 1.85 FJZL184(2,48) = 1.63; p = 0.2
FMetyrapone(1,48) = 0.69; p = 0.41
FInteraction(2,48) = 0.74; p = 0.48

t3:55 % time Unprotected HD 0.95 ± 0.34 0.85 ± 0.42 1.37 ± 0.42 1.22 ± 0.36 2.06 ± 0.51 1.32 ± 0.53 FJZL184(2,48) = 1.57; p = 0.21
FMetyrapone(1,48) = 0.98; p = 0.32
FInteraction(2,48) = 0.31; p = 0.73
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