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Objective: Hepcidin may be an important mediator in exercise-induced iron deficiency. Despite the studies
investigating acute exercise effects on hepcidin and markers of iron metabolism, we found no studies examining
the chronic effects of walking exercises (WE) on hepcidin and markers of iron metabolism in premenopausal women.
The chronic effects of two 8-week different-intensity WE on hepcidin, interleukin 6 (IL-6), and markers of iron
metabolism in pre-menopausal women were examined. Methods: Exercise groups (EG) [moderate tempo walking
group (MTWG), n= 11; brisk walking group (BWG), n= 11] walked 3 days/week, starting from 30 to 51 min.
Control group (CG; n= 8) did not perform any exercises. BWG walked at ∼70%–75%; MTWG at ∼50%–55% of
HRRmax. VO2max, hepcidin, IL-6, and iron metabolism markers were determined before and after the intervention.
Results: VO2max increased in both EGs, favoring the BWG. Hepcidin increased in the BWG (p< 0.01) and CG
(p < 0.05). IL-6 decreased in the BWG and the MTWG (p < 0.05; p < 0.01). While iron, ferritin, transferrin, and
transferrin saturation levels did not change in any group, total iron binding capacity (p< 0.05), red blood cells
(p < 0.05), and hematocrit (p < 0.01) increased only in the BWG. Conclusion: Both WE types may be useful to
prevent inflammation. However, brisk walking is advisable due to the positive changes in VO2max and some iron
metabolism parameters, which may contribute to prevent iron deficiency. The increase in hepcidin levels remains
unclear and necessitates further studies.
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Introduction

Iron is an essential element for most of the processes in our body. It has important roles in
oxygen transport and storage [forming part of hemoglobin (Hb) and myoglobin] and in the
electron transport chain and DNA synthesis (6). These functions make iron the most
important factor related to human sports performance. While iron homeostasis is essential
for effective energy metabolism, iron depletion reduces performance capacity. Transferrin
transports iron in blood whereas ferritin stores it within cells. Hepcidin is synthesized by the
liver and it controls iron metabolism. Hepcidin blocks iron absorption from the duodenum
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and limits iron accumulation in the body (12), which leads to iron deficiency. An increase in
inflammation-induced hepcidin may cause a rapid decrease in plasma iron concentrations,
which will eventually decrease Hb synthesis (27). Women athletes are at a particular risk of
depleting their iron stores. If not treated, iron deficiency may lead to iron deficiency anemia (7).
Therefore, understanding hepcidin response associated with physical exercise may help
explain anemia and iron deficiency frequently affecting athletes (19). However, detection and
quantification of hepcidin in plasma and serum is difficult; but, pro-hepcidin measurement
using enzyme-linked immunosorbent assay (ELISA) is non-invasive and easy to perform,
and thus appropriate for routine work (17, 23). There is also evidence in the literature that
pro-hepcidin levels are a reliable indicator of hepcidin levels and activity (14, 45) and there is
92% correlation between hepcidin and its precursor pro-hepcidin (46). Moreover, we could
not find studies examining the effects of physical exercise on pro-hepcidin levels; therefore,
relying on this high correlation between these two markers, we compared our findings with
those of hepcidin throughout the text.

Skeletal muscles were found to produce and release myokines during exercise, exerting
an anti-inflammatory effect, and acting as energy sensors (32). One of these myokines is
interleukin 6 (IL-6). The mode, intensity, and duration of exercise have been found to
increase the concentrations of cytokines (11, 30). IL-6 causes an increase in blood hepcidin
concentration. In recent years, the studies conducted with adults have revealed that both
single and regular exercises are the cause in the rise of blood hepcidin, diminishing dietary
iron absorption and body iron stores (3, 33). In addition, studies investigating the acute post-
exercise kinetics of hepcidin and associations with iron metabolism in athletes report about
elevated hepcidin levels 24 h after exercise, preceded by acute increase in serum iron and
inflammation parameters (34, 36, 48). On the other hand, Karl et al. (15) showed that serum
hepcidin concentrations were not affected by 9 weeks of basic combat training for female
soldiers but were associated with iron status and inflammation. Auersperger et al. (4)
suggested that serum hepcidin and sTfR were affected after 8 weeks of endurance running
in women without any positive relation with inflammation.

Typical characteristics of anemia in inflammation are shorter life of erythrocytes, low
serum concentrations of iron and transferrin, and elevated levels of ferritin (28). A low level
of iron is an important cause of reduced exercise capacity in athletes. A 1–2 g% decrease in
blood Hb concentration may lead to a 20% reduction in exercise capacity (13). Therefore,
exercise-induced changes in iron metabolism should be analyzed in detail. Even though
exercise can increase erythropoietic activity in bone marrow (38), intensive training was
found to have negative effects on erythrocyte numbers, Hb levels, and hematocrit (Hct)
values (19, 47). The main reason for this may be the reduced iron absorption in small
intestine and the decreased iron export to the circulation from parenchymal cells and
macrophages.

Despite the accumulated research findings related to acute effects of exercise on
hepcidin, IL-6, and iron metabolism markers (34–36, 42, 48), there is limited data about
the chronic effect of exercise on these parameters (4, 15). Moreover, to our knowledge, there
are no studies examining the chronic effects of walking exercises (WE) on hepcidin, IL-6, and
iron metabolism markers. Therefore, the aim of this study is to examine the chronic effects of
two 8-week different-intensity WE on hepcidin, IL-6, and markers of iron metabolism in pre-
menopausal women. We hypothesize that 8 weeks of brisk WE have more beneficial effects
than moderate walking for reducing inflammation, protecting from anemia and metabolic
diseases.
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Materials and Methods

Subject selection
This study examined moderately active females (2–3 sessions/week) in reproductive age and
without history of gynecological surgery. All participants were informed about the purpose,
potential benefits, and possible risks of the study protocol; then, they all gave written informed
consent. Participants were invited to the study if they met the following criteria: having regular
menses within the 12 months preceding the study; not using iron supplements; not being under
regular use of medication. Participants having a history or diagnosed cardiovascular disease,
endocrine or metabolic disorders, muscular–skeletal problems were excluded. The participants
meeting the inclusion criteria chose to take part in either the experimental group (n= 22) or
control group (CG; n= 8). Then, the exercise group (EG) was randomly divided into brisk
walking group (BWG; n= 11) and moderate tempo walking group (MTWG; n= 11) (Table I).
Baseline laboratory analysis including electrocardiography and body compositions revealed no
acute or chronic inflammatory condition in any of the participants. Baseline iron and ferritin
levels of the groups were not significantly different from each other. Participants were warned
not to take any other form of physical exercise and not to change their eating habits during the
intervention. The study was approved by the Ethical Council of Dokuz Eylül University, Faculty
of Medicine and conducted in accordance with the principles of Declaration of Helsinki.

Study design
All tests and analyses were performed at the beginning and at the end of the intervention period
(24–48 h after the walking program). Blood analyses were carried out by the experts 24 h
following the exercise program at the same time in all groups (8.00–10.00 a.m.). VO2max and the
other measurements were conducted 48 h following the training program so that the subjects had
time for recovery. Body composition was measured using bioelectrical impedance analyzer
(InBody 230, Biospace Co. Ltd., Seoul, Korea). Indirect maximal oxygen consumption (VO2max)
was determined with 2 km walking test using the following equation developed for women (18):

116.2 − 2.98 duration ðminÞ − 0.11 ×HR − 0.14 age − 0.39BMI:

Subjects were warned not to perform any physical activity within 48 h preceding the
assessment day.

Table I. General characteristics of participants at baseline

BWG (n= 11) MTWG (n= 11) CG (n= 8)

Parameters Median Min–Max Median Min–Max Median Min–Max

Age (years) 41.0 33–50 38.0 30–46 43.5 41–47

Height (cm) 160 157–168 163 152–172 159 154–168

Body weight (kg) 69.5 60.5–82.8 69.1 54–104.1 64.6 53.6–75.4

BMI (kg/m2) 26.2 23.6–29.6 26.3 22.2–40.2 25.3 20.9–30.1

Body fat (kg) 26.0 21.5–34.3 26.3 15.6–51.6 25.5 14.1–32.7

VO2max (ml/kg/min) 34.1 28.5–39.4 31.4 20.9–38.5 23.9 14.4–29.3

BWG: brisk walking group; MTWG: moderate tempo walking group; CG: control group
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Exercise program
Before beginning the training process, all participants of the EGs completed a 1-week
walking of low-intensity physical training to ensure familiarity with the experimental
procedures. Eight-week walking program of two different intensities was performed
on an outdoor track (400 m), 3 days/week, under the control of exercise specialists,
in accordance with the principles of the American College of Sports Medicine (ACSM)
recommendations (1). The exercise intensity was determined using the Karvonen
equation:

½ðHRmaximum − HRrestÞ × ð0.50 − 0.55=0.70 − 0.75Þ + HRrest�:

BMGmembers started to walk 30 min, and with 3-min increments they reached 39 min at the
end of the first 4 weeks, at 70% heart rate reserve (HRR). On the next 4 weeks, they walked
up to 51 min at 75% HRR. MTWG walked in the same duration, but at 50% HRR for the first
4 weeks and 55% HRR for the second 4 weeks. Their heart rate (HR) readings were taken by
Polar Pacer heart rate monitors (Polar Vantage, Kempele, Finland) at least three times to
comply with the training intensity (walking speed), and their rate of perceived exertion (RPE)
was also taken using a 15-point RPE scale. RPE scores and HRs were recorded on training
logs. Each exercise session started with 5-min warm-up and ended with 5-min cool-down
period.

Blood analysis
Venous blood samples were collected from an antecubital vein (9 ml) in the sitting position
after a 20-min rest between 8:00 and 10:00 a.m. following a 12 h overnight fast. Serum was
separated by centrifugation, and samples were stored at −80 °C until assays were performed
(within 2 months) in all samples. Red blood cell (RBC) counts, Hct, and blood Hb
concentrations were determined by conventional methods using a COULTER® LH 780
Hematology Analyzer (Beckman-Coulter, Fullerton, CA, USA). The concentrations of serum
iron and total iron binding capacity (TIBC) were determined by Beckman Olympus AU 5800
auto-analyzer with dedicated kits (Beckman-Coulter). Transferrin saturations were calculated
via the formula (serum iron × 100/TIBC). Follicle-stimulating hormone (FSH) and ferritin
analyses were performed using chemiluminescent immunoassay technique on Beckman
UniCel DxI 800 auto-analyzer with dedicated kits. Inter-assay coefficients of variation (CVs)
were obtained from actual quality control data of Dokuz Eylül University Hospital Central
Laboratory that has been accredited with the ISO 15189. Inter-assay CVs (%) determined for
RBC, Hct, Hb, iron, TIBC, FSH, and ferritin were 0.5, 0.67, 0.59, 1.90, 3.87, 4.35, and 5.86,
respectively. Serum IL-6 levels were determined via enzyme immunoassay methods using
commercial kits (eBioscience, Vienne, Austria). The average CV precisions intra- and inter-
assay are 3.4% and 5.2%, respectively.

Serum pro-hepcidin was determined using an ELISA kit (Sunred, Shanghai, China) in
accordance with the manufacturer’s protocol. This assay detects the 12.5–3,600 ng/ml range
of pro-hepcidin, a prohormone form of the hormone. The average CV precisions intra- and
inter-assay are <8% and <10%, respectively. Serum transferrin was determined using an
ELISA kit (Enzo Life Sciences, Farmingdale, NY, USA) in accordance with the manufac-
turer’s protocol. The average CV precisions intra- and inter-assay are 4.8% and 8.5%,
respectively.
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Statistical analysis
Data were analyzed using SPSS package program (version 15.0) non-parametric tests because
of low numbers of subjects in different groups. Changes among the study groups were
compared via the Kruskal–Wallis test; the difference between the two groups was determined
using Mann–Whitney U test. Bonferroni correction was made followed by Mann–Whitney U
test. The differences between pre- and post-data of the intervention period were determined
using the Wilcoxon test. All comparisons were considered statistically significant at p< 0.05,
except the difference between two groups. Statistically significant level between the two groups
was considered at p< 0.0167 owing to Bonferroni correction (0.05/3= p< 0.0167).

Results

At the pre-study evaluation, the subjects did not differ significantly in terms of age, baseline
body weight, body fat (Table I), and serum iron and ferritin (Table II) levels. BWG members
had an average HR of ∼143.28± 8.37 beats/min, MTWG members had an average HR
of ∼126.79± 4.01 beats/min. The RPE reported by the BWG was ∼13.61 ± 0.50 and it
was ∼11.72± 0.41 by the MTWG.

Table II. Changes in physical and physiological characteristics of subjects following the intervention

Variable N
Pre-intervention
median (min/max)

Post-intervention
median (min/max)

Differences median
(min/max)

Body weight (kg)

BWG 11 69.5 (60.5/82.8) 69.3 (61.6/79.0) −0.10 (−3.8/1.7)

MTWG 11 69.1 (54.0/104.1) 66.9 (54.4/94.1) 0.20 (−10.0/14.9)

CG 8 64.6 (53.6/75.4) 64.55 (54.6/77.0) 0.35 (−6.70/5.60)

Body fat (kg)

BWG 11 26.0 (21.5/34.3) 25.4 (22.1/31.9) 0.00 (−4.30/4.70)

MTWG 11 26.3 (15.6/51.6) 25.4 (15.9/42.6) −1.90 (−9.00/13.6)

CG 8 25.5 (14.1/32.7) 23.6 (15.2/33.5) 0.45 (−11.0/1.40)

BMI (kg m−2)

BWG 11 26.2 (23.6/29.6) 26.2 (23.6/29.6) −0.00 (−1.30/1.00)

MTWG 11 26.3 (22.2/40.2) 25.1 (22.1/35.9) −0.10 (−4.30/7.00)

CG 8 25.3 (20.9/30.1) 24.2 (21.3/30.6) 0.30 (−5.70/0.80)

VO2max(ml/kg/min)

BWG 11 34.1 (28.5/39.4) 40.5 (35.9/43.4)** 4.57 (3.16/12.1)***

MTWG 11 31.4 (20.9/38.5) 34.3 (25.33/40.3)* 3.24 (−3.04/4.38)

CG 8 23.9 (14.4/29.3) 23.8 (14.2/28.8) −0.44 (−2.33/6.08)

*p < 0.05 change from baseline.
**p < 0.01 change from baseline.
***p < 0.0167 BWG versus MTWG and CG
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Apart from VO2max, we could not determine any other changes in the physical and
physiological characteristics of the participants. VO2max increased in both EGs, favoring the
BWG (p< 0.01); the BWG also differed from the MTWG and the CG in terms of the increase
determined in VO2max. There were no any differences among groups in terms of other
variables (Table II).

Hepcidin levels increased in the BWG (p< 0.01), MTWG (p= 0.05), and CG (p<
0.05). Serum IL-6 decreased in the BWG and MTWG (p< 0.05 and p< 0.01, respectively).
While serum iron levels did not change significantly in any groups, TIBC increased
significantly only in the BWG (p< 0.05). There was a nearly significant increase in Hb
levels (p= 0.061); RBC and Hct levels increased significantly only in the BWG (p< 0.05 and
p< 0.01, respectively). We observed no statistical within-group changes in ferritin, transfer-
rin, and transferrin saturation levels in any of the study groups. There were no changes in
terms of the differences occurred at the end of the exercise program among groups in any of
the parameters, except for TIBC: BWG differed from CG significantly (p< 0.0167) in their
TIBC levels (Table III).

Discussion

To the best of our knowledge, this is the first study of different training intensities completed
in 8 weeks in the form of WE and the assessments of hepcidin, IL-6, and iron status in pre-
menopausal women. The most outstanding finding of this study is the significant reduction
observed in serum IL-6 levels of both EGs and the significant increase in TIBC, Hct, and
RBC levels only in the BWG.

Iron and hepcidin
Iron is an essential element for the synthesis of Hb and oxygen delivery and plays a key role
in the electron transport chain as well as the production of energy in mitochondria (43, 44).
Therefore, inadequate iron stores may decrease physical performance (2, 49). Iron loss during
exercise might occur as a result of hemolysis, hematuria, sweating, and gastrointestinal
bleeding (5, 8, 25, 50). Recent research has revealed that inflammation in relation to the
principal iron-regulatory hormone hepcidin, which might be an important factor in exercise-
associated iron deficiency in athletes. However, research results related to the exercise–
hepcidin relationship have revealed contradictory findings. The results of the acute
post-exercise kinetics of hepcidin and associations with iron metabolism in athletes showed
elevated hepcidin levels 24 h after exercise, preceded by acute increase in serum iron and
inflammation parameters (34–36, 40–42, 48). On the other hand, Karl et al. (15) showed that
serum hepcidin concentrations were not affected by 9 weeks of basic combat training for
female soldiers but were associated with iron status and inflammation. Similarly, 32-week
Nordic walking did not trigger significant changes in blood hepcidin (16). However,
Auersperger et al. (4) suggested that serum hepcidin levels were found to be reduced after
8 weeks of endurance running in women without any positive relation with inflammation.
The discrepancy between the aforementioned study results and our findings might result from
the differences of the exercise intensities. Our exercise intensity may not be high enough to
cause reductions in hepcidin levels as in the study of Auesperger et al. (4). On the other hand,
exercise volume may be as important as its intensity to affect hepcidin levels. For example, in
the only study that has examined the hepcidin response to training volume, it was observed
that 120 min of exercise performed at a relative intensity of 65% VO2max on a treadmill by
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Table III. Changes in biochemical parameters of all subjects following the intervention

Variable N
Pre-intervention
median (min/max)

Post-intervention
median (min/max)

Differences median
(min/max)

Iron (μg/dl)

BWG 11 65.0 (25.0/124) 81.0 (39.0/157) 15.0 (−73.0/93.0)

MTWG 11 98.0 (14.0/129) 62.0 (24.0/191) −30.0 (−36.0/82.0)

CG 8 92.5 (10.0/192) 101 (24.0/24.0) 4.50 (−29.0/59.0)

TIBC (μg/dl)

BWG 11 347 (283/420) 385 (305/476)* 34.0 (12.0/77.0)***

MTWG 11 343 (275/428) 367 (291/494) 7.00 (−39.0/66.0)

CG 8 346 (271/442) 343 (258/375) −16.0 (−67.0/27.0)

Transferrin (mg/dl)

BWG 11 199 (179/201) 199 (182/207) 0.00 (−11.2/14.03)

MTWG 11 196 (182/206) 191 (185/202) −5.61 (−16.8/8.42)

CG 8 202 (185/213) 200 (182/210) −2.80 (−30.8/16.8)

Transferrin saturation (%)

BWG 11 19.0 (7.00/38.0) 20.0 (9.00/39.0) 1.00 (−22.0/18.0)

MTWG 11 29.0 (4.00/38.0) 19.0 (6.00/62.0) −2.00 (−11.0/29.0)

CG 8 24.5 (2.00/ 70.0) 28.5 (7.00/69.0) 4.50 (−6.00/15.0)

Ferritin (ng/ml)

BWG 11 10.3 (7.60/31.3) 11.2 (7.30/32.6) 0.90 (−8.70/7.70)

MTWG 11 10.7 (5.00/57.3) 17.0 (2.90/60.0) 2.60 (−18.3/17.9)

CG 8 10.7 (6.3/55.5) 11.2 (5.00 /26.8) 0.50 (−50.5/4.10)

HGB (g/dl)

BWG 11 12.9 (11.8/14.4) 13.2 (12.3/15.2) 0.30 (−0.30/0.90)

MTWG 11 12.9 (11.3/14.6) 12.7 (11.60/14.2) −0.20 (−9.70/0.60)

CG 8 12.2 (10.4/14.0) 12.05 (10.4/14.3) −0.05 (−0.50/1.60 )

RBC (10−6/μl)

BWG 11 4.37 (3.55/4.80) 4.54 (3.87/5.20)* 0.26 (−0.12/0.40)

MTWG 11 4.80 (4.05/6.11) 4.76 (4.12/5.96) −0.04 (−0.26/0.28)

CG 8 4.25 (4.09/5.18) 4.51 (4.17/5.31) 0.11 (−0.03/0.65)

Hct (%)

BWG 11 39.5 (36.7/43.4) 41.7 (38.9/47.2)** 1.80 (−0.40/3.80)

MTWG 11 39.7 (35.4/44.4) 39.8 (35.1/43.7) 0.30 (−2.40/2.40)
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physically active women triggered a significantly higher response to that observed by the
same women performing the same intensity of exercise (65% VO2max) for a duration of
60 min (26). In addition, our results seem concordant with the research that suggests the
hepcidin response to exercise seems to be dependent on a minimum intensity of exercise at
65% VO2max (41). Thus, the increase determined in hepcidin levels in the BWG, but not in
moderate tempo walking group might be as a result of the cumulative effect of acute exercises
at 65% of VO2max. However, the increase observed in hepcidin levels in the CG remains
unclear. Moreover, the response of hepcidin to exercise is not equivocal. For example, Roecker
et al. (40) observed that in 8 out of 14 marathon runners’ urine hepcidin was elevated whereas
in 6 of them remained constant. According to Kortas et al. (16), the effects of training on
hepcidin may be dependent on subjects’ body iron status since Peeling et al. (37) reported that
post-exercise hepcidin did not change in subjects whose blood ferritin was <30 ng/ml and
significantly rose in those with blood ferritin >30 ng/ml. Although initial ferritin levels of
the subjects were <30 ng/ml in this study, hepcidin showed an increment. These controversial
results necessitate more studies to better clarify the factors in hepcidin–exercise relationship.

IL-6 and hepcidin
IL-6 is the major cytokine produced at a higher amount in response to exercise than other
cytokines (24). It is known that strenuous exercise can cause a dramatic increase in the levels
of pro-inflammatory cytokines and inflammation-responsive cytokines (29). In this study,
WE generated an opposite effect in serum IL-6 levels. Instead of increments, we determined
significant reductions in IL-6 levels in the EGs. This reduction in IL-6 levels in this study may
be related to the intensity of our exercise program, which is not so strenuous as to cause
dramatic increases in the pro-inflammatory cytokines (24, 29). Production of IL-6 in
contracting skeletal muscles as a result of exercise leads to the exercise-induced hepcidin
increase. The study by Peeling et al. (35) supports this hypothesis as it was found that

Table III. Changes in biochemical parameters of all subjects following the intervention (Continued)

Variable N
Pre-intervention
median (min/max)

Post-intervention
median (min/max)

Differences median
(min/max)

CG 8 36.6 (32.6/42.9) 37.4 (34.2/43.4)* 0.80 (−0.50/5.70)

Hepcidin (ng/ml)

BWG 11 23.4 (21.2/156) 40.4 (23.6/164)** 10.4 (0.73/21.4)

MTWG 11 27.5 (21.1/141) 31.5 (24.9/167) 3.84 (−6.47/25.6)

CG 8 24.3 (15.2/91.3) 30.2 (25.0/120)* 7.09 (0.79/29.1)

IL-6 (pg/ml)

BWG 11 2.27 (1.48/4.73) 1.05 (0.35/4.34)* −1.45 (−3.88/2.18)

MTWG 11 2.28 (1.62/3.86) 0.93 (0.56/1.89)** −1.28 (−3.26/−0.09)

CG 8 2.79 (1.47/5.12) 1.79 (0.81/3.14) −1.28 (−2.80/1.67)

*p < 0.05 change from baseline.
**p < 0.01 change from baseline.
***p < 0.0167 BWG versus CG
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hepcidin levels elevated 3 h after the peak production of IL-6 induced by exercise. On the
other hand, results of the studies examining exercise–IL-6 relationship are controversial and
there are several studies which demonstrated that there is no correlation between IL-6 and
hepcidin (10, 21, 31).

Erythrocytes, Hb, and Hct
Exercise can increase erythropoietic activity in bone marrow (38, 47); however, erythrocyte
numbers, Hb levels, and Hct values were found to be significantly decreased after intensive
training (19, 47). The reduced iron absorption in small intestine and the decreased iron export
to the circulation from parenchymal cells and macrophages might cause that reduction.
However, the intensity of our exercise program did not cause such reductions; whereas, we
observed significant increments in erythrocytes and Hct values. Therefore, our results provide
additional data to the view indicating that exercise induces an increased iron transport from
blood to bone marrow to synthesize Hb and erythrocytes, resulting in enhanced oxygen-
carrying capacity (20). Despite not being significant, the increase in Hb in this study is
clinically important (p< 0.06) because baseline Hb levels showed increments at the end of
the 8-week intervention period (from 12.9 to 13.2 g/dl). Gardner et al. (13) have suggested
that even a 1–2 g% decrease in blood Hb concentration may result in a 20% reduction in
exercise capacity. Therefore, maintaining Hb amount can be recommended as an effective
strategy to decrease the risk of anemia; hence, brisk walking may be a good mode of exercise
for pre-menopausal women to increase Hb concentrations.

Serum iron, transferrin saturation, and serum ferritin
Previous research indicated significant decreases in a series of serum iron status indicators,
including serum iron, transferrin saturation, and serum ferritin in both human and animal
models following intensive training (19, 22, 39). It is well known that strenuous exercise
usually leads to the development of sports anemia. In an 8-week strenuous training with
female athletes, ferritin values decreased below 8 μg/l (4). In contrast, regular and moderate
exercise training might be a promising, safe, and economical method to help improve body
iron status. Previous research results showed that the levels of serum iron and transferrin
saturation in moderately exercised rats were significantly higher than those of the controls
(20). Parallel to these findings, our relatively moderate intensity exercise program did not
cause any reductions in serum iron, transferrin saturation, and serum ferritin levels. In addition,
although insignificant, determining increments in iron levels (from 65.0 to 81.0 μg/dl) is of
clinical importance since low iron levels can profoundly alter physical work performance via a
decrease in oxygen transport to exercising muscle (9).

Our findings, together with previous reports, stress the importance of examining the iron
deficiency in female athletes. Athletes, trainers, and medical staff should be aware of this
multifaceted issue. Simple parameters such as serum iron, ferritin, transferrin, hepcidin, and
IL-6 seem sufficient to identify most of the iron deficiency in the majority of athletes.
Consequently, in our 8-week prospective observational study screening moderately active
females, serum IL-6 levels decreased regardless of the walking type; therefore, both walking
types may be useful to prevent inflammation. However, brisk walking is advisable due to the
positive changes in VO2max and some iron metabolism parameters as they may contribute to
prevent iron deficiency. However, the significant increase in hepcidin levels in the CG
remains unclear and necessitates further studies. It is not common to expect a positive effect
on iron metabolism within 2 months in a group of people who do not do exercise. Therefore,
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the increase in hepcidin which occurred in the CG is an expected finding. Additionally, our
current understanding of the mechanisms on exercise-induced alteration of iron metabolism is
not complete, and further research in terms of sampling and established or emerging
biomarkers is will be useful.
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