REAL

The abiotic stress response and adaptation of triticale — A review

Blum, A. (2014) The abiotic stress response and adaptation of triticale — A review. Cereal Research Communications, 42 (3). pp. 359-375. ISSN 0133-3720

[img] Text
crc.42.2014.3.1.pdf
Restricted to Repository staff only until 30 September 2034.

Download (136kB)

Abstract

After a decade of genetic manipulation and improvement, triticale stand out as a crop of high biomass and grain yield potential which generally surpass that of wheat. Its high productivity is most likely derived from high rates of carbon assimilation linked to stomatal physiology and probably low respiration rate. Being a derivative of rye, triticale has always been assumed to be relatively resistant to abiotic stress. The last review of triticale adaptation to abiotic stress as published by Jessop (1996) pointed at its general and specific fitness to harsh growing conditions. This review as based on additional data published in the last 20 years indicates that triticale retain good to excellent adaptation to conditions of limited water supply and problem soils which involve salinity, low pH, defined mineral toxicities and deficiencies and waterlogging. Despite the understandable expectations, freezing tolerance of triticale was not found to be up to the level of rye. The freezing tolerance of the rye complement in triticale is inhibited by unknown factors on the wheat parent genome. Any given triticale cultivar or selection cannot be taken a priori as being stress resistant. Research has repeatedly shown that triticale presented large genetic diversity for abiotic stress resistance and most likely this diversity has not yet been fully explored due to the very limited research and the small studied sample of the potential triticale germplasm. Triticale is a valuable stress tolerant cereal on its own accord and a potential genetic resource for breeding winter and spring cereals. Because of its high productivity and resilience it might become as important as wheat or better on a global scale if its grain technological quality will be improved to the level of wheat.

Item Type: Article
Subjects: S Agriculture / mezőgazdaság > S1 Agriculture (General) / mezőgazdaság általában
Depositing User: Ágnes Sallai
Date Deposited: 05 Apr 2017 05:56
Last Modified: 05 Apr 2017 05:56
URI: http://real.mtak.hu/id/eprint/50946

Actions (login required)

Edit Item Edit Item