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Abstract. The Negative Differential Conductivity and Transient Negative Mobility effects in xenon gas
are analyzed by a first-principles particle simulation technique and via an approximate solution of the
Boltzmann transport equation (BE). The particle simulation method is devoid of the approximations that
are traditionally adopted in the BE solutions in which: (i) the distribution function is searched for in a two-
term form; (ii) the Coulomb part of the collision integral for the anisotropic part of the distribution function
is neglected; (iii) Coulomb collisions are treated as binary events; and (iv) the range of the electron-electron
interaction is limited to a cutoff distance. The results obtained from the two methods are, for both effects,
in good qualitative agreement, small differences are attributed to the approximations listed above.

1 Introduction

Charged particle swarms have been investigated exten-
sively during the past decades both experimentally and
theoretically, see e.g. [1–8]. The experiments, in which
the transport of a (usually low density) particle cloud is
studied, yield transport coefficients, like the drift velocity,
diffusion coefficients, as well as reaction (excitation and
ionization) rate coefficients. In theoretical/computational
studies electron transport phenomena can be addressed
using kinetic approaches [4], as well as fluid analysis [7].
The kinetic approaches yield, as a principal result, the
central quantity of kinetic theory, the velocity distribution
function VDF, f(r,v, t), from which the transport coef-
ficients can be derived. Such calculations can also assist
improving the accuracy of the cross section sets, e.g. [9].

The computational methods of kinetic theory can be
split into two major groups. Particle-based methods trace
a large number of individual particles in the external
field(s) [10–13] and via proper sampling schemes they al-
low the construction of f(r,v, t) and the computation of
swarm transport parameters. Boltzmann equation (BE)
approaches [14–18] use different types of expansions of
the VDF and solve the set of the resulting differential
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equations. Once the VDF is found, the transport parame-
ters can readily be derived [14–18]. The most widespread
approach, the “two-term approximation”, retains only the
first two terms in the Legendre polynomial expansion
of the VDF, and is therefore limited to scenarios where
the VDF has a small anisotropy. Solvers based on this
approximation are available even as freeware resources,
e.g. [19,20].

While in most swarm studies the very low density of
the charged particles justifies neglecting the interaction
between them, at higher particle densities, e.g., in plasmas
and in particle beams in gases, such interactions may be-
come appreciable. Considering electrons, their interaction
in a plasma can be accounted for by adopting a screened
Coulomb potential, because of the presence of ions. How-
ever, in a beam, where no oppositely charged species are
present, the unscreened 1/r Coulomb potential has to be
considered. The solution schemes of the Boltzmann equa-
tion (and also of particle methods) developed to handle
electron-electron collisions predominantly focus on plasma
conditions, i.e., include screening of the potential. Besides
this, they commonly adopt a series of approximations [21]:
(i) search for the distribution function in the form of
two terms (“two-term approximation”); (ii) neglect the
Coulomb part of the collision integral for the anisotropic
part of the distribution function; (iii) treat Coulomb col-
lisions as binary events; and (iv) truncate the range of
the electron-electron interaction beyond a characteristic
distance. To our best knowledge no efforts have been made
recently to avoid these approximations in the solutions of
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the BE, except of the notable work of Hagelaar [22], who
introduced the Coulomb term for the anisotropic part of
the distribution function into the two-term solution of the
BE. This study has shown that at specific conditions this
term may have a significant effect on the results, e.g., on
the computed electron mobility.

It is plausible that the validity of the approximations
listed above can only be checked with an approach that
is free of these and makes it possible to compute the
VDF without any a priori assumptions. Such a particle-
based method relying on first principles has recently
been presented in reference [23]. This method has been
cross-checked with BE solutions for the scenario of the
“bistabilty” of the Electron Energy Distribution Function
(EEDF) [21], an effect that allows the formation of dis-
tinctly different EEDF-s at exactly same conditions. While
the linearity of the “pure” BE excludes the possibility of
such multiple solutions, electron-electron collisions change
the BE to be nonlinear, which then may have two (or, in
principle, multiple) solutions. A generally good agreement
was found between the results of the two approaches, with
small differences, which were attributed to the approxima-
tions adopted in the BE solution scheme, as well as to the
(statistical) noise present in the particle simulation [21].

In this paper we focus on two intriguing effects: the
negative differential conductivity (NDC) and the transient
negative mobility (TNM) of electrons in a neutral back-
ground gas. In the first case electron-electron (e-e) colli-
sions cause the effect, while in the second case e-e collisions
lead to the disappearance of the effect. Our motivation is
to confirm the predictions of the approximate BE analysis
regarding these effects, via studying them as well by the
first-principles particle simulation approach [23].

The physical system considered here is a swarm of
electrons in a gas, where no oppositely charged species
are present. The motion of the electrons is followed un-
der the influence of a homogeneous electric field, in infi-
nite space. As it will be discussed in more details later
(Sect. 3.2), at fixed gas temperature (Tg) the system is
completely characterized by three parameters: (i) the gas
number density N ; (ii) the electron number density, ne;
and (iii) the electric field, E. Alternatively, the param-
eters N , η = ne/N (electron to neutral number density
ratio), and E/N (reduced electric field) can also be used.

The physical backgrounds of the two effects investi-
gated are introduced in Section 2, while Section 3 outlines
the computational methods: the particle simulation and
the Boltzmann equation approaches. Section 4 presents
the results and Section 5 gives a short summary.

2 Effects investigated

2.1 Negative differential conductivity

Negative differential conductivity (NDC) in gases is de-
fined as the decrease of the electron drift velocity with
increasing electric field. During the last few decades this
phenomenon was comprehensively studied both exper-
imentally and theoretically; reviews of the studies of

the NDC effect are given in references [24,25]. Here we
briefly discuss some specific features of the effect, which
are important in the context of the present paper.

The conditions under which NDC can be realized were
carefully analyzed in references [7,25] and the occurrence
of the effect was explained in terms of the special fea-
tures of the elastic and inelastic collision cross sections of
electrons with the gas. NDC may occur when an increase
in the reduced electric field E/N leads to an abnormally
large increase in the elastic collision frequency, which re-
sults in a considerable increase in the rate of the random-
ization of the directions of the electron velocity vectors.
In this case the electron drift velocity may decrease even
though the mean electron energy grows. According to ref-
erences [7,25], such a situation can be realized in gases
(gas mixtures) in which (i) the momentum transfer cross-
section, σm(ε), rises with energy, ε, in a certain energy
range and (ii) there exist inelastic energy loss processes in
the same range of energy.

Naturally, whether or not the NDC effect occurs de-
pends on the combination of elastic and inelastic cross
sections. The approximate quantitative criterion for the
existence of the effect derived in reference [7] is:

1 +
dΩ

dε
< 0, Ω(ε) =

M

2m
εin

σin(ε)
σm(ε)

S(ε) (1)

where M is the mass of atom (or molecule), m is the
mass of electron, ε is the mean electron energy, σin is the
cross section for the inelastic process with the threshold
energy εin and S is a factor, which varies between 0 and 1
for ε ≪ εin and ε ≫ εin, respectively, and has the effect
of “smoothing” the rapid jump in σin(ε) in the vicinity of
the threshold (see Ref. [7] for more details).

The majority of NDC scenarios was observed either in
heavy rare gases with small admixtures of molecular gases,
e.g., Ar:CO, Ar:N2, or in pure molecular gases such as CF4

and CH4 (see Refs. [24,25] for more details). The momen-
tum transfer cross section of electron collisions with atoms
of heavy rare gases and with the molecules listed above
(CF4 and CH4) possesses a Ramsauer-Townsend (R-T)
minimum and grows sharply with energy above this min-
imum. The second condition, the presence of inelastic en-
ergy losses, is provided by the excitation of vibrational
levels of molecules. It should be noted that, according to
the calculations presented in references [26–28], the NDC
effect can also be induced by electron attachment and/or
electron impact ionization processes.

Though inelastic or non-conservative collisions are gen-
erally needed for the appearance of the NDC, there are at
least three exceptions from this rule.

The first is that NDC was predicted in Xe:He and
Kr:He mixtures [29,30]. The qualitative explanation of
the effect was as follows: as He atoms are light, elec-
trons lose rather noticeable portion of energy in elas-
tic collisions with He atoms. This way elastic collisions
with He atoms in Xe:He and Kr:He mixtures play a role
similar to inelastic collisions in rare gas-molecular gas
mixtures. The quantitative criterion for the NDC effect
in mixtures of rare gases was derived in reference [26].
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In reference [31] the observation of the effect was reported
in Xe:He mixtures.

The second case is the NDC in dense gases or liquids.
In this case the effect arises purely as a consequence of the
coherent scattering of electrons from a structured material
(see Ref. [32] and references therein).

The third case is that NDC was predicted in pure
heavy rare gases at conditions when the electron to neu-
tral number density is relatively high [33], e.g., in Xe at
η = ne/N > 4 × 10−9. While the electron drift velocity
in heavy rare gases is “normally” a monotonic increas-
ing function of the reduced electric field, electron-electron
collisions have been found to change this behavior and to
result in the appearance of the NDC effect. The origin
of the effect has been attributed to specific changes in the
shape of the electron energy distribution function (EEDF)
caused by e-e collisions (see Refs. [24,33] for more details).
The possibility of the experimental verification of the NDC
phenomenon in Xe was analyzed in reference [34]. How-
ever, so far there were no experimental observations of
the effect in pure heavy rare gases and the theoretical
predictions were based only on Boltzmann equation anal-
ysis that includes the approximations listed in Section 1.
It is also worth noting that in discharge plasmas, where
a high concentration of excited and charged particles is
present, superelastic collisions of electrons with excited
atoms and molecules, as well as Coulomb collisions may
have a significant impact on the NDC effect (see comments
in Ref. [24]).

2.2 Transient negative mobility

Transient negative mobility (TNM) is a scenario when the
temporal change of the EEDF shape is much faster than
the variation of the electron number density and the elec-
tron mobility becomes negative during the relaxation of
the EEDF.

The conditions necessary for the electron mobility, µe,
to be negative − discussed in several papers − are derived
from the two equivalent expressions:

µe = − e

3N

√
2
m

∞∫

0

ε

σm(ε)
df0(ε)

dε
dε (2a)

=
e

3N

√
2
m

∞∫

0

f0(ε)
d

dε

[
ε

σm(ε)

]
dε, (2b)

where e and m are the charge (absolute value) and the
mass of an electron and f0(ε) is isotropic part of the
EEDF, which is normalized as:

∞∫

0

√
εf0(ε)dε = 1.

We note that (2b) has been derived by integrating (2a) by
parts.

The first condition for the appearance of the negative
mobility (see Eq. (2a)) is df0/dε > 0 in a certain energy
range, implying that f0(ε) should have a local maximum
at a particular (nonzero) energy. The distribution func-
tion with such properties is called to have an “inverse
shape”. The second condition (see Eq. (2b)) is that the
inequality d(ε/σm(ε))/dε < 0 should be satisfied, which
means that σm(ε) should increase faster than linearly with
energy. Note that both conditions are necessary but not
sufficient for the electron mobility to be negative.

To understand the physical nature of the appear-
ance of negative mobility let us suppose that f0(ε) is a
delta function located at an energy, where the condition
d(ε/σm(ε))/dε < 0 is met. Electrons in the gas can be di-
vided into two groups: (i) moving against and (ii) along
the direction of the electric field. The first group gains en-
ergy from the electric field. The elastic collision frequency
for these electrons increases (since σm(ε) sharply grows
with energy), and the velocity direction is quickly random-
ized, which leads to decrease in the mean velocity against
the electric field. On the contrary, electrons in the second
group lose their energy, the elastic collision frequency for
these electrons decreases, and the mean velocity along the
electric field grows. As a result, a situation may be realized
when the average electron velocity (drift velocity) is along
the electric field, i.e. the electron mobility is negative.

The required, faster-than-linear increase of σm(ε) takes
place for heavy rare gases in the energy range above the
R-T minimum. For this reason, heavy rare gases were con-
sidered to be the main components of the gas mixtures in
all papers devoted to studies of negative electron mobil-
ity. The distribution function with “inverse shape” (as de-
fined above) can form and thus negative electron mobility
can appear under various physical conditions: in plasmas
of heavy rare gases during EEDF relaxation (TNM), in
steady or decaying plasmas of heavy rare gases with elec-
tronegative admixture, as well as in optically excited plas-
mas of heavy rare gases with admixtures of metal atoms
(see the reviews [24,35] and references therein).

The TNM phenomenon was mentioned first in refer-
ences [36,37], where the time evolution of the EEDF in an
electric field in Ar, Kr and Xe was studied theoretically.
Assuming an initial delta function shape for f0(ε) located
at a given energy ϵ0, it was found that the electron mobil-
ity in xenon is negative within a short time interval during
the EEDF relaxation. Later, TNM was predicted in calcu-
lations of the EEDF time-variation in Ar after switching
off the external electric field [38]. There, the initial f0(ε)
was taken to be equal to the steady state EEDF in the ini-
tial electric field, i.e., it was not of an “inverse shape”. In
this case, an EEDF of inverse shape was formed during the
course of the relaxation process; the TNM effect was found
to appear at E/N ≥ 0.15 Td. In reference [38] no calcula-
tions were performed for Kr and Xe, but it was stated that
the TNM effect should take place in these gases, too. Such
calculations for Xe were carried out in references [35,39],
where the reduced electric field was switched from a rel-
atively high (1−5 Td) to a low (0.01 Td) value. It was
shown that during the EEDF relaxation there exists a



Page 4 of 11 Eur. Phys. J. D (2016) 70: 135

time interval where the electron mobility is negative. The
TNM effect was also numerically studied in reference [40]
(for pure Xe) and [41] (for Xe:Cs mixture), in which the
initial f0(ε) was assumed to be a narrow Gaussian distri-
bution around a certain energy.

In an experimental demonstration of the effect [42],
the displacement current resulting from the motion of
electrons and ions following the ionization of the gas
(Xe, 20 atm) between two parallel plate electrodes by a
short (10 ns) X-ray pulse was measured. At a low elec-
tric field of 1.16 × 10−3 Td applied across the electrodes
the measured current was found to be negative during
∼10 ns after the end of the ionizing pulse. Since elec-
trons are the main charge carriers in the ionized gas and
the electron removal processes were negligible within the
time interval considered (∼100 ns) the measured current
was assumed to be proportional to the transient negative
electron mobility [43].

In most of the theoretical papers devoted to the TNM
effect the electron concentration was assumed to be small
and e-e collisions were not taken into account in the cal-
culations. However, the inverse-shaped distribution func-
tion needed for the appearance of the effect differs funda-
mentally from the Maxwellian function, and one expects
that e-e collisions shall have appreciable influence on the
EEDF even at low ionization degrees. The influence of
e-e collisions on the EEDF shape and the value of tran-
sient electron mobility was studied in reference [39] for
the case of Xe. It was shown that the TNM effect disap-
pears at ne/N ≥ 10−8. Let us note that this theoretical
prediction was based on the Boltzmann equation analysis
(that includes the approximations listed in Sect. 1) and the
possible effects of the approximations involved remained
unchecked.

3 Computational methods

Below we give a brief description of the methods used here:
the particle simulation scheme is presented in Section 3.1,
while the solution of the Boltzmann equation is discussed
in Section 3.2. A more detailed description of the two
computational approaches can be found in reference [21].

3.1 Particle simulation

The simulation scheme is based on a combination of a
Molecular Dynamics (MD) technique and a Monte Carlo
(MC) approach [23]. The MD part describes the many-
body interactions driven by the inter-particle Coulomb po-
tential within the classical electron gas, while the MC part
handles the interaction of the electron gas with the back-
ground (atomic) gas. We consider a fixed number of elec-
trons, (at the relatively low reduced electric fields adopted
here ionization is very unlikely). The equation of motion
of the ith electron is:

m
d2ri

dt2
=
∑

i̸=j

Fij − eE. (3)

The sum on the right hand side represents the force ex-
erted on particle i by all other (j ̸= i) particles and their
periodic images located in spatial replicas of the simula-
tion box. These images have to be included in the proper
determination of the interparticle forces in the case of the
un-truncated, infinite-range Coulomb potential. Note that
for our conditions no screening of the potential takes place
due to the absence of oppositely charged species. This
summation is a key issue and needs a special approach;
our choice is the Particle-Particle Particle-Mesh (PPPM)
algorithm, described in details in reference [44]. The sec-
ond term on the right hand side of the above equation is
a contribution due to the external electric field.

The equations of motion of the electrons are numer-
ically integrated with a discrete time step ∆t, for which
the (upper) limit is defined by the stability of the integra-
tion of the equations of motion in the case of the closest
approach of two electrons, rmin = e2/(4πϵ0εmax). Here
εmax is a pre-defined maximum energy [44], which has to
be chosen carefully, to ensure that the probability of find-
ing electrons with ε > εmax is vanishingly small at the
conditions considered.

The electron gas and the background gas interact via
e− + Xe collisions. The probability of an e− + Xe collision
during a time step ∆t is calculated as:

Pcoll = 1 − exp[−nσtot(g)g∆t], (4)

where σtot is the total scattering cross section, g = |g|,
with g = v − V being the relative velocity between the
electron and a Xe atom with a velocity V randomly cho-
sen from a Maxwellian background of gas atoms having
a temperature Tg. This probability is calculated for each
electron in each time step, and decision about the occur-
rence of a collision is made by comparing Pcoll with a ran-
dom number. Another random number is used to select
that actual process to be executed, based on the values of
the respective cross sections of the individual processes at
the actual value of the relative energy of the collision part-
ners [10–13]. Collisions are executed in the center-of-mass
frame, and are considered to be isotropic.

The simulations starts from a random particle config-
uration, the equilibration of the system is monitored by
observing the velocity moments of the VDF as a func-
tion of time. Measurements in the steady state are started
when these moments have acquired stable values [23].

3.2 Solution of the Boltzmann equation

The spatially homogeneous Boltzmann equation for elec-
trons is:

∂f(v)
∂t

− eE
m

∇vf(v) = C, (5)

where C is the collision integral, which, in the present
study, accounts for the following processes: elastic scatter-
ing of electrons from atoms (the corresponding part of the
collision integral is designated as Cm), excitation of elec-
tronic states and ionization of atoms by electron impact
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from the ground state (Cin), as well as electron-electron
collisions (Ce): C = Cm + Cin + Ce.

The conventional method of solving equation (5) is
based on the expansion of the distribution function f(v) in
Legendre polynomials, Pn(cosΘ). Retaining the two first
terms only we arrive at the two-term approximation:

f(v) = f0(v) + f1(v) cosΘ, (6)

where v is the magnitude of the velocity, Θ is the angle
between v and −E, f0(v) is the symmetrical (isotropic)
part of the distribution function and f1(v) (the anisotropic
part) describes the directed motion of the electrons along
the electric field. The substitution of expansion (6) into
equation (5) leads to:

∂f0

∂t
− eE

3mv2

∂

∂v
(v2f1) = C0,m + C0,in + C0,e (7)

and
∂f1

∂t
− eE

m

∂f0

∂v
= C1,m + C1,in + C1,e. (8)

The collision integrals C0,m and C1,m can be written
as [45,46]:

C0,m =
1

2v2

∂

∂v

[
2m

M
νmv2

(
kBTg

m

∂f0

∂v
+ vf0

)]
, (9)

C1,m = −νmf1, (10)

where νm = Nσmv is the momentum transfer frequency
and δ = 2m/M is the average fraction of the energy lost
by the electrons in one elastic collision with an atom (M
is the mass of the gas atom). The rate of the electron
energy loss due to elastic collisions is characterized by the
frequency νu = δνm.

In the present work the ionization of atoms by elec-
tron impact is treated as a conservative process, i.e., as
an excitation of an electronic state, of which the energy
is equal to the ionization potential. All inelastic processes
are supposed to result in isotropic scattering. With these
assumptions the collision integrals C0,in and C1,in can be
written as [47,48]:

C0,in =
1
v2

∑

k

[
f0(vk)v2

kν[k]
in (vk) − f0(v)v2ν[k]

in (v)
]
, (11)

C1,in = −
∑

k

ν[k]
in f1, (12)

where ν[k]
in = Nσ[k]

in v is the frequency of the excitation
of kth electronic state (σ[k]

in is the corresponding cross
section), εk is the energy of kth electronic state, and
vk =

√
v2 + 2εk/m.

It is known that in the case of Coulomb collisions the
calculation of the pair-collision frequency encounters a dis-
tinctive problem, namely, the logarithmic divergence of
the frequency at small scattering angles. To overcome this
problem it is assumed that the Coulomb potential acts

only up to a certain finite distance rmax. Then the expres-
sion for the term S0,e is written as follows [45–47]:

S0,e =
1
v2

∂

∂v

{
v2νe

[
A1(f0)vf0 + A2(f0)

∂f0

∂v

]}
, (13)

A1(f0) = 4π

∫ v

0
(v′)2f0(v′)dv′, (14)

A2(f0) =
4π

3

[∫ v

0
(v′)4f0(v′)dv′ + v3

∫ ∞

v
v′f0(v′)dv′

]
,

(15)

where f0(v) is normalized as:

4π

∫ ∞

0
v2f0(v)dv = 1

and

νe = 2πne

(
e2

4πϵ0m

)2 1
v3

ln

[
1 +

(
rmax

r0

)2
]

, (16)

r0 =
e2

4πϵ0mv2
.

The value of r0 is usually estimated as r0 = e2/4πϵ02ε
in the calculations, where ε is the mean electron energy.
As to the cutoff distance, for the case of plasmas it is
generally assumed that rmax is equal to the Debye length.
For the case of swarm conditions considered here we use
the approximation that the cutoff distance is equal to the
half of the average distance between the electrons:

rmax = 0.5n−1/3
e . (17)

The physical ground of this approximation is as fol-
lows [21]. If the impact parameter (of test electron relative
to a given electron) is higher than the half the average dis-
tance between electrons in the gas, then the influence of
this electron on the test one becomes weaker than the in-
fluence of the neighboring one. Note that in an ideal elec-
tron gas rmax/r0 = ε/(e2/4πϵ0n−3

e ) ≫ 1 and the “1” in
the expression under the logarithm in equation (16) can
be omitted.

The term S1,e in equation (4), it is very complex (see
comments in Refs. [45,46]) and, as a rule, it is neglected
assuming that νe ≪ νm. To our best knowledge, the influ-
ence of this term on the EEDF shape and plasma charac-
teristics was analyzed in a recent paper only [22]. In the
present work the term S1,e is neglected. Moreover, if the
characteristic time of the changes of the plasma parame-
ters is essentially greater than ν−1

m , the time derivative in
equation (8) can be omitted, resulting in:

f1 =
eE

m(νm +
∑

k ν[k]
in )

∂f0

∂v
, (18)

while for f0 we arrive at

∂f0

∂t
− eE

3mv2

∂

∂v

(
v2 eE

m(νm +
∑

k ν[k]
in )

∂f0

∂v

)

= C0,m + C0,in + C0,e. (19)
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It follows from equation (19) that, at fixed gas tempera-
ture and in the absence of e-e collisions, the parameter for
the steady state solution of equation (19) is the reduced
electric field, E/N . If the e-e collisions are taken into ac-
count, there are three parameters: E/N , ne/N and ne (or,
equivalently, E, N , and ne). The electron number density
is an independent parameter since the logarithmic term in
equation (16) (in the Coulomb logarithm) depends on ne.
Actually, at fixed E/N and ne/N values the dependence
of f0 on ne is rather weak, since ne is under the logarithm.

To obtain its numerical solution, equation (18) it is
rewritten with energy as a variable. The steady-state equa-
tion is solved by an iteration method similar to that de-
scribed in references [49,50]. In the case of calculation
of the time-dependent solution of the BE the time step
should be as small as ∆t ≪ ν−1

u and ∆t ≪ ν−1
e , where

νu is the frequency, which characterizes the rate of the
electron energy loss due to elastic and inelastic collisions.

4 Results

Below we present our computational results for the two ef-
fects investigated. The results for the Negative Differential
Conductivity are discussed in Section 4.1, while the Neg-
ative Transient Mobility occurring during the relaxation
of the electron swarm, induced by a sudden change of the
external electric field, is analyzed in Section 4.2. All calcu-
lations adopt the cross sections given in references [51,52].

4.1 Negative differential conductivity

The swarm characteristics are studied at gas pressures
of p = 1 atm and 10 atm, at a fixed temperature of
Tg = 300 K (that defines the gas number density N),
for different values of the electron to gas number den-
sity ratio η. Figure 1 shows the electron drift velocity at
p = 1 atm, as a function of the reduced electric field, E/N ,
between 0.1 Td and 10 Td. The particle simulations have
been carried out with 500 electrons. At 1 atm pressure the
data points originate from runs comprising 8 × 108 mea-
surement time steps (which follow an initialization period
during which the stationary state is established). To define
the simulation time step we adopt a maximum energy (see
Sect. 3.1) of εmax ∼ 10 eV, which leads to ∆t ∼ 10−16 s.
Such a short time step results in very demanding compu-
tations, the computational speed is typically ∼1 ns/day,
on a single CPU. The above number of time steps corre-
sponds to about 30 days of runtime on a single CPU for
each data point. In the calculations at 10 atm pressure (see
below) 4 × 108 measurement time steps were executed.

In the absence of electron-electron collisions the drift
velocity vd is a monotonically increasing function of E/N ,
the particle simulation and BE results agree well with
each other, as well as with the experimental results of
reference [53]. With e-e interactions included, our results
cover electron to gas density ratios 10−7 ≤ η ≤ 10−5. A
pronounced negative slope of the vd(E/N) curve − indi-
cating NDC − shows up at density ratios of η = 10−7
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Fig. 1. Drift velocity of the electrons in Xe as a function of the
reduced electric field, at p = 1 atm and Tg = 300 K, for differ-
ent electron to neutral density ratios (η). The source of exper-
imental data is reference [53]. BE: solutions of the Boltzmann
equation, SIM: results of the particle simulation.

and 10−6, while the NDC effect disappears at the high-
est electron density of η = 10−5. The results obtained by
our two methods are in a good agreement, no systematic
deviations can be found, considering the scattering of the
data points (due to limitations of the statistics) obtained
from the particle simulation. This confirms that for these
conditions the approximations adopted in the BE solution
are justified.

It is worth mentioning that the strongest effect of the
e-e interactions appears at low E/N , while at 10 Td the
drift velocity is insensitive on η unless it reaches a high
value. A similar behavior is found for the EEDF-s com-
puted with the particle simulation method for the differ-
ent conditions (for p = 1 atm). Figure 2a shows a series
of EEDF-s obtained for η = 0, for different E/N values,
while Figure 2b shows a similar set of EEDF-s obtained
at η = 10−6. A pronounced effect of the e-e interactions −
Maxwellization of the EEDF − is well visible at the low
E/N conditions in Figure 2b. With increasing electric field
this effect diminishes as the electron energy gain from the
electric field starts to be balanced by inelastic collisions;
at E/N = 10 Td, e.g., the change of the EEDF due to e-e
collisions is negligible at η = 10−6, cf. Figures 2a and 2b.

In contrast with the pronounced effect of e-e interac-
tion on the drift velocity, the mean electron energy, ⟨ε⟩
is less influenced by this effect. As Figure 3 displays, the
increase of ⟨ε⟩ is monotonic for all values of η covered here
(recall the discussion of the physical basis of the effect in
Sect. 2.1). It is worth noting, however, that at low E/N
values the e-e collisions increase the mean electron energy,
while an opposite effect is found above E/N ∼ 2−3 Td.

The e-e interactions always lead to a distortion of
the EEDF towards Maxwellian, depending on the shape
of the EEDF, however, this tendency may have oppo-
site consequences: (i) the formation of a high energy tail
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Fig. 2. EEDF-s in Xe (results of the particle simulation) as
a function of the reduced electric field, for (a) η = 0 and (a)
η = 10−6, at p = 1 atm. The legend in (a) holds for both
panels.

of the EEDF, resulting from this Maxwellization may in-
crease ⟨ε⟩ if the EEDF is initially confined at low energies;
(ii) whenever the EEDF has a high population at medium
energies (at several eV-s), this population may decrease
due to the Maxwellization, and consequently, ⟨ε⟩ may de-
crease. The increase of ⟨ε⟩ at low E/N can be explained by
the first effect (see Fig. 2b). At high E/N , e.g., at 10 Td,
however, the second scenario takes place, the Maxwelliza-
tion depopulates the EEDF in the range of medium ener-
gies (4−9 eV) thereby decreasing the mean energy.

The effect of e-e interactions on the drift velocity at the
higher pressure of p = 10 atm (and Tg = 300 K) is demon-
strated in Figure 4. This figure also shows data obtained
at η = 10−4. At this high value of the density ratio, as well
as at η = 10−5 the drift velocity is a monotonic function
of E/N , while at η = 10−6 and η = 10−7 the NDC effect is
clearly observed. The data obtained from the BE solution
and the particle simulations show the same trend, but
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Fig. 3. Mean energy of the electrons as a function of the re-
duced electric field, at p = 1 atm and different electron to neu-
tral density ratios (η). BE: solutions of the Boltzmann equa-
tion, SIM: results of the particle simulation.
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Fig. 4. Drift velocity of the electrons in Xe as a function of
the reduced electric field, at p = 10 atm and different electron
to neutral density ratios (η). BE: solutions of the Boltzmann
equation, SIM: results of the particle simulation.

differ systematically: the particle simulations yield lower
values of vd. The reason of this discrepancy at these condi-
tions − considering the low noise of the simulation data −
should be searched for in the approximations adopted in
the solution scheme of the BE.

It is noted that at such a high pressure the electron
density is rather high as well, e.g., ne = 2.45 × 1021 m−3,
at η = 10−5. At such densities the electron gas becomes
increasingly non-ideal, as indicated by the development of
correlations between the positions of the electrons, which
can be examined (quantified) by the pair distribution
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Fig. 5. Pair distribution functions of electrons in Xe at p =
10 atm, at E/N = 3 Td and different electron to neutral den-
sity ratios (η). The distance r is normalized by the Wigner-
Seitz radius a = (4πne/3)

−1/3. The dotted horizontal line at
g(r) = 1 corresponds to an ideal gas.

function, g(r), that gives the density distribution of par-
ticles around a test particle, compared to a uniform dis-
tribution, characteristic for an ideal gas. Figure 5 shows
the g(r) functions computed in the particle simulations
for different η values, at p = 10 atm and E/N = 3 Td.
The development of a “correlation hole” at low particle
separations, due to the increasing role of the inter-particle
potential energy is clearly seen with increasing η. The non-
ideal nature of the electron gas is not captured in the BE
solution scheme, so this effect might contribute to the dif-
ferences seen in the drift velocity data, although the elec-
tron gas is only slightly non-ideal even at η = 10−4, where
the mean potential (pair interaction) energy/mean kinetic
energy ratio is in the order of 0.02.

The behavior of the mean electron energy, ⟨ε⟩, as a
function of E/N and η is shown in Figure 6 for p = 10 atm.
At high electric fields the decrease of the mean energy −
caused by the depopulation of the EEDF at medium en-
ergies − is more pronounced as compared to the case of
p = 1 atm (cf. Fig. 3). At this high pressure the de-
pendence of ⟨ε⟩ on η is clearly non-monotonic even at
low E/N .

4.2 Transient negative mobility

The Transient Negative Mobility effect in Xe is inves-
tigated at p = 10 atm and Tg = 300 K. Using both
methods convergent solutions for a stationary state at
E/N = 2.2 Td were first found. This state was used as
the initial state for the time-dependent computations fol-
lowing a change of E/N to 0.01 Td, at t = 0. We have
computed the swarm characteristics for two electron to
gas density ratios: η = 0 and η = 10−7.
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Fig. 6. Mean energy of the electrons in Xe as a function of
the reduced electric field, at p = 10 atm and different electron
to neutral density ratios (η). BE: solutions of the Boltzmann
equation, SIM: results of the particle simulation.

Fig. 7. Time dependence of the electron drift velocity in Xe,
following a change of the electric field at t = 0, from E/N =
2.2 Td to 0.01 Td, at p = 10 atm, in Xe (Tg = 300 K). In the
case of the particle simulations for η = 10−7 the raw results
(average of 30 simulation runs) are shown by the light grey
line, the thick red line is a smoothed curve. Symbols represent
the results of the BE solutions.

The time-dependence of the electron drift velocity is
displayed in Figure 7, for both of these conditions, as ob-
tained from the two computational methods. In the case
of particle simulation the data at η = 0 originate from
averaging the results of 10 independent simulations each
comprising 105 particles. At η = 10−7 we used 30 inde-
pendent simulations, each comprising 1000 electrons. The
runtime of each of these simulations was about 100 days,
the data obtained this way cover the 0 ≤ t ≤ 100 ns range
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at η = 0 and the 0 ≤ t ≤ 80 ns range at η = 10−7,
while the data originating from the BE solution extend to
several hundred nanoseconds. In the time-dependent solu-
tions of the Boltzmann equation the time step was set to
∆t = 10−13 s.

The results show a very good agreement for both cases
studied over the whole time domain for which the parti-
cle simulation data are available. The development of the
negative electron mobility at η = 0 within the time do-
main t < 50 ns is clearly seen. A drift velocity of about
vd ≈ −350 m/s is reached at t = 30 ns. Beyond t = 50 ns
the drift velocity becomes positive, following a broad peak
at 100 ns it slowly relaxes. This relaxation to the station-
ary value at E/N = 0.01 Td takes about 1000 ns. In the
presence of e-e interactions a completely different behavior
of vd(t) is found. Following the decay of the electric field,
the drift velocity rapidly drops to almost zero and then
exhibits a broad positive peak during which vd reaches
≈400 m/s, which is an order of magnitude higher than
the stationary velocity reached after t ∼ 120 ns, where
the swarm is relaxed at the “new” conditions.

The temporal relaxation of the EEDF is plotted in Fig-
ures 8a and 8b, for η = 0 and η = 10−7, respectively. In
order to achieve an acceptable statistics the particle simu-
lation results represent time averages of the EEDF-s over
0.5 ns time intervals for η = 0 and over 0.384 ns time in-
tervals for η = 10−7. While the BE solutions are noiseless
at any time instance, for consistency, Figures 8a and 8b
show BE data that are averaged over the same ∆T time
intervals as in the case of the particle simulations. (Note
that the averaged EEDF-s may differ from the instanta-
neous EEDF-s whenever the distribution function changes
non-linearly with time.) The times indicated in Figure 8
correspond to the center of the averaging intervals, except
for the initial (t = 0−) EEDF-s that correspond to the
steady state at E/N = 2.2 Td.

In the absence of electron-electron interactions
(Fig. 8a, η = 0) the EEDF-s obtained from the BE solu-
tion and the particle simulations show an excellent agree-
ment. During the relaxation process a peak develops in the
EEDF (“inverse-shaped” EEDF, cf. Sect. 2.2). The posi-
tion of this peak moves towards lower energies as time
proceeds, and at long times the peak disappears.

In the presence of e-e interactions (Fig. 8b), even at the
low electron to gas density ratio (η = 10−7) considered,
the relaxation of the EEDF proceeds in a significantly dif-
ferent way due to the Maxwellization of the EEDF that
results in the (almost complete) disappearance of the peak
of the EEDF. This effect acts against the conditions that
are needed for the existence of the TNM, as explained in
Section 2.2. The distribution functions obtained by the
particle simulation method and the Boltzmann equation
show a good general agreement, although definite differ-
ences, which can be attributed to the approximations in-
volved in the “traditional” solution of the BE, can be seen
in the shapes of the EEDF-s at some moments (especially
at early times, including the “initial” EEDF that corre-
sponds to E/N = 2.2 Td). Our analysis shows that the
value of the drift velocity is not very sensitive to the tail

Fig. 8. Temporal relaxation of the EEDF following the change
E/N = 2.2 Td → 0.01 Td at t = 0, for η = 0 (a) and η = 10−7

(b), as derived from the particle simulation (lines) and from
the solution of the Boltzmann equation (symbols). t = 0− cor-
responds to the initial steady state at E/N = 2.2 Td. At t > 0
the curves show averages of the EEDF-s over 0.5 ns intervals
for η = 0 and over 0.384 ns intervals for η = 10−7; t is the
center of the averaging intervals (p = 10 atm).

of the EEDF, and that is why the computed drift velocity
values shown in Figure 7 agree very well despite of the
differences between the EEDF-s seen in Figure 8.

The final states of the relaxation for both cases inves-
tigated were reached only in the BE computations, which
show that the steady state EEDF-s at E/N = 0.01 Td
are closely Maxwellian with temperatures Te ≈ 308 K
and 307 K, respectively, for η = 0 and η = 10−7. The
corresponding electron drift velocities are 36.5 m/s and
36.3 m/s, respectively.

The different timescales of the relaxation in the ab-
sence and in the presence of e-e interactions can be
explained as follows. Recall that the momentum trans-
fer cross section for the electron scattering from Xe
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atoms has a deep (Ramsauer-Townsend) minimum at en-
ergies ∼0.6 eV and increases sharply with energy in the
energy interval 0.6 eV−6 eV. At the time of change of the
electric field (t = 0) there are many electrons in the gas
with relatively high energies (>2 eV). Electrons of this
group lose their energy in elastic collisions, the reduction
of the electron energy leads to a fall off of the probability
of the elastic scattering and, consequently, to a decrease
of the rate of energy losses. If electron-electron collisions
are not taken into account, the flux of electrons in en-
ergy space from high to low energies results in the for-
mation of the “inverse shape” of the distribution function
(cf. Sect. 2.2). At t = 49.75 ns (see Fig. 8a) the major-
ity of the electrons are located (in the energy space) in
the interval where the momentum transfer cross section
is minimal. For this reason, the further relaxation of the
distribution function is rather slow, as shown by the corre-
sponding curves in Figure 7. In this case, according to the
BE calculations, the EEDF reaches the steady state shape
at t ∼ 1000 ns. When taken into account, electron-electron
collisions prevent formation of the “inverse shaped” EEDF
and redistribute electrons over a wider energy interval,
wherein the momentum transfer cross section is essentially
higher than at the R-T minimum (≈0.6 eV). As a result,
the rate of the electron energy losses increases noticeably
and the time of relaxation becomes as short as ∼120 ns.

5 Conclusions

In this paper we have investigated two particular effects
that appear in electron transport in gases: the Nega-
tive Differential Conductivity and the Transient Nega-
tive Mobility effects in xenon gas. Computations have
been carried out using a first-principles, approximation-
free particle simulation technique and using a solution
of the Boltzmann transport equation (BE) that included
the traditionally adopted approximations, i.e., (i) searched
for the distribution function in a two-term form; (ii) ne-
glected the Coulomb part of the collision integral for the
anisotropic part of the distribution function; (iii) treated
Coulomb collisions as binary events; and (iv) limited the
range of the electron-electron interaction to be effective
only within a cutoff distance.

The results obtained from the two methods have been
found to be in good qualitative agreement confirming that
the BE solutions predict correctly the existence and the
qualitative characteristics of both effects considered here,
despite of the approximations adopted in the BE solution.
In the case of the NDC effect the differences between the
results obtained for vd by the two methods remained be-
low 10% at 1 atm pressure and have grown up to ≈20%
at 10 atm. For the mean energy, the largest deviations,
up to 15% were also found at the higher pressure. In the
case of the TNM effect, the two methods yielded data for
the time dependence of the electron drift velocity that
agreed within the statistical noise of the simulation. Dif-
ferences ranging up to a factor of two were found, how-
ever, in the high-energy tails of the distribution functions

calculated with taking into account e-e collisions. Clarifi-
cation of the effects of the individual approximations may
be aided in the future by the advances in the solutions of
the Boltzmann equation, e.g. [22].

The authors thank Prof. A.P. Napartovich for useful discus-
sions and acknowledge the support via the grant OTKA-K-
105476.
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12. Z. Donkó, Plasma Sources Sci. Technol. 20, 024001 (2011)
13. F. Taccogna, J. Plasma Phys. 81, 305810102 (2015)
14. P. Segur, M. Yousfi, M.C. Bordage, J. Phys. D 17, 2199

(1984)
15. Y. Ohmori, K. Kitamori, M. Shimozuma, H. Tagashira, J.

Phys. D 19, 437 (1986)
16. S. Dujko, R.D. White, Z.L. Petrović, R.E. Robson, Plasma
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