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Abstract: This article presents a new theory of simplex numerals that incorporates a slight revision of
Chomsky’s (2008) set-theoretic conception of natural number, which assumes that the notion of natural
number is innate. The new theory makes it possible to account for the behavior of numerals in counting
as well as the developmental stages that children go through in learning numerals. The key idea is
that set-theoretic objects corresponding to natural number notions are subject to operations that apply
when a syntactic object is converted to phonological form. These operations provide a crucial link that
connects the meaning of a numeral with the count list consisting of numerals. A notable feature of
the proposed analysis is that the Cardinal Principle is derived by recruiting linguistic computation and
therefore is no longer stipulated as such.
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1. Introduction

If we take seriously Kronecker’s dictum, quoted in Bell (1937), that God
made the integers, the notion of natural number must be innate. The dom-
inant view in developmental psychology as reviewed by Rips et al. (2008),
however, is that the natural number system is constructed out of other
number-related concepts in the course of children’s cognitive development
(see Carey 2009; Feigenson et al. 2004; Le Corre et al. 2006; Piantadosi
et al. 2012; Sarnecka to appear; and Wynn 1992, among many others).
The major difficulty for the nativist position is the fact that acquisition
of number words (or numerals) by children takes a long time, completed
only at the age of three and a half to four years. Experimental results
documenting this protracted learning process have been replicated since
Wynn’s (1992) longitudinal study (Barner et al. 2009; Le Corre & Carey
2007; Le Corre et al. 2006; Sarnecka et al. 2007). Gelman and Gallistel
(1978) propose in their seminal work on children’s numerical abilities that
various innate principles underlie our ability to count. Particularly impor-
tant among these is the Cardinal Principle, which states that the last nu-
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meral used in counting represents the cardinality of the set counted. It has
been shown that children’s successful application of the Cardinal Principle
is also delayed, more or less coinciding with the learning of the meaning of
numerals in the count list (Fuson 1988; Le Corre et al. 2006; Wynn 1992).
In addition to developmental evidence, it has also been reported that there
are languages that do not express natural number concepts via numerals
(Frank et al. 2008).

At the same time, the past literature has not gone beyond the talk
of the cardinality of a set, leaving unexplored the precise relation between
experimental findings and the set-theoretic representation of natural num-
ber, which is standard in mathematics. In a recent review by Sarnecka
(to appear), for example, no mention is made of the characterization of
natural number in terms of sets. This is a serious gap if the official theory
of natural number is stated in terms of sets. In this article, I would like
to bridge this gap by approaching the problems of developmental delay
and typologically uneven distribution from a completely new perspective
of set-theoretic conception of natural number. It is well known that Zer-
melo and von Neumann associate each natural number with a particular
set, defining the successor function in a set-theoretic fashion. Benacerraf
(1965) claims that there is nothing to choose between Zermelo’s version
and von Neumann’s, but I will show that the way natural numbers are
associated with particular sets has nontrivial consequences for helping us
understand the relation between natural number concepts and their lin-
guistic expression. In fact, it will turn out that neither Zermelo’s system nor
von Neumann’s is of use for this purpose. A recent proposal by Chomsky
(2008), on the other hand, can provide refreshing insights into mundane
properties of numerals that are simply stipulated in the past, if properly
modified. Significant aspects of numeral acquisition by children will also be
shown to fall into place under a modified version of Chomsky’s proposal.

In the following section, a revision of Chomsky’s proposal will be pre-
sented and compared with Zermelo’s and von Neumann’s systems. This
section will also propose a theory of simplex numerals, arguing that the
count list, the Cardinal Principle of Gelman & Gallistel (1978), and the
numerical notation for writing can be grounded on more fundamental ele-
ments of natural language. Section 3 will then take up the question of how
children proceed in learning numerals, which poses the biggest obstacle to
the nativist view on natural number.
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2. A new proposal

In order to elucidate the relation between number and natural language,
I would like to put forward a novel theory concerning the lexical entry of
numerals, which encode individual natural number concepts. Set-theoretic
objects that correspond to these notions occupy a central place in such a
theory and are subject to operations in linguistic computation to derive
phonological representations of numerals in a non-trivial fashion.

2.1. The connection between natural language and natural number

Chomsky (2008) suggests that discrete infinity of the natural number sys-
tem can be given by the syntactic operation of Merge, which puts together
two items and forms a two-member set, as in (1).

(1) Merge (X,Y)={X,Y}

More concretely, he proposes that application of Merge to a single lexical
item will give the following series, taking the lexical item in question to
be one:

(2) Chomsky’s (2008) version of natural numbers
1 = one, 2 = {one}, 3 = {one, {one}}, 4 = {one, {one, {one}}}, etc.

The systematic one-to-one association of set-theoretic syntactic objects
with natural numbers is thus established. Note that Merge (one, one) re-
sults in {one}, given the axiom of extensionality. The successor function
takes the form of n +1 = {one, n}.

My proposal is to shift the series by one, with the following association:

(3) A revised natural number series
1 = {one}, 2 = {one, {one}}, 3 = {one, {one, {one}}}, etc.

Since the single lexical item does not have to be one, a more general format,
which will be called the UG version, is the following:

(4) UG version
1={i},2={i,{i}},3 = {3, {3, {i}}}, ete.
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Here, i is used as a variable that can be identified with any arbitrary lexical
item.!

An immediate advantage of this revision is that we can accommodate
zero, if we replace 7 with 0 and take the series to start with 0 (though 0
is not a lexical item but a number concept, or an empty set, technically
speaking).? Notice that Chomsky’s original formulation, which starts with
a lexical item (one), has no room for zero. The set-forming successor func-
tion cannot map anything to the lexical item in question. At the same
time, the notion of zero is something to be discovered, as can be seen from
the history of mathematics (Menninger 1969). Thus, incorporation of zero
is a non-trivial task, depending on the correct choice of the value of i. See
Nieder (2016) for a review of recent research on the cognition of zero.

A further advantage of the new formulation over Chomsky’s original
proposal is that the set-theoretic representation of n contains n instances
of 4 in the new formulation. This point becomes highly significant when
we consider numerals. Since numerals are lexical items, they are expected
to carry semantic and phonological information. For their meaning, set-
theoretic objects constructed by Merge should suffice.? Their phonological
information, on the other hand, needs to be treated carefully, for there are
at least two distinct ways in which numerals are used, combined in an act
of counting. Consider Gelman and Gallistel’s (1978) Cardinal Principle in
this connection.

(5) Cardinal Principle (Gelman and Gallistel 1978, 80)

The tag applied to the final item in the set represents the number of items in the set.
When we count, we say things like:

! Tt is extremely interesting to note that Gelman and Gallistel (1978, 131-133) reported
that one two-year-old child in their studies used in counting a string of a single
numeral, which happens to be three, instead of the conventional count sequence, as
in “three, three, three”.

See below on the use of the empty set in Zermelo’s and von Neumann’s systems.
The version of (4) with 7 replaced by the empty set will be compared with Zermelo’s
and von Neumann’s systems. It may be worth mentioning here that the empty set
plays a fundamental role in axiomatic set theory. See George & Velleman (2002) for
discussion.

Throughout this article, Arabic numerals are used to denote number concepts.
Keep in mind that they are not natural language expressions.

w

I assume that numerals receive an exact interpretation. For supporting arguments,
see Huang et al. (2013); Kennedy (2013); Lipton & Spelke (2006). See also E. Kiss
(2010) for evidence from Hungarian that the type of focus imposing exhaustivity
helps bring out the exact reading of numerals.
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(6) One, two, three, four, five, five apples.

The Cardinal Principle is intended to capture the fact that the last numeral
recited in counting expresses the cardinality of the set counted. I would
like to suggest that the relation between cardinality and the final tag in
counting is actually encoded as part of the phonological information in
lexical entries. Furthermore, this phonological information is linked with
the semantic representation in terms of particular sets via the process
of linearization, which applies to syntactic objects created by Merge in
the mapping from narrow syntax to PF in the case of ordinary linguistic
expressions. Let me lay out the entirety of lexical entries for numerals first,
using English for illustration,* and proceed step by step.

(7) Lexical information encoded in numerals

a. set-theoretic conception (meaning)

L= {i},2={i,{i}},3 = {i, {i, {i}}}
b. actual counting sequence (phonology 1)

1 = one, 2 = one, two, 3 = one, two, three
c. actual phonological form (phonology 2)

1 = one, 2 = two, 3 = three

(7a) and (7¢) need no further comments, except that orthographic spellings
are used in place of actual phonological representations in (7c). What is
novel is inclusion of (7b), also shown with orthographic spellings. The idea
is that a numeral is provided with two distinct, but related phonological
representations, namely, an initial segment of the count list and the last
item of that segment. (7b) is used to express the result of counting with-
out mentioning a noun that indicates what kind of objects are counted,
while (7c) is the form chosen when a numeral is combined with a noun.
It is quite unusual for a single lexical entry to have two pieces of phono-
logical information. Take an ordinary noun cat. It is associated with just
one phonological representation /keet/. The plural suffix -s, which can be
attached to it, is due to the number feature |—singular| independent of
individual nouns. The phonological complexity of numerals is a crucial
element in the account developed below.

A key step that connects the natural number concept to the phono-
logical behavior of numerals is linearization of (7a), which gives (8).

4 There may be additional syntactic information that needs to be listed, but that detail
does not play a role in the discussion below.
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(8) Linearization of set-theoretic objects

1=i,2=44,3=ii4

Linearization is the process that applies to the syntactic object {from,
him}, for example, to give from him. Since there is no precedence relation
between members of a set, that relation must be added during the map-
ping to the articulatory-perceptual interface (so-called PF). One of the
unusual properties of numerals is that linearization is applied to the se-
mantic representation. The set-theoretic objects in (7a) will then be turned
into sequences of i’s as in (8). Once (8) is given by linearization, a crucial
next step is matching of (8) and (7b). The latter is available from the count
list, which must be memorized. Cutting out a correct initial segment of the
count list for each numeral is made possible by one-to-one correspondence
with the relevant representation of (8).°> (7b) is thus added to each lexical
entry as phonological information in the course of lexical learning, a topic
that will be discussed in detail in the next section.

The representations in (8) are not actual phonological forms, given
that ¢ is nothing other than a place-holder variable. One might wonder
whether they are real. If we turn our eyes to number representations in
modalities other than language, however, there are obvious connections.
First, the sequence of i’s in (8) can be taken to be the basis for record-
ing the number of things counted. Once i is replaced with a notch on a
tally stick, we have a wide-spread primitive system for representing num-
bers (Menninger 1969; Overmann et al. 2011). It is quite likely that the
first three Roman numerals developed out of the tallying system (Chri-
somalis 2010; Dehaene 1997).5 The forms in (8) may also be mapped to
finger configurations that are used to indicate number (e.g., raising the
index and middle fingers to mean ‘two’). Gunderson et al. (2015) present
evidence that children’s grasp of finger gestures for number precedes learn-
ing of numerals. Their result can be taken to point to the role that the

® Since additive and multiplicative numerals are phrases (Hurford 1975), the connection
to the count list must take a different route. See Hiraiwa (2016); Kayne (2010, ch. 3),
and Watanabe (2010) for recent discussion of these complex numerals.

% The Roman numerals for 4 and above do not follow this pattern. The reason is proba-
bly related to a well-known property of precise representations of distinct individuals
(Carey 2009; Feigenson et al. 2004), the numerical upper limit of which is 3 or 4.
Even at a very intuitive level, images like IITII are not visually perspicuous, though
IIII is a borderline case. See Chrisomalis (2010) for a recent comprehensive discussion
of various numerical notation systems in the world. See also Menninger (1969) for
the original suggestion that symbols like V and X are due to tally stick notches used
for a grouping, based on evidence such as the Kharosthi writings of ca. 200 B.C.
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representation in (8) plays in connecting a number concept to the corre-
sponding count sequence in (7b). Computationally, (8) must be obtained
before (7b). Hence the temporal order in acquisition. Let me also mention
Hilbert’s (1983) proposal that natural numbers should be understood as
strings of vertical strokes along the lines of (8), in which case the successor
function is concatenation of a single stroke. The Merge-based approach to
natural number proposed in this article can be regarded as incorporating
Hilbert’s idea by means of linearization.

Continuing with explication of unusually complex lexical entries in
(7), notice that the Cardinal Principle says that the form in (7c) comes at
the very end of the sequence in (7b). I would like to propose that from 2
onwards, the relation between (7b) and (7c) should be captured in terms
of the deletion operation, as in (9).

(9) a. ene, two
b. ene—twe, three
c. ene—tworthree, four

The Cardinal Principle, therefore, should not be stipulated as such, because
it is reducible to application of deletion to (7b).” The nature of this deletion
operation will play a significant role in explaining a striking aspect of
children’s acquisition of numerals. I will come back to more details of it in
section 3.

At this juncture, it should also be pointed out that there are cases in
which the Cardinal Principle does not hold for paucal numerals. Hurford
(2001) notes that some languages display discrepancies between numerals
used together with a noun (called attributive numeral below) and numerals
in the count list (called counting numeral), as in (10).

(10) Distinct counting numerals (Hurford 2001)

Number Attributive numeral Counting numeral

Chinese 2 liang erh
German 1 ein(e) etc. eins
German 2 zwel ZWO

This fact indicates that it should not be assumed that blind application
of deletion to the sequence in (7b) derives the corresponding form in (7c),

" Kayne (2016) pursues a different approach to numerals, but does not address the
nature of counting or the Cardinal Principle.
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adding another reason why the Cardinal Principle should not be simply
stipulated.

To summarize, numerals are special in being endowed with unusually
rich phonological information as part of their lexical entries and in having
this phonological content linked with their number concept in non-trivial
ways. The connection between phonological content and semantics is made
possible by a particular set-theoretic conception of natural number. Sig-
nificantly, what is innate under the new proposal is not the Cardinal Prin-
ciple but the system of a series of sets generated by the Merge operation.
The Cardinal Principle itself is demoted to a relation holding between two
pieces of phonological information encoded in the lexical entry of simplex
numerals (up to the first numerical base), which is captured by means of
deletion. In fact, it should be realized that the Cardinal Principle is nothing
more than a descriptive statement about what people do when counting
things on the basis of a sortal criterion. Taking the Cardinal Principle for
granted, the past literature forgot to ask why counting actually works in
the first place. We all know that the Cardinal Principle is correct, but call-
ing an observational statement a principle does not turn it into a principle.
In this sense, the past discussion of children’s numerical cognition failed
to be grounded on proper understanding of why it is the case that the nth
item in the count list means n. Notice that this interpretation is not appli-
cable in the case of the alphabet nor in the case of the sequence of ordinal
numerals. It is significant that the set-theoretic characterization of natural
number in (4) achieves the desired goal. As will be shown immediately in
relation with alternative set-theoretic characterizations of natural number,
this is a non-trivial result.

The exceptional phonological complexity of lexical entries for numer-
als probably warrants the view suggested by Frank et al. (2008) that they
should be characterized as a cognitive technology.® To arrive at the form
in (7c), it is necessary to apply linearization to (7a), match the result with
the count list, and then apply deletion to the matched segment of the count
list, leaving only the final item. Nothing of this sort is needed for ordinary
lexical items, which enjoy complete Saussurian arbitrariness. Cultures that
do not bother to go through the three steps in question are destined to lack
a full-fledged numeral system. Considered in isolation, (7c) is a manifesta-
tion of Saussurian arbitrariness as in the case of ordinary lexical items, but
crucially, the phonological information carried by individual digit numer-

& The title of their article is misleading, mentioning number as a technology, but the
text discussion makes it clear that what is at stake is linguistic expressions, not
number concepts.
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als also includes (7b), an initial segment of the count sequence, which is
related in a non-arbitrary way to the corresponding natural number con-
cept in (7a) as well as to (7c) through the three operations mentioned. No
other lexical items map their meaning to their phonological form in terms
of a series of well-defined computational processes, in contrast to numerals.
As we will see in section 3, learning complex lexical entries for numerals
poses tremendous difficulties for children.

2.2. Previous set-theoretical characterizations of the natural number concept

Let us now compare the Merge-based conception of natural number with
the well-known set-theoretical characterizations of the natural number con-
cept put forth by mathematicians. The issue is how to relate natural lan-
guage to natural number.

To take Zermelo’s system given in (11) first, an important thing to
notice is that there is no non-arbitrary way of accommodating the count
list under this conception, even if some place holder is used instead of
the empty set. Linearization will simply give a single symbol. The count
list, therefore, must be related to individual numbers by a brute-force
stipulation under Zermelo’s system.

(11) Zermelo

a. 0=0,1={0},2={{0}},3 = {{{0}}}, etc.
b. n+1={n}

At the same time, it is possible to reformulate the successor function in
(11b) as n + 1 = Merge (n, n).”

Turning next to von Neumann’s conception summarized in (12), it
might not be inconceivable to associate an appropriate initial segment of
the count list with each number (or set), since the cardinality of each set
coincides with the number value represented, as can be seen rather clearly
from (12a’), which paraphrases (12a) for n > 1.

(12) von Neumann
a. 0=0,1={0},2={0, {0}},3 = {0, {0}, {0, {0}}}, etc.
a’ 1={0},2={0,1}, 3= {0, 1, 2}, etc.
b. n+1=nU{n}

% In syntactic computation, Merge does not put together a non-lexical object with
itself, though.
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On the other hand, there is no meaningful linguistic operation that cor-
responds to the successor function in (12b). So, the connection to natural
language is quite thin, conceivable only for the relation to the count list.
Even this correspondence is not straightforward, given that the set mem-
bers of (12a’) do not match the numerals in the count list. The ordered
sequence of natural numbers 0, ... n — 1, resulting from linearizing the set
for n in (12a’), must somehow be converted into 1,... n. In other words,
the nth item in that sequence is n— 1. There is thus no way of avoiding the
direct stipulation that relates the cardinality of a set to the corresponding
first segment of the count list (recall the status of the Cardinal Principle).

Thus, Zermelo’s and von Neumann’s set-theoretical characterizations
of natural number do not fully capture their relation to natural language.
They therefore fare poorly in this respect, compared with the new proposal
outlined above. The difference in particular sets used matters, contrary to
Benacerraf (1965), when we try to capture the relation between natural
number and natural language.

It is also worth noting that the three series start out identically. For
comparison, consider (4’), which is obtained by substituting the empty set
for i in (4) and adding zero.

(4) 0=10,1={0},2={0,{0}}, 3 = {0, {0, {0}}}, etc.

0 and 1 are characterized in the same way as in (11) and (12). Furthermore,
the difference between (4) and (12a) becomes visible only from 3 onward.
It is therefore impossible, when a sequence of sets is given, to uniquely
identify the successor function lying behind it without examining the first
four sets. We will encounter a similar situation in the account of children’s
acquisition of numerals to be presented below.

3. Aspects of numeral acquisition explained

We are now ready to consider the question of why the acquisition of nu-
merals by children is a prolonged process. Let us start by reviewing the
well-established developmental course that children take in acquiring nu-
merals and discuss how they are to be explained.

3.1. Developmental stages

The developmental stages that children go through when learning numerals
are well documented. (13) summarizes the major sequence of events.
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(13) Stages of numeral acquisition
learning the count list (by about 2% years)
assigning the meaning to one through three (or four)

c. learning the meanings of all the larger numerals and also the meaning of counting
(by about 3% years)

By the age of two and a half, children start to produce a sequence of digit
numerals, though the list may contain errors (Fuson 1988; Pollmann 2003,;
Wynn 1992). At this stage, however, they do not necessarily know the
meaning of the numerals that they can recite as a sequence. This fact is
revealed when the following set of experiments are conducted:

(14) Experimental paradigms used to measure acquisition of numerals

a. Give-a-Number: “Can you give me three frogs?”
b. Point-to-X: “Can you show me the three frogs?”
c¢. What’s-on-This-Card: “What’s on this card?”

Notice that the experiments in (14) all involve natural language expressions
combining a numeral and a noun. The instructions for (14a,b), given above,
directly employ such a combination. Children are asked to carry out the
instruction in the Give-a-Number test and to point to a matching picture in
the Point-to-X test. For (14c¢), the expected answer is something like “three
frogs”. The result, therefore, is dependent on whether children understand
and are able to utter linguistic expressions that put together a numeral
and a noun. Thus, even if the natural number is innate, children fail in
these tasks when they do not understand the meaning of the relevant
numeral in combination with a noun. Mastering the meaning of numerals
and the syntax of numeral-noun combinations is the minimal requirement
for adult-like performance.!”

10" An anonymous reviewer objects that Almoammer et al.’s (2013) Give-a-Number test
omits the noun, claiming that the presence of a noun is not central to this task. This
reviewer fails to understand that a sortal notion is indispensable for counting. Not
surprisingly, Almoammer et al.’s (2013) What’s-on-This-Card test prompts children
to supply a noun. The standard linguistic analysis (Lobeck 1995) of cases like Can
you give me two? is that the head noun is structurally present after two but remains
unpronounced due to the process of ellipsis. The point can be seen clearly from Le
Corre et al’s (2016) phase 2 version of Give-a-Number test, where an antecedent
clause with the noun in question is presented prior to the instruction, making sure
that children understand what objects to count. In both of these Give-a-Number
experiments, the noun is omitted to suppress the number information carried by
nouns. For the record, let me note that the Give-a-Number tests in Barner et al.
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It has been shown that these tests identify children’s knower level
(Le Corre et al. 2006; Wynn 1992). Children first learn the meaning of
one, becoming one-knowers. They then learn the meaning of two (becoming
two-knowers), and then that of three (becoming three-knowers). After this
stage, many children come to understand the meaning of all the other
digit numerals in their count list as well as the Cardinal Principle (CP),
becoming CP-knowers. A minority of children go through the stage of four-
knowers before becoming CP-knowers (Le Corre & Carey 2007). Those
who have not become CP-knowers are called subset-knowers. Children’s
understanding of counting or the Cardinal Principle is tested with the
Counting Puppet task, where children are asked to judge whether a verbal
instruction is correctly executed by the puppet, who puts a certain number
of toys in a can by slowly counting them one at a time. Le Corre et al.
(2006) have demonstrated that the performance on this test is more or less
correlated with that on the Give-a-Number test for a higher number above
three or four, indicating that children come to understand the meaning
of counting after learning the first three or four numerals in the count
list.!'! It takes about one year to become a CP-knower after becoming a
one-knower.

3.2. Aspects of development explained

We are now faced with the task of explaining why acquisition of numerals
by children proceeds as it does. The challenge is not limited to providing
an account of why it takes so long, completed roughly at the age of three
and a half. Two additional important characteristics as summarized in (15)
also need to be explained.

(2009); Le Corre et al. (2006); Le Corre & Carey (2007), phase 1 of Le Corre et al.
(2016), and Sarnecka et al. (2007) all use numeral-noun combinations. Wynn (1992)
does not supply the needed information, but Wynn (1990) explicitly mentions the
use of numeral-noun combinations.

An anonymous reviewer wonders why inclusion of the representation in (7b) as part
of the lexical entry does not help counting. The answer is that the Counting Puppet
task is designed to test cardinalities beyond the range of subset-knowers (6, 7, and 8
in the case of Le Corre et al. 2006). By definition, subset-knowers have not learned
the numerals that correspond to 6, 7, and 8, for example. For small numbers, on
the other hand, counting is usually not needed, because of precise representations of
distinct individuals, mentioned in footnote 6.
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(15) Significant properties of numeral acquisition
a. stepwise development

b. the role of “three” or “four”

Section 3.1 has reviewed the results of studies concentrating on English,
but the same sequential acquisition of numerals is observed for Japanese,
Russian (Sarnecka et al. 2007), Slovenian, Soudi Arabic (Almoammer et al.
2013), and Chinese (Le Corre et al. 2016) as well as for the language of an
indigenous farming-foraging group in Bolivia called Tsimane’ (Piantadosi
et al. 2014). So this is a cross-linguistically persistent pattern, unaffected
by cultural differences. The cut-off point that separates CP-knowers from
the rest also seems to be cross-linguistically stable, marked by the first
three or four numerals in the count list (Barner et al. 2009; Le Corre et al.
2016; Piantadosi et al. 2014). Let us consider what the proposal presented
in section 2.1 has to say about these aspects of numeral acquisition.

The general delay in learning numerals is given a very simple answer:
the unusual complexity of the lexical entry for numerals. Recall that two
distinct, but related phonological representations are posited for each nu-
meral (except for 1). In addition, (8) is used as a ladder with which to
reach (7b). The relation between (7b) and (7c), characterized in terms of
deletion, also poses a nontrivial obstacle, as will be shown shortly. Both
(7b) and (7c), therefore, need to be memorized as such at the beginning
when children start learning numerals. This in turn makes possible the dis-
crepancy, exemplified in (10), between numerals in the count list and those
used together with a noun. Blind application of the Cardinal Principle here
gives a wrong result.

There is indeed evidence that the complexity of morpho-phonological
realization delays lexical learning. Sarnecka et al. (2007) observe that
Japanese children lag behind compared with English and Russian learners
at an early stage of numeral acquisition, though Barner et al. (2009) have
shown that they soon catch up. As a possible factor that causes the initial
delay, Barner et al. point to the morphological complexity of numerals due
to the presence of a classifier. They simply say that numerals can take on
many distinct forms, but a more accurate statement is that Japanese has
two completely distinct series of digit numerals, Sino-Japanese and native,
and that the shape of the Sino-Japanese series undergoes phonological
modification in relation to the immediately following classifier. Further-
more, one major classifier for counting humans mixes the two series. For
example, the count list, given in (16a), is made up of the Sino-Japanese
series, which are also used with the semi-default classifier -ko for inanimate
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entities in (16d).'? Note the gemination in ik-ko and rok-ko. The native se-
ries, together with the default classifier -tsu for inanimates, are illustrated
in (16b). The human classifier in (16¢) starts out with the native series but
switches to the Sino-Japanese series at 3, itself changing from -ri to -nin,
too (Watanabe 2010).

(16) Multiple ways of counting in Japanese
a. ichi, ni, san, shi, go, roku, etc. (count list)
b. hito-tsu, futa-tsu, mit-tsu, yot-tsu, itsu-tsu, mut-tsu, etc.
(counting inanimates with a default classifier)
c. hito-ri, futa-ri, san-nin, yo-nin, go-nin, roku-nin, etc.
(counting humans with a classifier)
d. ik-ko, ni-ko, san-ko, yon-ko, go-ko, rok-ko, etc.
(counting inanimates with a semi-default classifier)

Children learning Japanese encounter these bewildering details and have
to sort them out. See Okamoto (2015) in this connection. Classifiers are
usually used together with a noun, but the numeral-classifier combination
can also be used to count entities of an appropriate kind. So there are
multiple ways of counting in Japanese in addition to the count list in
(16a). It is no wonder that Japanese children are slow at the beginning.'®
Morphological errors may persist after children master the meaning of the
numeral correctly. Yamamoto (2005) reports that there are cases where
even G-year-olds produce errors like *ichi-nin and *ni-nin for counting
humans.

It is also worth stressing that the presence of two distinct series in the
Japanese numeral system makes it reasonable to provide multiple phono-
logical forms for a single lexical entry in general. The Sino-Japanese and

12 My dialect uses shi for 4 in the count list, but there are dialects that recruit yon from
the native series. The latter, with morpho-phonological variation, is substituted even
for classifiers that otherwise select the Sino-Japanese series in all dialects, as in (16d).
A distinct numeral for the count list is a phenomenon illustrated in (10) above.

It should be noted in this connection that three digit numerals, ichi ‘one’,
shichi ‘seven’, and hachi ‘eight’ end with [tfi], which is exceptional for disyllabic
Sino-Japanese morphemes. See Ito & Mester (2015) and the references cited there.
The high concentration of phonologically exceptional morphemes points to the special
status of numerals in the lexicon.

Interestingly, according to Yamamoto’s (2005) literature survey, the acquisition of the
count list (16a) itself does not seem to be delayed. Sarnecka et al. (2007) record no
significant difference in counting scores between English and Japanese when children
are prompted to count the objects presented by reciting the count list.
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native series are completely unrelated morphologically, requiring two forms
that correspond to (7c).

Let me hasten to add that the morphological complexity of the
numeral-classifier combination is not necessarily the whole story about
Japanese children’s initial delay, however. Whether or not a numeral is
used together with a classifier is a major parametric option that needs
to be selected during the course of language development. This choice
must be made before children start to learn individual classifiers. And in-
deed the well-known overgeneralization of the default classifiers -tsu/-ko
(16b,d) in children’s production at an early stage suggests that the deci-
sion to use classifiers is separate from acquisition of individual classifiers,
as Yamamoto (2005) argues. See also Barner et al. (2009). It is quite likely
that it takes some extra time to realize that Japanese is a classifier lan-
guage, since children need to notice that the morpho-syntax of numerals
is accompanied by something additional. If so, it will delay the onset of
numeral acquisition.™

Returning now to an account of various aspects of numeral acquisition,
note that it becomes possible to explain the actual steps that children
take in learning numerals when a counting sequence for each number is
incorporated as part of the phonological information of the lexical entry
as in (7b). First of all, the numeral for 1 does not distinguish between

" This story will apply to classifier languages in general. In their study on Chinese
children, Le Corre et al. (2016) point to the absence of number morphology on nouns
as a key element that delays the learning of the numeral for 1, though they leave
room for additional factors in the case of Japanese. Instead, I suspect that the use of
a classifier itself may be the cause of the delay. Here is the reason.

One complicating factor in Chinese is the possibility of using a classifier without
an overt numeral, as in (i).

(i) Wo xiang mai ben shu.
I want buy cL book
‘I want to buy a book.’

Cheng and Sybesma (2005) note that this construction signals singularity. See also
Zhang (2014) for further discussion. In addition, Zhang argues that reduplication of
classifiers expresses plurality. Thus, Chinese does not lack the grammatical singular/
plural distinction, contrary to Le Corre et al.’s factual assumption. It is not clear why
the morphological number marking on nouns, but not a grammatical singular/plural
distinction elsewhere, facilitates the acquisition of numerals. Incidentally, neither of
these complications arises in Japanese. See Watanabe (2014) on the impossibility of
using classifiers without an accompanying numeral in Japanese.
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(7b) and (7c) and is the simplest item to learn in this respect.!® The
form one, two in (7b) is minimally distinct from one, and therefore is the
next item to learn together with the form two in (7¢). And then comes
one, two, three, with three added to one, two, which is already in place.
Thus, a nontrivial relation in phonological form (7b) between two adjacent
numerals leads children from the simplest item to higher numerals one by
one. In other words, the stepwise developmental course is attributable to
the phonological complexity of each numeral, once a count sequence itself
is associated with each numeral as part of the lexical entry.

After children learn the numeral for 3, it becomes possible for them
to figure out the relation between (7b) and (7c), described by the Cardinal
Principle, which I suggested should be captured in terms of deletion in
section 2.1. To elaborate on this proposal, let me explain what is meant
by deletion more precisely. Recall that the new theory of numerals derives
(8) by applying linearization to (7a), treating the natural number concept
in (7a) as if it were a syntactic object, on the grounds that the Merge
operation provides the basis for discrete infinity of natural numbers. Now,
constituent deletion is another operation that applies during the course of
mapping syntactic objects to phonological form. This deletion operation
is considered to lie behind ellipsis phenomena in recent analysis stemming
from Chomsky & Lasnik (1993) and Merchant (2001). According to the
deletion analysis of ellipsis, the answer in (17) involves the structure in
(18), with the phonological content of VP deleted.

(17) Q: Do you like cats?

A: Yes, I do.
(18) TP
I
[T do] VP

ke cats

The literature leaves open whether deletion applies to set-theoretic syn-
tactic objects before or after linearization. In the latter case, constituency
needs to be retained even after linearization in order for constituent dele-
tion to be definable. It will be shown below that an account of children’s

5 Tt is an interesting topic for future research to find out whether the use of distinct
forms for (7b) and (7c) in languages like German as in (10) poses a challenge for
children. For Chinese, experimental results in Le Corre et al. (2016) do not seem to
indicate a delay for 2.
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acquisition of numerals presents evidence that deletion applies to linearized
constituent structure.

Suppose that the count sequence in (7b) is associated with syntactic
constituency, as in (19).

/<\three

one two

(19)

Conventional tree-like structures like (19) encode the precedence relation
as well as constituency. Both of these two pieces of information are needed
to relate (7b) to (7c) by means of constituent deletion. Notice that what
we want is deletion of the highest constituent within a linearized tree-like
structure (or the non-head member of the root node, as an anonymous
reviewer suggests). Applying this deletion operation to (19) produces (20).

/<\three

ohe—two

(20)

Recoverability of deletion requires the presence of an antecedent in ordi-
nary cases of ellipsis. In the case of numerals, recoverability is guaranteed
by the existence of a count list. This implies that an act of counting with
observable objects is an important discourse context that facilitates chil-
dren’s acquisition of numerals. See Gunderson & Levine (2011) for evidence
that points in that direction.

What happens in the case of two, as shown in (21)?

(21)

/\

one two

From the learner’s viewpoint, it is impossible to tell from the relation
between two and the sequence one, two what operation is actually involved.
In the case of (21), it can be deletion of the leftmost item. Even if one recalls
that the left branch can be rendered as (21'), the target of deletion can
be either the singleton set {ene} or just the member of that singleton set,
namely, ore.
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(21')
{one} two

Notice also that hitting upon the idea of deleting {one} does not necessarily
lead children to hypothesize deletion of the highest constituent within a
linearized tree-like structure. If the generalization that they reach is that
the singleton set in the structure is to be deleted, it will give a wrong result
for 3 and above. In other words, observing the relation between two and
the sequence one, two does not guarantee the correct choice on the part of
the learner. There is no such ambiguity when both (20) and (21) are taken
into account, on the other hand. This difference constitutes a significant
dividing line. There is in fact evidence that children who are not yet CP-
knowers rely on rote learning. Recall that numerals in the count list can
be different from those used with a noun, as exemplified in (10). Hurford
(2001) observes that this discrepancy is most commonly found with 2 and
rare otherwise. The only other example given is eins in German. The forms
for (7b) and (7c) thus need to be memorized as such until children become
CP-knowers.

To sum up the discussion so far, the Cardinal Principle, which is just
a description of what people do in counting, is explained by means of dele-
tion of the highest constituent within a linearized tree-like structure under
the new set-theoretic conception of natural number. The discovery of this
deletion mechanism behind the Cardinal Principle by children is delayed
until the relevant structure becomes sufficiently complex, in other words,
until they learn the lexical entry for the numeral that corresponds to 3.
Thus, the characterization of the Cardinal Principle in terms of constituent
deletion provides a principled explanation for the fact that the grasp of
counting and the meaning of digit numerals in general comes after children
become three-knowers. And the existence of rare four-knowers (Le Corre
& Carey 2007) simply points to the fact that some children are slower
or more cautious than others, waiting to confirm the hypothesis with the
proper use of four. The whole discussion provides very strong evidence
that the Cardinal Principle should not be stipulated as such but needs to
be reduced to more elementary items in linguistic computation.

An anonymous reviewer wonders whether the deletion operation in
question is optional. The answer is yes, in every language that has a full-
fledged system of numerals. When deletion does not apply, we get an initial
segment of the count list. The choice is certainly keyed to contexts of use,
which may be regarded as stipulative. Technology in general, however, is
always like that, except that the question of which choice is functionally
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more efficient is expected to play a role. In counting, the count list facil-
itates one-to-one correspondence with the objects counted. But when the
result is put together with a noun, one is inclined to avoid clumsiness.
Recall Frank et al.’s (2008) view mentioned above.

Now, notice that the above account presupposes the left-branching
structure as in (19). A proper constituent deletion operation cannot be
defined over the right-branching structure, as can be seen from (22).

(22)

o

two three

So, this is another detail that children have to figure out. What this
amounts to is the relevance of the head parameter in linearization. To
be mapped to (19), the set-theoretic object in (7a) must be linearized in
such a way as to result in (23).

<~

! ;

Recall that ¢ is the place-holder for an arbitrary lexical item, which there-
fore can be regarded as the head of each constituent. Notice that (23)
is an instance of head-final structure. Though headedness itself does not
play a role in the semantic interpretation of (7a), logical possibilities in
linearization necessarily leave room for a choice between (23) and (24).

(23)

(24)

z {i}

Once the head-final option (23) is adopted for linearization of (7a), with the
resulting structure linked to an initial segment of the count list, it becomes
possible for the working of the Cardinal Principle to be defined as due to
constituent deletion. Crucially, the count list presupposes the precedence
relation. Without linearization, therefore, the set-theoretic representation
in (7a) cannot be related to the count sequence. At the same time, con-
stituency is needed for the proper functioning of deletion. Thus, we need a
conventional tree-like structure after linearization, to which ellipsis applies.

It is worth pointing out that the linearized hierarchical structure of
the (23) type provides a computational foundation for the count sequence
itself, too. Notice that as the Merge operation is repeated to generate larger
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natural number concepts, instances of ¢ will be added on the right in the
corresponding head-final structure. In other words, the growth of the head-
final structure mimics the growth of the count sequence. This property is
obviously linked to the working of the Cardinal Principle, which is now
rendered in terms of deletion of the highest constituent. Thus, the set-
theoretic objects in (4)/(7a) and the linearized hierarchical representations
that they are mapped to are crucial elements in the cognitive technology
that makes use of numerals.

I would also like to note in this connection that children’s use of VP
ellipsis is considered by developmental scientists to be delayed.'® Thornton
(2010) observes that children start to use VP ellipsis by about two-and-a-
half years of age, attributing the delay to various conditions imposed on VP
ellipsis, including peculiarities of the English auxiliary system. She bases
her discussion on comparison with fragment answers, illustrated in (25).

(25) Q: What can Daddy cook?
A: Chili.

Merchant (2004) argues that answers like (25A) involve a full syntactic
representation given in (26), where the focused phrase is moved out of TP,
which in turn undergoes PF deletion.

(26) [chili; [Tp Paddy—ean-eock]]

Thornton points out that fragment answers appear earlier than VP ellipsis,
by about age two or even earlier, and that the different time course of de-
velopment is due to the fact that fragment answers are free from additional
conditions that VP ellipsis needs to satisfy.

The acquisition of ellipsis shows two things. First and most impor-
tantly, the mechanism of constituent deletion itself is already in place
when children need it to become CP-knowers. Notice that children start
to use VP ellipsis, which is considered to be relatively late in coming,
roughly at the same time as they start to recite the count list. They can
therefore recruit constituent deletion when learning individual numerals.
Second, the deletion mechanism cannot always be used to derive the adult
form if it takes time to learn some additional properties of the relevant el-
lipsis structure. This reminds us of the truism that adult-like performance
requires every relevant piece to be present.

16 Thanks are due to Arhonto Terzi for directing me to questions about the acquisition
of ellipsis.
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To summarize, the protracted numeral acquisition by children is at-
tributed to complex lexical entries. In addition, the Cardinal Principle is
reduced to constituent deletion, which lies at the heart of the numeral sys-
tem. Its acquisition is delayed till children become three-knowers because
of the logic of the structural complexity that necessitates its employment.
The proposed account of development claims that there is a qualitative dif-
ference between steps (13b) and (13c): the former involves rote learning,
while the latter hinges on the realization that the representation in (7b),
given by linearizing (7a) and matching the result with an initial segment
of the count list, can be trimmed by constituent deletion to leave the last
item as the representation in (7c).

It is interesting to end the discussion by noting that the proposed pic-
ture of numeral acquisition receives empirical support from the study on
bilingual children by Wagner et al. (2015), which shows that one-knower,
two-knower, and three-knower stages in one language are independent of
the corresponding stages in the other, whereas there is a strong correla-
tion between the two languages in the timing of becoming a CP-knower.
Knowledge of lexical entries is not transferrable from one language to an-
other, but the operation of constituent deletion can be shared. The account
proposed in this article gives a concrete characterization of qualitatively
distinct aspects of numeral acquisition.

4. Conclusion

The constructivist view, dominant in the psychology literature, has not
yet provided an account of how children come to internalize a set-theoretic
characterization of natural number, be it Zermelo’s, von Neumann’s, or the
one proposed here, as part of their unconscious knowledge. The nativist po-
sition obviates the need for such an account, but it must still specify what
kind of cognitive structure is involved. To borrow the distinction drawn
by Giaquinto (2015), the past discussion has been confined to the domain
of finite cardinal number, failing to reach the realm of natural number.
This article has put forth a new proposal concerning the relation between
natural number and natural language, supporting the idea that discrete in-
finity of natural number arises from the innate combinatorial mechanism
of language. Specifically, a slightly revised version of Chomsky’s (2008)
Merge-based conception of natural number is combined with the hypoth-
esis that semantic and phonological representations in the lexical entry of
numerals are related by operations such as linearization and constituent
deletion that are employed in linguistic computation. More concretely, the
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set-theoretic object representing a natural number concept is linearized
first, and then the resulting hierarchical structure is matched with the cor-
responding initial segment of the count sequence. Finally, the linearized
structure, enriched with the count sequence, undergoes constituent dele-
tion, leaving the final element of that sequence. Thus, the meaning of a
digit numeral is mapped to its two phonological representations through
a series of well-defined computational operations. The Cardinal Principle
describes the last step of this process. Counting is made possible by estab-
lishing the one-to-one correspondence between the counted objects and an
initial segment of the count sequence incorporated as part of the linearized
hierarchical structure. The whole story thus sheds new light on various
aspects of numerals that are simply taken for granted in the past. The
proposed theory of numerals also enables us to show that the innateness
of natural number is compatible with the delayed acquisition of numerals.
What it takes time to learn are complex lexical entries of numerals with
multiple phonological representations. Furthermore, by the logic of struc-
tural complexity, children have to wait till they master the word for 3 to
figure out that constituent deletion lies behind the Cardinal Principle. The
significance of the word for 3 is given a straightforward structural account
for the first time under the proposed system of numerals.

It is worth stressing that these results are made possible by linguistic
manipulation of two-membered sets that are put in one-to-one correspon-
dence with natural numbers. The proposal focuses on an obvious fact that
the relation between natural number and language is mediated by the sys-
tem of numerals, whose lexical entries hold the key. In order for linguistic
computation to be able to handle set-theoretic objects for natural number
concepts encoded in lexical entries of numerals, these objects themselves
must be of the kind that allows such computation to function properly. It
is in this respect that Chomsky’s Merge-based conception of natural num-
bers turns out to be empirically superior to the alternatives by Zermelo
and von Neumann.

I would also like to point out that the mediation of natural language
expressions in psychology experiments intended to explore human concepts
has been overlooked or treated very carelessly. The experiments used to
measure children’s knower-level, summarized in (14), for example, all make
crucial use of verbal instructions involving numerals. If the delay in the
acquisition of numerals is simply a matter of learning lexical items as
suggested here, the view that advocates the non-innate nature of natural
number loses its empirical basis. The same is true with a recent discus-
sion of the successor function by Cheung et al. (2017), who claim that its
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manifestation in children’s behavior takes roughly two years after they be-
come CP-knowers. The task used to assess children’s understanding of the
successor function is called the infinity task, which starts by asking chil-
dren, “What is the biggest number you can think about?” After a couple
of related questions, the experimenter goes on to ask children whether it is
possible to keep adding one to the biggest number that they can name. If
Chomsky’s proposal or the modification of it in this article is on the right
track, the successor function is n + 1 = {n, i¢}. It is a bit too naive to
think that translation of this function into plain English is straightforward
for children. Notice, for example, that in this experiment, the adjective big
is no longer limited to the physical size and is extended to the abstract
domain of numbers. Children need to understand this extended sense of
big to display an adult-like behavior. Children also have to figure out the
correct abstract meaning of adding one, which is an application of Merge
under our proposal. Given all these complications, a delay is expected.
An important lesson from the discussion in this article is that an appro-
priate linguistic analysis of verbal instructions used in experiments is a
prerequisite for evaluating the data obtained. It can hardly be said that
this requirement has been met in the past discussion of natural number.

Lastly, let me turn to interesting by-products of this study. One is the
demonstration that set-theoretic objects in narrow syntax are initially con-
verted into conventional tree-like representations, which constituent dele-
tion targets. Ordinary cases of ellipsis do not care about how linearization
works at the ellipsis site. The operation of deletion behind the Cardinal
Principle, however, is sensitive to the order of numerals in the count se-
quence. In order to obtain the correct result, linearized hierarchical struc-
ture is indispensable.

Note also that the proposed account has important implications for
the head parameter. Kayne (1994) and subsequent work have pursued
the idea that only head-initial structures are available for linguistic com-
putation. The reduction of the Cardinal Principle to the operation of
constituent deletion, however, requires the head-final linearization of set-
theoretic structures that correspond to natural number concepts. We are
led to conclude that head-final structures are possible in principle. There
are indeed two logically possible ways of giving the precedence relation to
the two members of each syntactic object formed by Merge. If one of them
is to become unavailable, additional factors must be invoked to rule it out.
Kayne (2013) points to the probe-goal relation in syntactic computation as
such a factor. Being the purest instance of discrete infinity made possible
by Merge, the proposed set-theoretic characterization of natural number
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does not involve the probe-goal relation, nor any other complications. It is
therefore not surprising to find head-final structures realized in the system
of numerals.
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