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Background: Following the first association between the dopamine D2 receptor gene polymorphism and severe alco-
holism, there has been an explosion of research reports in the psychiatric and behavioral addiction literature and
neurogenetics. With this increased knowledge, the field has been rife with controversy. Moreover, with the advent of
Whole Genome-Wide Studies (GWAS) and Whole Exome Sequencing (WES), along with Functional Genome Con-
vergence, the multiple-candidate gene approach still has merit and is considered by many as the most prudent ap-
proach. However, it is the combination of these two approaches that will ultimately define real, genetic allelic rela-
tionships, in terms of both risk and etiology. Since 1996, our laboratory has coined the umbrella term Reward Defi-
ciency Syndrome (RDS) to explain the common neurochemical and genetic mechanisms involved with both sub-
stance and non-substance, addictive behaviors. Methods: This is a selective review of peer-reviewed papers primary
listed in Pubmed and Medline. Results: A review of the available evidence indicates the importance of dopaminergic
pathways and resting-state, functional connectivity of brain reward circuits. Discussion: Importantly, the proposal is
that the real phenotype is RDS and impairments in the brain’s reward cascade, either genetically or environmentally
(epigenetically) induced, influence both substance and non-substance, addictive behaviors. Understanding shared
common mechanisms will ultimately lead to better diagnosis, treatment and prevention of relapse. While, at this
juncture, we cannot as yet state that we have “hatched the behavioral addiction egg”, we are beginning to ask the cor-
rect questions and through an intense global effort will hopefully find a way of “redeeming joy” and permitting homo

sapiens live a life, free of addiction and pain.
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INTRODUCTION

Blum et al. have previously published articles on the
neurogenetics of Reward Deficiency Syndrome (RDS) in
terms of both substance- and non-substance-related, addic-
tive behaviors (Blum, Oscar-Berman, Badgaiyan, Palomo &
Gold, 2014). While there is extensive neurogenetic research
on substance-seeking behavior, this is not the case for
non-substance-related, behavioral addictions although work
in this new area is growing rapidly (Demetrovics &
Griffiths, 2012).

The main goal of this review is to, not only, point out the
various controversies but also to demonstrate possible links
between substance and non-substance, addictive behaviors.
Our hope is to provide a common framework for both types
of behavior, as has been the aim of the authors for almost
two decades (Blum et al., 1996). This current treatise should
not be considered an exhaustive review but rather a continu-

ation of an important link in genomics and connectomics for
the purpose of future, prudent addiction solutions.

Following the original work by Blum et al. (1990),
which associated the Taq-A1 allele of the dopamine D2 re-
ceptor with severe alcoholism, other researchers have re-
ported controversial or inconsistent findings, some of which
may be attributable to poor screening of controls. An exam-
ple of poor screening can be seen in the work of Creemers
et al. (2011), who reported negative findings relative to the
role of dopaminergic gene polymorphisms in reward-seek-
ing behavior in the Dutch general population. Although cau-
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tioned that the inclusion of subtle Reward Deficiency Syn-
drome (RDS) behaviors in the control group can lead to spu-
rious results, the problem nevertheless persists to this day.

Since 1990, there have been no less than 3738
(PubMed-6-23-14) peer-reviewed articles on various pe-
ripheral and central nervous system (CNS) behaviors and
physiological processes (related to addictions) on the DRD2
gene alone. Understandably, addiction or even the broader
term, RDS, involves very complex gene–environment inter-
action. As such, one would not expect a single gene like the
DRD2 to have an isolated effect. Nevertheless, and despite
several negative studies, there remains a significant body of
evidence positively linking the DRD2 gene polymorphism
with addictive and non-addictive, reward-dependent behav-
iors, including those listed in Table 1.

It has been argued that the significance of the Taq 1A
polymorphism lies in an associated decrease in neurotrans-
mission in the nucleus accumbens leading to reward defi-
ciency. While lower levels of striatal DAD2 receptors have
been reported in imaging studies of subjects with the Taq 1A
polymorphism, the significance of these findings is unclear.
PET studies of subjects with the Taq 1A polymorphism
have reported significantly increased striatal uptake of
18F-6FDOPA, consistent with increased DA synthesis. How-
ever, if there is increased DA synthesis and release, this may
be consistent with a decrease in DAD2 receptors in response
to the increased extracellular DA levels (i.e., due to a de-
crease in striatal D2 auto-receptors). If this theory is correct,
it will contradict the surfeit theory of drug dependence. In-
deed, surfeit concepts have been extended to explain escala-
tion of cocaine abuse, claiming that the increased abuse is
due to increased dopaminergic activity in the nucleus
accumbens. However, recent evidence (Willuhn, Burgeno,
Groblewski & Phillips, 2014) argues against this interpreta-
tion. In fact, these authors argue that the escalation of co-
caine abuse is due to low dopaminergic function. Accord-
ingly, utilizing sophisticated analyses, they argue in favor of

agonistic rather than antagonistic intervention, for treating
addictions.

PROBLEMS AND CONTROVERSY –
DOPAMINERGIC SURFEIT OR DEFICIT?

There is controversy about the associations between dopa-
minergic gene variations, such as the dopamine transporter
gene (DAT) and BMI. Chen et al. (2008) had reported a sig-
nificant, negative correlation between BMI and striatal
DAT1 levels, however, van de Giessen et al. (2013) did not
confirm this association. In this study the selection of
so-called, ‘healthy’ obese subjects casts doubt on the pro-
cess of screening controls for RDS behaviors. In addition,
such a non-association has been reported by Thomsen et al.
(2013), who also used so-called healthy obese subjects.
There are, however, a number of other reports which support
the DAT1 negative association with BMI (Fuemmeler et al.,
2008; Need, Ahmadi, Spector & Goldstein, 2006; Sikora
et al., 2013; Valomon et al., 2014; Wang et al., 2011). The
negative association of DAT1 and BMI is supported by
Danilovich, Mastrandrea, Cataldi and Quattrin (2014), who
demonstrated that methamphetamine, known to block
DAT1, reduces fat and carbohydrate intake.

Another controversy concerns the actual role of BMI as a
biological marker for obesity that – as Shah and Braverman
(2012) clearly pointed out – compares unfavorably with per-
cent body fat. This conclusion was highlighted by Chen et al.
(2012), whereby they found a significant correlation be-
tween carriers of the DRD2 Taq-A1 and higher percent body
fat when compared to carriers of the DRD2 Taq-A2.

The conclusion that sugar addiction may lead to obesity
(Hone-Blanchet & Fecteau, 2014) is also controversial. How-
ever, the evidence seems to favor a bond between Substance
Use Disorders, as clinically categorized in the DSM-5, and
food reward (Brownell, 2012; Gold & Avena, 2013).
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Table 1.

Behavior Studies that link to the DRD2 gene polymorphism

Alcohol dependence Grzywacz, Kucharska-Mazur & Samochowiec, 2008; Munafo, Matheson & Flint, 2007; Pato, Macciardi, Pato,
Verga & Kennedy, 1993; Pinto et al., 2009; Ponce et al., 2003; Smith, Watson, Gates, Ball & Foxcroft, 2008;
F. Wang, Simen, Arias, Lu & Zhang, 2013; T. Y. Wang et al., 2013

Drug dependence Al-Eitan et al., 2012; Barratt, Coller & Somogyi, 2006; Chen et al., 2011; Clarke et al., 2014; Hou & Li, 2009;
Jacobs et al., 2013; Lee et al., 2013; Li, Mao & Wei, 2008; Li, Ma & Beuten, 2004; Ohmoto et al., 2013;
Roussotte, Jahanshad, Hibar, Thompson & for the Alzheimer’s Disease Neuroimaging, 2014; Schuck, Otten,
Engels & Kleinjan, 2014; Sullivan et al., 2013; Suraj Singh, Ghosh & Saraswathy, 2013; Vereczkei et al., 2013;
L. Wang et al., 2013; Xu et al., 2004; Young, Lawford, Nutting & Noble, 2004

Mood disorders Hettinger et al., 2012; Huertas et al., 2010; Jutras-Aswad et al., 2012; Pecina et al., 2013; Tsuchida, Nishimura &
Fukui, 2012; Vaske, Makarios, Boisvert, Beaver & Wright, 2009; Whitmer & Gotlib, 2012; Zai et al., 2012;
Zhang, Hu, Li, Zhang & Chen, 2014; Zhu & Shih, 1997; Zou et al., 2012

Rearing behaviors Bakermans-Kranenburg & van Ijzendoorn, 2011; Beaver & Belsky, 2012; Masarik et al., 2014; Mills-Koonce
et al., 2007

Obesity Alsiö et al., 2014; Anitha, Abraham & Paulose, 2012; Ariza et al., 2013; Blum, Chen, Chen, Rhoades, Prihoda,
Downs, Waite et al., 2008; Cameron et al., 2013; Carpenter, Wong, Li, Noble & Heber, 2013; Chen et al., 2012;
Eny, Corey & El-Sohemy, 2009; Epstein, Paluch, Roemmich & Beecher, 2007; Epstein et al., 2007; Fang et al.,
2005; Hess et al., 2013; Huang, Yu, Zavitsanou, Han & Storlien, 2005; Jablonski, 2011; Nisoli et al., 2007;
Spangler et al., 2004; Winkler et al., 2012

Motivation Trifilieff et al., 2013

Brain metabolism Noble, Gottschalk, Fallon, Ritchie & Wu, 1997

Pathological gambling Gyollai et al., 2014

Attention Deficit Hyperactivity Gold, Blum, Oscar-Berman & Braverman, 2014
Disorder (ADHD)



Blum et al. (2011) discussed transfer of addiction as a
potential problem associated with bariatric , and the work of
Dunn et al. (2010) revealed reduced D2R availability
(hypo-dopaminergic state) following bariatric surgery, sug-
gestive of an increased requirement for self-administered
drugs or behaviors linked to dopaminergic activation. Inter-
estingly, Steele et al. (2010) found lower D2 R availability
preceding bariatric surgery in five obese subjects, compared
to post-surgery increased D2R levels six weeks after sur-
gery. Increased dopamine reception would of course suggest
reduced drug and/or addictive behaviors linked to enhanced
dopaminergic function. However, the question is not re-
solved because of the findings by Dunn et al. (2010), derived
from observations seven weeks after surgery, compared to
six weeks by Steele et al. (2010), that found a downward
trend leading again to a hypo-dopaminergic trait. The hy-
pothesis regarding transfer of addiction seems more likely,
following even longer periods post-bariatric surgery.

While there is evidence for a decreased availability of
D2R in obese subjects (Volkow et al., 2009), there is some
controversy that argues this is only true for severe obesity
(Eisenstein et al., 2013; Kessler, Zald, Ansari, Li & Cowan,
2014). Confounding variables include control cohorts from
which other RDS behaviors have not been excluded, the use
of BMI as a factor may not be appropriate as a phenotype
and mild obesity may not indicate the real disorder. The use
of “severity” in providing a true endophenotype as discussed
by a number of investigators (Blum et al., 1990; Connor,
Young, Lawford, Ritchie & Noble, 2002) underscores the
issue related to “mild cases” as a phenotype. Importantly,
Volkow’s group has since published at least 13 papers sup-
porting their original concept, the low D2R availability in
obesity (Tomasi & Volkow, 2013). On the other hand, low-
ered D2R availability was not found to be associated with
novelty-seeking in obesity (Savage et al., 2014).

There is evidence from Stice’s group that polymor-
phisms in both dopamine D2 and D4 result in a blunted re-
sponse to palatable foods and subsequent weight gain (Stice
& Dagher, 2010; Stice, Davis, Miller & Marti, 2008; Stice,
Spoor, Bohon & Small, 2008; Stice, Spoor, Bohon,
Veldhuizen & Small, 2008; Stice, Yokum, Blum & Bohon,
2010; Stice, Yokum, Bohon, Marti & Smolen, 2010; Stice,
Yokum, Burger, Epstein & Smolen, 2012; Stice, Yokum,
Zald & Dagher, 2011). In their later paper Stice et al. (2012)
used fMRI to show that, in youth, increased striatal dopa-
mine neurotransmission, as a co-variate, may also be a risk
factor for obesity. Certainly, this supports the surfeit dopa-
mine theory proposed by Berridge and Robinson (2000) and
correctly highlights the complexity of eating disorders. An
individual having increased motivation for food may fall
into two categories that support either the deficit or surfeit
theories, in terms of dopaminergic function. However, more
research based upon both genetics and environment
(epigenetics) with consideration of other variables like gen-
der, age of onset, and in terms of “liking & wanting” may be
required to understand these differences (Blum, Gardner,
Oscar-Berman & Gold, 2012; Willuhn et al., 2014).

IS THERE A SOLUTION TO RDS?

At this point, there is no known “cure” or magic pill for all
substance and non-substance, RDS behaviors, especially,
the behavioral subtypes (US FDA-approved, medical-as-
sisted pharmaceuticals for only substance related addic-

tions), while wrongly targeting dopamine-induced euphoria
by antagonistic agents like Naltrexone and Acamprosate.
Understanding the importance of utilizing dopamine agonist
therapy to treat all behavioral addictions, instead of blocking
natural dopaminergic activity seems more prudent in the
long-term. With supporting dopaminergic activity in mind,
this laboratory has developed a complex, putative dopamine
agonist, KB220Z, that has a number of very important
anti-addictive effects (Blum, Chen et al., 2012). As reported
in a detailed review article by Chen et al. (2011), KB220
variants have been shown to enhance brain enkephalin lev-
els in rodents, reduce alcohol-seeking behavior in C57/BL
mice and pharmacogenetically convert ethanol acceptance
in preferring mice to emulate the behavior of non-preferring
mice, such as DBA/2J.

In humans, KB220Z has been reported to reduce drug
and alcohol withdrawal symptomatology exemplified by
lower need for benzodiazepines, reduced days with with-
drawal tremors, evidence of a lower BUD score [building up
to drink] and with no severe depression detected on the Min-
nesota Multiphasic Personality Inventory (MMPI). Patients
in group therapy had reduced stress responses, as measured
by the skin conductance level, and significantly improved
physical scores as well as behavioral, emotional, social and
spiritual (BESS) scores. There was a six-fold decrease in
Against Medical Advice (AMA) rates following detoxifica-
tion, when placebo groups were compared to a KB220 vari-
ant. Healthy volunteers demonstrated enhanced focus (p300
using EEG) after taking the KB220 variant for three months.
There is also evidence of reduced craving for alcohol, her-
oin, cocaine, and nicotine. Also, reductions in inappro-
priate sexual behavior and reduced post-traumatic stress
(PTSD) symptoms such as paraphilia have been reported
(McLaughlin et al., 2013). Quantitative electroencephalog-
raphy (qEEG) studies in humans have found that KB220Z
modulates theta power in anterior cingulate cortex. In absti-
nent heroin addicts a single dose of KB220Z compared to
placebo in a pilot study (Blum, Chen, Chen, Rhoades,
Prihoda, Downs, Bagchi et al., 2008) resulted in activation
of the N. Accumbens (NAc) as well as activation and im-
provement of the prefrontal-cerebellar-occipital neural net-
work. In addition, significantly enhanced compliance to
KB220Z was found in obese patients with the DRD2 A1 al-
lele relative to carriers of the normal compliment of DRD2
receptors using Pearson correlation (Blum, Chen, Chen,
Rhoades, Prihoda, Downs, Bagchi et al., 2008) suggesting
that low dopamine function equates with better outcome
with KB220Z treatment.

GENOMIC AND FUNCTIONAL MECHANISMS
IN RDS

An endeavor is underway to profoundly increase knowledge
about the fundamental neural mechanisms of substance and
non-substance, addictive behaviors. This task is based upon
the new realization that in the mammalian brain there is
complexity in the genomic networks that intimately interact
with functional neural networks. Genes are under the regula-
tory control of epigenetic networks that may constitute a
‘code’ that shapes, and may even define, functional features
of neural networks (Colvis et al., 2005). Failure at the
genomic and epigenomic levels, through hereditary mecha-
nisms or via exposure to environmental insults such as drugs
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of abuse, may impact the relationship between gene regula-
tory networks and widespread brain neural networks. Causal
relationships bridging these genomic and functional levels
are missing and are needed to enable effective treatments
that are tailored to specific individual and population mental
health diseases.

Over the past decade, novel and non-invasive functional
magnetic resonance imaging (fMRI) methods have resulted
in measurement of the brains intrinsic resting state activity,
which is organized as functionally interrelated network
states showing slow synchronous activity (Biswal, van
Kylen & Hyde, 1997). Resting state functional connectivity
(rsFC) is reduced in addiction to several licit and illicit drugs
and in various other forms of addiction (Lu & Stein, 2014).
Increased rsFC in brain reward and memory networks in
both addicted human subjects and animal models was dem-
onstrated using KB220Z, a natural dopaminergic enhancing
complex. The complex developed to normalize hypodopa-
minergic activity referred to as RDS contains ingredients tai-
lored to supplement the specific intermediary steps involved
in neurotransmission within the brains natural reward cas-
cade (Blum, Oscar-Berman et al., 2012). Conditions in
which underlying genomic networks are altered and can
negatively impact the brains intrinsic connectivity within the
reward system can potentially be screened and adjusted with
complex compounds such as KB220Z.

This powerful strategy can be enabled for human appli-
cations, following basic science experiments that apply high
spatial-temporal resolution functional brain imaging, and
genetic interrogation tools. While many laboratories across
the U.S. and abroad are starting to apply optogenetic tools to
examine the relationship between specific neuronal popula-
tions and disease modeling behaviors in rodents, there is a
critical lack of optogenetic studies co-joined with non-inva-
sive high field imaging.

We cannot at this time emphatically state that we have
“hatched the behavioral addiction egg”. We are, however,
beginning to ask the correct questions and we are encour-
aged by this renewed global quest for answers, so that bil-
lions of people caught up in addictive behaviors and process
addictions would someday find a way of “redeeming joy”
and living a life free of addiction and pain.
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