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Anisian Muschelkalk carbonates of the southern Germanic Basin containing silicified ooidal grainstone
are interpreted as evidence of changing pH conditions triggered by increased bioproductivity (marine
phytoplankton) and terrestrial input of plant debris during maximum flooding. Three distinct stages of calcite
ooid replacement by silica were detected. Stage 1 reflects authigenic quartz development during the growth
of the ooids, suggesting a change in the pH–temperature regime of the depositional environment. Stages 2
and 3 are found in silica-rich domains. The composition of silica-rich ooids shows significant Al2O3 and SrO
but no FeO and MnO, indicating that late diagenetic alteration was minor. Silicified interparticle pore space
is characterized by excellent preservation of marine prasinophytes; palynological slides show high
abundance of terrestrial phytoclasts. The implications of our findings for basin dynamics reach from
paleogeography to cyclostratigraphy and sequence stratigraphy, since changes in the seawater chemistry and
sedimentary organic matter distribution reflect both the marine conditions as well as the hinterland. Basin
interior changes might overprint the influence of the Tethys Ocean through the eastern and western gate
areas. Stratigraphically, such changes might enhance marine flooding signals. Ongoing research needs to
address the complex interaction between an intracratonic basin and an open-ocean system by comparing
local and regional biotic and abiotic signals.
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Introduction

Muschelkalk carbonates of the Triassic Germanic Basin, a peripheral basin of the
western Tethys Ocean, cover large parts of central Europe. During the Anisian, the
basin was bordered by landmasses and open to the Tethyan shelf by three tectonically
controlled gates in the south and southeast: the East Carpathian, Silesian−Moravian,
and Western Gates (Fig. 1). The East Carpathian Gate was already active in the Late
Induan, the Silesian−Moravian Gate opened in the Olenekian (Szulc 1999, 2000),
and the westernmost communication to the Tethys was effective during the Anisian
(Feist-Burkhardt et al. 2008a; Götz and Gast 2010). Major transgressive phases are

Fig. 1
Paleogeography of the Lower Muschelkalk Basin during Pelsonian times (from Götz and Feist-Burkhardt
2012, based on Ziegler 1990) and location of the study area. MM – Małopolska Massif; RM – Rhenish
Massif
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recognized by phytoplankton peaks (Götz and Feist-Burkhardt 2000, 2012),
documenting the interaction between a restricted, intracratonic basin and an open-
ocean system. Furthermore, changes in the basin interior are well displayed in lateral
phytoplankton distribution patterns, pointing to a stratified water body in the basin
center and well-oxygenated marginal and gate areas. However, beside the interpreta-
tion of distinct spatial patterns of phytoplankton assemblages reflecting the basin
configuration, the effect of increased bioproductivity and sedimentary organic matter
supply from the basin’s hinterland on the seawater’s pH conditions has not yet been
addressed.

The new data presented herein on silicification of ooidal grainstone during
maximum flooding and organic matter preservation in the Lower Muschelkalk of
Franconia provide new insights into the basin dynamics of the Anisian Muschelkalk
Sea and add important new biogeochemical parameters to constrain an early Mesozoic
epicontinental ocean history.

Stratigraphy

The lithostratigraphic subdivision of the Lower Muschelkalk dates back to the
19th century (Bornemann 1886, 1888) and the current stratigraphic units following the
international nomenclature (Hedberg 1976; Salvador 1994) using formations, mem-
bers, and beds (Fig. 2) were introduced by Hagdorn et al. (1993). The biostratigraphic
framework is based on conodonts (Kozur 1974) and palynomorphs (Heunisch 1999).
Radiometric dating lags behind due to the lack of volcanic ash layers. A sequence
stratigraphic framework was provided by Aigner and Bachmann (1992) and revised by
Szulc (1999); cyclostratigraphy was carried out by Götz (1996, 2002, 2004). The
Muschelkalk stratigraphy of Lower Franconia was studied by Wilczewski (1967) and
Hagdorn et al. (1987); a cyclostratigraphic interpretation is given in Götz and Wertel
(2002).

Material and methods

The Terebratel Beds of the Lower Muschelkalk are well exposed in natural
outcrops as well as in abandoned and active quarries of Lower Franconia (Götz and
Keller 1998) and were intersected in boreholes for raw material exploration (Götz and
Ruckwied 2005). Here, we present sedimentological and palynological data from the
Lower Muschelkalk Terebratel Beds (Terebratelbank Member, Pelsonian) of the
Karlstadt section, exposed at the Klettergarten north of Karlstadt, southern Germany
(Fig. 3). Sedimentological data for the study of silicification of ooidal grainstone
originated from analyses of polished slabs and thin sections. Palynological samples for
investigating the phytoplankton assemblage and sedimentary organic matter content
were prepared using standard palynological processing techniques as described in
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Fig. 2
Stratigraphy of the Lower Muschelkalk in Lower Franconia. L.M. – Lower Muschelkalk, Mb. – Member
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Vidal (1988). Electron probe micro-analyzer data acquisition [backscattered electron
images, quantitative analysis, wavelength dispersive spectroscopy (WDS) element
scans, line analysis, and WDS element maps] was performed at Rhodes University,
Grahamstown, South Africa using a Jeol JXA 8230 Superprobe with four wavelength
dispersive spectrometers. Analytical conditions employed were: acceleration voltage
15 kV, probe current 20 nA, dwell time for element mapping 200 ms and for line
analysis 500 ms with 1 μm step. Mineral phases were analyzed with spot beam size
(<1 μm). Eight elements were selected as most representative for the present study:
Si, Al, K, Ca, Na, Fe, Mg, and Sr. The standards (st.) used for measuring the
characteristic Kα radiations were natural minerals: quartz st. for Si, orthoclase st. for
Al and K, plagioclase An65 st. for Ca, albite st. for Na, fayalite st. for Fe, rhodonite st.
for Mg, and celestine st. for Sr. The diffracting crystals used were: TAP for Si, Al and
Mg; PETJ for K, large crystals with higher sensitivity TAPL for Na and Sr; PETL for
Ca; and LiFL for Fe and Mn. The ZAF correction matrix was used for quantitative
analysis of silicified ooids.

Results

The Terebratel Beds of the Karlstadt section are composed of bioclastic grainstone
revealing distinct layers of ooidal grainstone (Fig. 4). In thin sections, these
layers show silicification of ooids and interparticle silica cement (Fig. 5a–c).

Fig. 3
Location of study area in southern Germany (Lower Franconia)
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Silicified interparticle pore space is characterized by preservation of prasino-
phytes (Fig. 5f). In palynological slides, these prasinophytes were identified as
Cymatiosphaera sp. showing a typical reticulum (Fig. 5d and e).

Analysis of the silicified ooids was performed using high-resolution imaging and
mapping of elements. The element map distribution shows three distinct stages of
calcite ooid replacement by silica: Stage 1 (calcite stage), where small detrital quartz is
present as dispersed grains in the central part of the ooid structure and/or as very
discrete concentric rims of low concentration Si and Al (Fig. 6); Stage 2 (calcite–silica
stage), where silica replaces certain concentric bands in the calcitic ooid structure, and
where the concentric structure is broken by the silica band that is connected to the
exterior of the ooid (Fig. 7); and Stage 3 (silica stage), where thin Ca-rich zones are
still preserved in the structure of the ooid, and where most of it is replaced by silica
(Fig. 8).

Figure 9 shows that Na and K have similar patterns. Furthermore, the analyzed
transect (see section A–B in Fig. 9) shows similar behavior for the following pair of
elements: Ca−Mg, Si−Sr, and Na−K. Other elements, such as Fe, Mn, and Al, do not
show any relevant variations along the A–B section and are therefore not shown here.
The composition of silica-rich ooids (Table 1) shows significant Al2O3 and SrO but no
FeO and MnO.

Discussion

The Terebratelbank Member of the Lower Muschelkalk was previously identified
as recording a third-order maximum flooding zone by independent sedimentological,
paleontological, and geochemical studies (Aigner and Bachmann 1992; Szulc 1999,
2000; Rameil et al. 2000; Götz et al. 2003, 2005; Conradi et al. 2007; Feist-Burkhardt
et al. 2008a; Götz and Török 2008; Götz and Lenhardt 2011). High primary
bioproductivity during maximum flooding is reflected in phytoplankton peaks within
the basin and the gate areas connecting the Germanic Basin with the Tethys shelf.

Fig. 4
Polished slab of ooidal grainstone (Terebratel Bed), Karlstadt section (Lower Franconia)
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Fig. 5
Silicified ooids and prasinophytes preserved in interparticle silicified pore space. (a) Overview showing
ooids and prasinophytes in thin section. (b) Detail of (a) showing the preservation of prasinophytes in the
silicified pore space. (c) Massive occurrence of prasinophytes in silicified interparticle pore space. (d) and
(e) Cymatiosphaera sp. (HF/LF). (f) Detail of (c) highlighting prasinophytes (Cymatiosphaera sp.) in
silicified interparticle pore space
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The well-oxygenated gate areas and basin margins are dominated by phytoplankton of
the Micrhystridium group, whereas the central basin parts show peak abundance of
Veryhachium spp. and prasinophytes including Tasmanites spp. and Cymatiosphaera
spp. (Rameil et al. 2000; Götz and Feist-Burkhardt 2012). Fine-grained, pyrite-bearing
mudstone and a high abundance of prasinophytes in the central basin point to a
stratified water column during deposition of the Terebratelbank Member. While high
input of phytoclasts and plant debris from the landmasses bordering the Germanic
Basin occurs throughout the Lower Muschelkalk, much higher amounts of land plant
particles are detected in marginal and lagoonal settings (Götz et al. 2001).

Sources of silica in marine epicontinental basins are interpreted as biogenic
(e.g., skeletal opal produced by radiolarians, diatoms, and siliceous sponges),
volcano-genetic, and hydrothermal (DeMaster 1981; Packard et al. 2001; Flügel
2004). Another source is dissolved silica deriving from continental chemical weath-
ering (Laschet 1984; Kump et al. 2000). However, extensive ferralitic (humid tropical)

Fig. 6
Stage 1 of calcite ooid replacement by silica: detrital quartz is present as dispersed grains in the central part of
the ooid and/or as very discrete concentric rims of low concentration Si and Al
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weathering is necessary to dissolve silica and can be excluded for the overall arid to
warm-temperate climate during Anisian times (Preto et al. 2010). Volcanic activity is
not recorded during the Anisian of central Europe and limited to the Late Anisian–
Ladinian of the western Tethyan realm (Budai and Haas 1997; Haas and Budai 1999;
Szulc 2000; Feist-Burkhardt et al. 2008b; Kovács et al. 2011). Biogenic producers
such as diatoms can be excluded, since they first occur in the Lower Cretaceous
(Harwood et al. 2007). Radiolarians have not been reported from the shallow
epicontinental Muschelkalk Sea and are still in the recovery phase after the P/T
boundary event (DeWever et al. 2006); reef build-ups (e.g., siliceous sponges) are rare
in the Lower Muschelkalk, including Placunopsis (bivalve) patch reefs in Germany
(Hagdorn et al. 1999) and coral−sponge reefs in Poland (Hagdorn et al. 1999;

Fig. 7
Stage 2 of calcite ooid replacement by silica: silica replaces certain concentric bands in the calcitic ooid
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Szulc 2003). The best developed Pelsonian coral−sponge build-ups occur in Upper
Silesia where they form bioherms of some 2–80 m across and several meters height
(Szulc 2000). The hexactinellid sponges along with scleractinian corals gave rise to the
oldest in situ reefs found in the western Tethys province (Szulc 2007). Further factors
to be considered for the presence of silica in marine settings are the chemistry of the
pore fluid, the pH value of the environment, the presence of clay minerals, and the
amount of organic material (Flügel 2004).

Mechanisms for the replacement of carbonates by silica were discussed as follows:
(1) local lowering of the pH by introducing CO2 into the waters through respiration or
by decomposition of organic matter; the lowering of pH would increase the solubility
of calcite and silica would precipitate instead of the dissolved calcite (e.g., Siever
1962; Knoll 1985; Hesse 1989; Maliva and Siever 1989); (2) oxidation of hydrogen
sulfide, reducing the pH at oxic/anoxic boundaries (Clayton 1986); (3) mixing of
marine and continental waters, leading to dissolution of calcite and precipitation of
silica (Knauth 1979); (4) mixing of saline lake waters with meteoric groundwaters
(e.g., Nickel 1982) in continental environments. Part of the groundwater can be
supersaturated with respect to quartz and undersaturated with respect to calcite;
(5) microbial activity on sediment surfaces (Renaut et al. 1998) where the negatively
charged OH and carboxyl groups on microbial surfaces would allow binding with
silicic acid that can promote silicification.

Fig. 8
Stage 3 of calcite ooid replacement by silica: thin Ca-rich zones are still preserved in the structure of the ooid,
whereas most of it is replaced by silica
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Fig. 9
Backscattered image of zoned ooid (Stage 3), with A–B compositional profile realized byWDS line analysis
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Maliva and Siever (1989) noted that none of the above mechanisms can explain why
the volumetric rate of silica precipitation is equal to the calcite dissolution rate. However,
assuming that the silicification occurs at the calcite–water interface, the replacement
of calcite should be controlled by a quasi-isochoric metasomatic reaction. With pH
increasing above 7, the silicic acid in aqueous solution gradually loses 1 or 2 proton(s) and
forms H3SiO43

− or [H2SiO4]2
−. In this speciation, a high concentration of silicic acid

seems to be in equilibriumwith quartz (the solubility of SiO2 is high).With decreasing pH,
the silicic acid gains the protons and becomes H4SiO4, which is a charge-balanced
compound. It will react with calcite in the following manner:

CaCO3 þ ½H4SiO4� aqueous solution ⇔ SiO2 þ ½H2CO3

þ CaðOHÞ2� aqueous solution

In the studied ooidal grainstone of the Karlstadt section, Stage 1 of the calcite ooid
replacement by silica most probably shows small grains of detrital quartz reprinting
the nuclei of ooids. The low concentration silica present in the concentric bands of the
ooid probably reflects authigenic quartz development during the growth of the ooids
and might suggest a change in the pH–temperature regime of the depositional
environment. Stages 2 and 3 are found in silica-rich domains.

The similar behavior for the element pairs Ca−Mg, Si−Sr, and Na−K suggests that
the Si-rich fluid responsible for ooid replacement was also Sr-rich, and that the fluid

Table 1
Average of 30 electron microprobe analyses of silica-rich ooids

Oxide wt. % StDev (%) DL (ppm)

SiO2 98.399 0.06 70

Al2O3 0.423 1.35 39

FeO 0.000 100 195

MnO 0.000 100 55

MgO 0.014 27.7 40

CaO 0.170 2.34 29

BaO 0.003 20.98 50

SrO 0.478 11.57 72

Na2O 0.034 8.28 24

K2O 0.048 4.46 18

Total 99.569

StDev: analytical standard deviation 1 sigma; DL: detection limit
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replaced Ca−Mg from the calcite. The MgO/CaO ratio is probably related to the initial
Mg/Ca ratio in the replaced calcite.

The similar patterns of Na and K are probably related to the same fluid that
was responsible for calcite replacement by silica. The absence of FeO and MnO in
silica-rich ooids indicates that late diagenetic alteration was minor.

Partial and complete silicification of biogenic or abiogenic carbonate grains and
chert formation have been described from Paleozoic to Cenozoic marine carbonate
systems (e.g., Swett 1965; Zijlstra 1987; Martín Penela and Barragán 1995; Young
et al. 2012). Reports on Muschelkalk chert date back to the 19th century (Seebach
1861; Sandberger 1864; Speyer 1875); it was first studied with respect to its
paleogeographic significance by Trammer (1977) in Poland, where it was reported
from Upper Silesia and the Holy Cross Mountains in papers dating back to the 1930s
[for review see Kwiatkowski (2005) and references therein]. More recently, silicified
oncoidal limestone and chert nodules were described from the Polish Muschelkalk by
Kwiatkowski (2005). Chert nodules are interpreted as originating from early diage-
netic limestone silicification. They occur within lagoonal and evaporitic settings in
distinct horizons of the Lower Muschelkalk succession in Upper Silesia and the Holy
Cross Mountains. The Pelsonian Terebratel Beds represent the only stratigraphic
interval where no silicification is documented in the Polish Muschelkalk. In northern
Switzerland, representing the western gate area during Anisian times, chert nodules are
reported from dolomitic, partly stromatolitic limestone of the uppermost Anisian and
at the Anisian–Ladinian boundary (Jordan 2016; Pietsch et al. 2016); however, no
silicification occurs in the Pelsonian “Wellenmergel” (Kaiseraugst Formation).

The paleogeographic location of the studied Karlstadt section in the southern part of
the Germanic Basin, with close landmasses in the northwest (Rhenish Massif) and
southeast (Vindelician−Bohemian Massif), suggests high primary bioproductivity and
high terrestrial input of plant debris during the deposition of the Terebratel Beds. This
was observed in previous studies by the sedimentary organic matter content and
phytoplankton assemblages of the Terebratel Beds in Lower Franconia (Götz and
Ruckwied 2005). High organic matter content in a marine setting on the other hand has
an impact on the pH of the water column which in turn favors silica precipitation. This
effect is reflected in the Terebratel Bed samples from the Karlstadt section and
demonstrates the high variability in seawater chemistry and basin dynamics of the
Anisian Muschelkalk. In the southern basin, high organic matter content temporarily
led to pH changes and silica precipitation and calcite replacement, whereas in the
central part of the basin, a stratified water column developed, favoring the deposition
of pyrite-bearing mudstone in the lower oxygen-depleted layer and prasinophyte
blooms in the upper oxygenic layer (Rameil et al. 2000). Marginal sections close to the
Rhenish Massif (Götz et al. 2001) show a much more diverse phytoplankton
assemblage of acritarchs and prasinophytes, and a high phytoclast input from the
hinterland; however, no silicified particles were encountered. The same applies for the
well-oxygenated gate areas (Götz and Feist-Burkhardt 2012), where no silicification
occurs during maximum flooding in the Pelsonian (Kwiatkowski 2005; Jordan 2016).
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These different patterns in palynofacies composition seem to influence the pH
conditions in the different parts of the basin, and thus strong local effects on the
basin dynamics must be assumed. The complex interaction between the hydrodynamic
regimes within the basin and gate areas, related to local differences in water depths
(e.g., shoals, restricted bays), and times of lower or higher bioproductivity as well as
lower or higher terrestrial influx of organic debris, seem to intensify local processes
which in turn lead to local patterns in seawater chemistry. Stratigraphically, trans-
gressive and maximum flooding phases are marked by increased bioproductivity; in
the case of close landmasses, terrestrial input of plant debris as well as palynomorphs,
especially wind-dispersed pollen grains, is high. Even slightly changing pH values,
triggered by variations in organic matter content, are thus most probably responsible
for silica precipitation and calcite replacement of non-biogenic components such as
ooids in certain parts of the basin and at certain times. Independent of the mechanism
for replacement of carbonates by silica, any consuming of carbonate will produce CO2,
which in turn triggers basin interior and regional paleoenvironmental changes.
Ultimately, a complex superposition of local and regional effects seems to have
caused distinct basinal patterns during Mid-Anisian times.

Conclusions

The present study of the Terebratel Beds adds another puzzle piece to decipher the
complex basin dynamics of the Germanic Basin during Anisian times. The effect of
increased bioproductivity (marine phytoplankton) and sedimentary organic matter
supply from the basin’s hinterland on the seawater’s pH conditions has been so far
overlooked. Changes in organic matter seem to have a strong influence on basin
dynamics. Spatial basin interior changes might even overprint the influence of the
Tethys Ocean through the eastern and western gate areas. Stratigraphically, such
changes might enhance the marine flooding signal. Thus, silicified grainstone and
sedimentary organic matter preservation are well suited as indicators of flooding
phases and might add to the cyclostratigraphic and sequence stratigraphic interpreta-
tion of epicontinental seas.

To understand the complex interaction between an intracratonic basin and an
open-ocean system during the early stage of the break-up of Pangea, integrated
sedimentological−paleontological−geochemical studies, encompassing the western
and easternmost Anisian Muschelkalk series in Spain and southeastern Europe, are
needed in the ongoing research.
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