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1. Introduction

The physics of electron swarms has been attracting consider-
able attention during the past decades because of the interest 
in the various physical effects taking place in these settings 
and due to the need for accurate input data in discharge mod-
eling [1, 2]. The advance of the theoretical background, as 

well as of the computational resources and numerical tech-
niques made it possible to develop a detailed picture of the 
physics of particle swarms. Most of the efforts have been 
devoted to electron swarms, the electron energy distribution 
function and the transport properties have been determined 
for a wide variety of gases and gas mixtures, and for a broad 
range of conditions, see e.g. [3–13].
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Abstract
At low reduced electric !elds the electron energy distribution function in heavy noble gases 
can take two distinct shapes. This ‘bistability effect’—in which electron–electron (Coulomb) 
collisions play an essential role—is analyzed here for Xe with a Boltzmann equation approach 
and with a !rst principles particle simulation method. The solution of the Boltzmann 
equation adopts the usual approximations of (i) searching for the distribution function in 
the form of two terms (‘two-term approximation’), (ii) neglecting the Coulomb part of the 
collision integral for the anisotropic part of the distribution function, (iii) treating Coulomb 
collisions as binary events, and (iv) truncating the range of the electron–electron interaction 
beyond a characteristic distance. The particle-based simulation method avoids these 
approximations: the many-body interactions within the electron gas with a true (un-truncated) 
Coulomb potential are described by a molecular dynamics algorithm, while the collisions 
between electrons and the background gas atoms are treated with Monte Carlo simulation. 
We !nd a good general agreement between the results of the two techniques, which con!rms, 
to a certain extent, the approximations used in the solution of the Boltzmann equation. The 
differences observed between the results are believed to originate from these approximations 
and from the presence of statistical noise in the particle simulations.
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One of the particular phenomena, the bistability of the 
electron energy distribution function (EEDF) is a pronounced 
manifestation of the nonlinear nature of these systems. The 
term ‘EEDF bistability’ is used here to designate a situation 
when in a physical system, under !xed conditions (gas number 
density, gas temperature, electric !eld strength, electron and 
ion concentrations, population of excited states), two stable 
steady states are possible with different EEDFs.

The electron temperature bistability was (according to our 
best knowledge) predicted for the !rst time for a plasma under 
the effect of an alternating electromagnetic !eld, at conditions 
when electron–ion collisions are dominant [14, 15]. Assuming 
a Maxwellian EEDF, the bistability in the plasma of heavy 
rare gases (argon, krypton and xenon) with an applied electric 
!eld, was shown to exist in [16] due to the speci!c shapes of 
the momentum transfer cross sections  for the electron scat-
tering from Ar, Kr and Xe atoms. Later, the effect in heavy 
rare gases plasma was con!rmed by using a more accurate 
approach, the Boltzmann equation  (BE) analysis that took 
into account electron–electron (e–e) collisions [17–19]. In 
[17–19] it was found that, within a certain range of param-
eters: (i) the reduced electric !eld strength, E n/  and (ii) the 
electron to neutral atom density, n n/e  (where E is the electric 
!eld strength, n is the atom number density, and ne is the elec-
tron density), the BE has two stable solutions. In the case of 
xenon gas, e.g., the bistability effect was found at ⩾ −n n/ 10e

9 
and < <E n0.025 Td / 0.043 Td.

The conditions mentioned above can be realized in dif-
ferent physical systems, e.g. in decaying plasmas in the pres-
ence of low electric !eld, in non-self-sustained discharges, 
and under electron swarm conditions. A decaying plasma in 
Xe was studied in [16], where the time-dependence of the cur-
rent in the afterglow plasma in the presence of a weak electric 
!eld was measured. A jump-like decrease in the current was 
observed at a certain time during the plasma decay, which was 
attributed to the manifestation of the bistability effect [16]. 
Non-self-sustained discharges (driven by a beam of fast elec-
trons) were considered in [20, 21], in which the possibility of 
the existence of the EEDF bistability was theoretically ana-
lyzed in Ar, Kr and Xe. It was shown that the bistability effect 
takes place in Xe and Kr, while for an Ar plasma [21], the BE 
has a unique solution over the entire parameter range exam-
ined. To our best knowledge, the bistability effect has not been 
investigated so far for electron swarm conditions.

We note that besides pure noble gases, the bistability effect 
has also been studied in gas mixtures. In [22] the electron tem-
perature (Te) in Ar: =N 1002 :1 mixture afterglow was studied 
both experimentally and theoretically. In the experiments it 
was observed that, under certain conditions, a rather sharp 
knee appears in ( )T te , while the vibrational temperature of 
nitrogen molecules, Tv, remains almost constant. The theoret-
ical study of the EEDF in Ar:N2 afterglow plasma was carried 
out by the numerical solution of the appropriate BE, by taking 
into account e–e collisions, as well as superelastic vibrational 
and superelastic electronic collisions. The calculations have 
shown that ranges of ne and Tv exist, where two different solu-
tions of BE can be obtained. The observed knee-like time-
dependence of Te was explained as the manifestation of the 

bistability effect. The possibility of this effect in pure nitrogen 
afterglow plasma was theoretically addressed in [23]. In addi-
tion, using the Maxwellian distribution function approach the 
bistability effect was studied in [24] for positron swarms in 
He. For more details the reader is referred to the review [25].

It should be noted that so far the theoretical analysis of 
the bistability effect was performed based on BE approach 
only. In these studies, and generally, in the solutions of the 
Boltzmann equation  including electron–electron collisions, 
rather serious approximations have traditionally been used: 
the methods (i) search for the distribution function in the 
form of two terms (‘two-term approximation’), (ii) neglect 
the electron–electron part of the collision integral for the ani-
sotropic part of the distribution function, (iii) treat Coulomb 
collisions as binary events, and (iv) truncate the range of the 
electron–electron interaction beyond a characteristic distance. 
These approximations became widely accepted throughout 
the years, and one needs to note that in the absence of a more 
rigorous approach, their effects on the results of BE solu-
tions have never been critically examined. To do that—and 
this is actually the motivation of our work—one would ideally 
describe the physical system of interest with a !rst-principles 
method that does not involve any approximations. (We note 
that previous particle-based (Monte Carlo) methods, dealing 
with Coulomb collisions, are neither free of approximations.) 
The particle-based simulation technique, used here [26], on 
the other hand, relaxes all the above major approximations 
and provides a solution based on !rst principles. Therefore 
we expect this method to be able to evaluate the accuracy of 
the BE solution that is limited by the approximations adopted, 
and can verify the effects predicted within the frame of the BE 
approach, like the EEDF bistability that was introduced above 
and is studied here in details in Xe gas.

The physical system investigated here can be described 
by three independent parameters: the reduced electric !eld, 
E n/ , the electron to gas (number) density ratio, n n/e , and the 
electron density, ne. In the description of the solution of the 
Boltzmann equation (section 3.2) this will be shown to follow 
from the structures of the equations  involved. Equivalently, 
other sets of parameters derived from the above set can be 
used as well: we shall carry out our studies by varying E n/  
and n n/e , while keeping the gas number density, n, constant.

In section  2 we introduce the underlying physical pro-
cesses responsible for the development of the bistability 
effect. This is followed in section 3 by the presentation of the 
methods of calculation: section 3.1 discusses the particle sim-
ulation method, while section 3.2 outlines the solution of the 
Boltzmann equation. The results obtained by the two different 
approaches are presented and compared to each other in sec-
tion 4. A short summary is given in section 5.

2. Qualitative explanation of the EEDF bistability 
effect in rare gases

The qualitative explanation of the possibility of the EEDF 
bistability effect in rare gases at weak electric !elds (where 
only elastic collisions occur) adopts an approximation of a 
Maxwellian EEDF (i.e. it assumes a priori that the EEDF is 
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Maxwellian, ε ε( ) ∼ (− )f k Texp /0 B e , for details see e.g. [25]). 
For such conditions, the time-dependent equation for the elec-
tron temperature is as follows:

= Φ( ) = [ ( ) − ( )]T
t

n E n T n H E n T L T T
d
d

  / ,   / , , ,e
e e e g (1)

where the term ( )H Te  describes the heating of electrons by 
the electric !eld and the term ( )L Te  accounts for the loss of 
electron energy in elastic collisions. (Note that, generally, the 
loss rate is positive, as electrons deposit energy in collisions 
with the background gas. However, at <T Te g, where Tg is the 
gas temperature, electrons are heated by the atoms of the gas, 
resulting in a negative loss, <L 0.)

The number of steady state and stable solutions of (1) 
depends on the shape of the Φ( )Te  function. Figure  1(a) 
shows this function together with the ( )H Te  and ( )L Te  func-
tions [25], for Xe at =E n/ 0.035 Td, and a gas temperature of 

=T 300g  K. Let us note that ( )L Te  is proportional to the elastic 
momentum transfer cross section σ ε( )m  of electron scattering 
from Xe atoms, while ( )H Te  varies proportionally to σ ε( )1/ m  
(see section 3.1). Due to the speci!c shape of σ ε( )m  (a deep 
Ramsauer–Townsend minimum at an energy of ≈ 0.6 eV, 
see !gure 1(b)) the ( )H Te  and ( )L Te  curves exhibit a ‘wavy’ 
behavior and cross each other at three points. As a conse-
quence, the Φ( )Te  function has an ‘inverse-N-type’ shape and 
is equal to zero at three Te values. Among these three steady 
state solutions of equation (1) two (where Φ( )Te  has a negative 
slope) are stable, as indicated in !gure 1(a).

Although the EEDF in reality is generally not Maxwellian, 
but the e–e collisions drive the EEDF towards Maxwellian, 
therefore the above explanation holds at least qualitatively. 
We note that e–e collisions are essential in establishing 
the bistability effect, as the terms corresponding to these 

collisions introduce non-linearity into the BE. Without e–e 
collisions the BE is linear equation (in f0). As a linear equa-
tion, it has a unique solution at !xed parameters (taking 
into the account the proper normalization and the condi-
tion that →f 00  at electron energy → ∞). If e–e collisions 
are involved, the BE becomes a non-linear equation and, in 
principle, two or more different solutions are possible. For 
multiple solutions to appear the e–e collision frequency 
should be high enough to have an in#uence on the shape of 
the EEDF, i.e. it should be comparable or higher than the fre-
quency of energy losses in electron-atom elastic collisions. 
We note, however, that the non-linearity is a necessary, but 
not a suf!cient condition for BE to have multiple solutions. 
While some examples of physical systems, where bistability 
is present, were given in section 1, a general suf!cient con-
dition for the appearance of the effect cannot be formulated 
at present.

3. Methods

Here we describe the basics of the two computational 
approaches, the particle simulation scheme is presented in 
section 3.1, while the solution of the Boltzmann equation  is 
discussed in section 3.2.

3.1. Particle simulation

A swarm of electrons is simulated under the effect of a homo-
geneous electric !eld, in xenon gas, at different values of the 
number density ratio, η = n n/e . At the low reduced !elds con-
sidered only elastic collisions take place. As this ensures con-
servation of the number of particles, we consider a spatially 
homogeneous system.

Figure 1. (a) Heating (H) and loss (L) rates of the electron energy, due to the effect of the electric !eld and to their interaction with the 
background gas atoms, respectively. The curves have been derived assuming a Maxwellian EEDF and a gas temperature of =T 300g  K. 
The data are given in arbitrary units, the grey dots indicate the stable equilibrium solutions, with Φ = − =H L 0. (Note that a similar 
plot appeared in [25], as !gure 27. In that !gure the labelling of the H and L curves was exchanged as a misprint.) (b) Elastic momentum 
transfer cross section for electron—Xe atom collisions [27]. Figure used with permission from Dyatko et al Non-thermal plasma 
instabilities induced by deformation of the electron energy distribution function 2014 Plasma Sources Sci. Technol. 23 043001
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The simulation scheme is based on a combination of a 
Molecular Dynamics (MD) technique and a Monte Carlo 
(MC) approach [26]. The MD describes the many-body inter-
actions (driven by the inter-particle Coulomb potential) within 
the classical electron gas, while the MC part handles the inter-
action of the electron gas with the background (atomic) gas.

3.1.1. Molecular dynamics simulation of the electron gas. In 
our classical many-body system the particles move under the 
in#uence of interparticle and external forces in a cubic simula-
tion box, with periodic boundary conditions. The equations of 
motion of particles = …i N1, , , which are numerically inte-
grated with discrete time steps (Δt), are Newtonian:

∑= −
≠

m
t

e
r

F E
d
d

,i

i j

ij

2

2 (2)

where m and −e are the mass and the charge of the electron, 
respectively. The sum on the right hand side represents the 
force exerted on particle i by all other ( ≠j i) particles and their 
periodic images located in spatial replicas of the simulation 
box. These images have to be included in the proper deter-
mination of the interparticle forces in the case of the ‘full’ 
(un-truncated) in!nite-range Coulomb potential. (Note that 
for our conditions no screening of the potential takes place 
by oppositely charged species.) This summation is indeed a 
key issue and needs a special approach, as will be explained 
below. The second term on the right hand side of the above 
equation  is a contribution due to the external electric !eld. 
We note that in the absence of the interaction of the electrons 
with a background gas the electrons would continuously be 
accelerated by this !eld, which will, however, not be the case 
when +−e Xe atom collisions take place.

The MD method adopted in this study is based on the 
particle–particle particle–mesh (PPPM) approach, described 
in details in [28], that uses a partitioning of the interaction 
into (i) a force component that can be calculated on a mesh 
(the ‘mesh force’) and (ii) a short-range (‘correction’) force, 
which is to be applied to closely separated pairs of particles 
only. In the mesh part of the calculation, charge clouds are 
used instead of point-like charges. The charge density distri-
bution ρ( )r  is assigned to a grid and is Fourier transformed 
to the k-space. Multiplying ρ( )k  with an optimized Green 
function results in a potential distribution ϕ ρ( ) = ( ) ( )Gk k k , 
which is subsequently transformed back to real space. The 
forces acting on the particles are obtained by differentia-
tion of the potential and interpolating the electric !eld to the 
positions of the particles. The cloud shape is chosen in a way 
to ensure that ρ( )k  is band-limited (which would not hold 
for point-like charges). The calculation of the potential in 
the Fourier space automatically takes into account the peri-
odic images of the primary computational box. For closely 
separated particles a correction force is to be applied, which 
is the difference between the forces between two point-like 
charges and two charges with the cloud shape used. The 
simulations describe a micro-canonical ensemble, where the 
number of particles, the volume of the system and energy 
are conserved.

The upper limit for the simulation time step is de!ned by the 
stability of the integration of the equation of motion in the case 
of the closest approach of two electrons, πϵ ε= ( )r e / 4min

2
0 max . 

Here εmax is a pre-de!ned maximum energy [28], which has 
to be chosen carefully, to ensure that the probability of !nding 
electrons with ε ε> max is vanishingly small at the conditions 
considered. In this work we adopt a maximum energy of 5 eV, 
for this value the time step has to be chosen to be as small as 
Δ ≅ × −t 2.2 10 16 s. This results in a very demanding compu-
tational load to follow the evolution of the system for a long 
time. As a converged solution assumes suf!cient interaction 
between the electrons and the gas as well, one needs to have a 
high-enough electron-atom collision frequency. This can only 
be ensured by setting a high gas atom number density. For this 
reason our computations are carried out with = ×n 2.5 1027 

−m 3, which allows simulated times of tens of nanoseconds 
(with a computational speed of simulating ∼1 ns in one day, 
on a single CPU). The number of electrons is chosen to be 

=N 1000.

3.1.2. Monte Carlo simulation of electron gas—background 
gas interaction. Having solved the description of the electron 
gas with the MD method that accounts for electron–electron 
interactions, now we introduce a background gas and let the 
two gases to interact via +−e Xe collisions. The probability 
of an +−e Xe collision during a time step Δt is calculated as:

σ= − [− ( ) Δ ]P n g g t1 exp ,coll m (3)

where = ∣g g , with = −g v V being the relative velocity 
between the electron and a Xe atom with a velocity V ran-
domly chosen from a Maxwellian background of gas atoms 
having a temperature Tg. This probability is calculated for 
each electron in each time step, and decision about the occur-
rence of a collision is made by comparing Pcoll with a random 
number. Collisions are executed in the center-of-mass frame, 
and are considered to be isotropic. The energy change of the 
gas atoms colliding with the electrons is not accounted for, the 
gas temperature is kept constant.

The simulations allow investigation of both the stationary 
state and the transients (induced by changing the electric !eld 
strength or the gas temperature). The transients are followed 
by monitoring the time-dependence of the mean energy of the 
electrons, which is calculated in each time step. The EEDF 
is, on the other hand, only calculated for the stationary state 
as its accurate determination (over 6–7 orders of magnitude) 
requires averaging over millions of time steps.

3.2. Solution of the Boltzmann equation

Here we discuss the speci!c features of the BE for electrons, 
as applied to conditions under consideration (homogeneous 
plasma, or an electron swarm in an atomic gas, acted upon by 
a weak steady electric !eld). The distribution function of the 
electrons, ( )f v , can be described by the equation

∂ ( )
∂ − ∇ ( ) =f
t

e
m

f C
v E

v  ,v (4)
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where v is the electron velocity and C is the collision integral. 
Further we shall consider only elastic scattering of electrons 
from atoms and electron–electron collisions: = +C C Cm e.

The solution of the BE is based on expansion of the distri-
bution function in Legendre polynomials ( Θ)P cosn , in which 
only two !rst terms are taken into account:

( ) = ( ) + ( ) Θf f v f vv cos ,0 1 (5)

where v is the velocity magnitude, Θ is the angle between v 
and −E, ( )f v0  is the symmetrical part of the distribution func-
tion and ( )f v1  describes the directed motion of the electrons 
along the electric !eld. (We note that this ‘two-term approx-
imation’, in the absence of e–e collisions, has been bench-
marked with other solution methods of the BE, as well as with 
particle-based (Monte Carlo) simulations in several studies, 
see e.g. [8].)

The substitution of expansion (5) into equation (4) leads to 
equations for the f0 and f1 functions:

∂
∂ − ∂

∂ ( ) = +f

t
eE
mv v

v f C C
3

0
2

2
1 0m 0e (6)

and

∂
∂ − ∂

∂ = +f

t
eE
m

f

v
C C .1 0
1m 1e (7)

The collision integrals C0m and C1m can be written as [15]:

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥ν= ∂

∂
∂
∂ +C

v v
m
M

v
k T

m

f

v
vf

1
2

2
,0m 2 m

2 B g 0
0 (8)

ν= −C f ,1m m 1 (9)

where ν σ= n vm m  is the momentum transfer frequency and 
δ = m M2 /  is the average fraction of the energy lost by the 
electrons in one elastic collision with atom (M is the mass 
of the gas atom). The rate of the electron energy loss due to 
elastic collisions is characterized by the frequency ν δν=u m.

It is known that the calculation of the pair-collision fre-
quency in the case of Coulomb collisions encounters a char-
acteristic dif!culty, namely the logarithmic divergence of 
frequency at small scattering angles. This dif!culty is avoided 
by assuming that the Coulomb potential acts only up to a cer-
tain !nite distance rmax (see later). The expression for the term 
S0e is written as follows [15, 29]:

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥
⎫⎬⎭ν= ∂

∂ ( ) + ( ) ∂
∂S

v v
v A f vf A f

f

v
1

,0e 2
2

e 1 0 0 2 0
0 (10)

∫π( ) = ( )A f v f v v4 d ,
v

1 0
0

1
2
0 1 1 (11)

⎡
⎣⎢

⎤
⎦⎥∫ ∫π( ) = ( ) + ( )

∞
A f v f v v v v f v v

4
3

d d ,
v

v
2 0

0
1
4
0 1 1

3
1 0 1 1 (12)

where ( )f v0  is normalized as:

∫π ( ) =
∞
v f v v4 d 1

0

2
0 (13)

and

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ν π πε πε= + =n

e
m v

r
r

r
e
mv

2
4

1
ln 1   ,   

4
.e e

2

0
3

max

0

2

0

2

0
2

 (14)

In BE calculations the value of the parameter r0 is usually 
estimated by means of the mean electron energy, that gives 

πε ε=r e /4 20
2

0  . For the case of plasmas the Debye length, λD, 
is taken to be the cutoff distance, i.e. λ=rmax D. For the case of 
swarm conditions considered here we use the approximation:

= −r n0.5 ,max e
1/3 (15)

i.e. the half of the average distance between the electrons is 
taken to be the cutoff distance. (This choice of rmax is based on 
intuitive physical considerations: if the impact parameter (of 
the test electron relative to a given electron) is higher than the 
half the average distance between electrons in the gas, then 
the in#uence of this electron on the test one becomes weaker 
than the in#uence of the neighboring one.) Note that in most 
cases ≫r r/ 1max 0  (see comments in [15, 29]) and the ‘1’ in the 
expression under the logarithm in (14) can be omitted.

As to the term S1e in equation (4), it is very complex (see 
comments in [15]) and we did not !nd publications in which 
this term was taken into account in calculations. As a rule 
(BOLSIG+ [30], EEDF [31, 32]), it is neglected assuming that 
ν ν≪e m. Then, if the characteristic time of plasma parameters 
variation is essentially greater than ν−

m
1, the time derivative in 

equation (7) can be omitted. In this case

ν= ∂
∂f

eE
m

f

vm
1

0 (16)

and the equation for the f0 function is written as

⎛
⎝⎜

⎞
⎠⎟ν

∂
∂ − ∂

∂
∂
∂ = +f

t
eE
mv v

v
eE
m

f

v
C C

3
.0

2
2

m

0
0m 0e (17)

It should be noted that, in the absence of e–e collisions, the 
parameter for the steady state solution of equation (17) is the 
reduced electric !eld E n/ . If the e–e collisions are taken into 
account, as it has already been mentioned in section 1, there 
are three parameters: E n/ , n n/e  and ne. The electron number 
density is an independent parameter since the logarithmic 
term in equation (14) (the Coulomb logarithm) depends on ne. 
Actually, at !xed E n/  and n n/e  values the dependence of f0 on 
ne is rather weak, since ne is under logarithm.

For the numerical solution of (16) it is rewritten with 
energy as a variable. The steady-state equation is solved by an 
iteration method similar to that in [32, 33]. The initial ε( )f0  is 
assumed to be the Maxwellian with a given electron tempera-
ture Te0. In the case of calculation of the time-dependent solu-
tion of the BE the time step should be as small as νΔ ≪ −t u

1 and 
νΔ ≪ −t e

1. For conditions under consideration Δt was taken as 
Δ = × −t 2 10 14 s.

4. Results

Bistability of the EEDF, i.e. two solutions for the distribu-
tion function, for certain conditions are found here, both via 
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the solution of the Boltzmann equation and via executing the 
particle-based simulations. To !nd these different solutions 
both methods start from different initial conditions: both 
assume a Maxwellian distribution with a ‘low’ and a ‘high’ 
mean energy. For the particle method ε̄ =init  0.009 eV and 
0.9 eV are used as ‘low-energy’ and ‘high-energy’ initial con-
ditions, with random initial positions of the particles in the 
simulation box. For the BE solution the initial mean energy 
values are: ε̄ = 0.065init  eV and 0.65 eV. In the domain where 
a unique solution exists the results of the calculations do not 
depend on these choices. In the case of two possible solu-
tions two domains of ε̄init exist: from one of these domains 
(ε ε¯ < ¯*init init) the calculations converge to the lower energy 
solution, and from the other domain (ε ε¯ > ¯*init init) to the higher 
energy solution. The value of ε̄init within these domains has 
no effect on the results. The boundary value, ε̄*init, depends on  
the E n/  and η.

The BE analysis has been carried out for a range of reduced 
electric !elds, ⩽ ⩽E n0.015 Td / 0.05 Td, for various electron 
to gas density ratios. Results of these calculations, in terms of 
the mean electron energy ε̄, for η = − −10 , 108 7, and −10 6 are 
displayed in !gure 2(a). Two solutions are found for the inter-
mediate values of E n/ , the boundaries of the domain change 
slightly with the density ratio. The ‘low-energy’ solution 
exhibits a mean energy that is almost independent of η, and 
is in the range ε̄ ∼ …0.04 0.05 eV. In the case of the ‘high-
energy’ solutions the mean energy amounts several tenth of 
an electron Volt and increases with increasing η. The particle 
simulation results agree generally well with those obtained 
from the BE, small differences are found in the case of 
‘high-energy’ solutions. Additionally, the particle simulation 
does not predict a bistability at η = −10 8 at =E n/ 0.035 Td, 
whereas the BE solution does. The reason of this discrepancy 
is not fully understood. We contemplate that the presence of 
noise in the particle simulation, due to its statistical nature, 

prevents !nding solutions where the minimum in the energy 
balance versus Te is very shallow. This, however, needs fur-
ther clari!cation. While all the data in !gure 2(a) have been 
shown for a gas temperature of =T 300g  K, !gure 2(c) shows 
the dependence of the results on Tg, for !xed η = −10 7. The 
mean energy here is displayed on a log scale, as the gas tem-
perature in#uences predominantly the ‘low-energy’ solutions. 
For a lower Tg a lower ε̄ is found, however, the domain of E n/ , 
where bistability is found, is wider at =T 0g  K.

The stationary solutions in the particle simulations were 
typically obtained beyond a few tens of nanoseconds of simu-
lated time. The convergence of the mean energy is illustrated 
in !gures 3(a)–(c), for reduced electric !elds of =E n/ 0.025 
Td, 0.035 Td, and 0.045 Td, respectively, at η = −10 7. In all 
cases the simulations were started from two initial con!gu-
rations, as already mentioned above. While at =E n/ 0.025 
Td and 0.045 Td we observe convergence to a unique value 
of ε̄, the runs at =E n/ 0.035 Td clearly yield two solutions, 
with mean electron energies differing by almost an order of 
magnitude. The full EEDFs, obtained by the two methods, 
are compared in !gures  3(d)–(f). The EEDFs are normal-

ized as ∫ ε ε ε( ) =∞
f d 1

0
. We !nd a good agreement between 

the data obtained from the BE and from the particle simu-
lation, although some differences show up in the tails of 
the distribution functions. The difference of the EEDFs 
belonging to the two stable solutions at =E n/ 0.035 Td is  
remarkable.

To demonstrate the ability of our methods to follow the tem-
poral evolution of the system here we take as an example the 
change of the electric !eld. We start from the two stationary 
stable solutions obtained at =E n/ 0.035 Td (at η = −10 6), 
change E n/  to a ‘new’ value, and monitor the convergence of 
ε̄( )t . We test ‘new’ values of =E n/ 0.025 Td and 0.045 Td. 
The results obtained by both methods are depicted in !gure 4. 

Figure 2. (a) Mean energy values obtained from the calculations at different values of the electron to gas density ratio, η. The results of 
both the Boltzmann equation solutions (‘BE’, lines) and of particle simulations (‘PS’, symbols) originate from calculations started with 
different initial conditions. =T 300g  K. (b) The effect of the gas temperature (Tg) on the limits of the bistable solutions, at η = −10 7.
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Following the change of the reduced !eld both methods—
although with a different dynamics—show the relaxation of 
the system to unique states, corresponding to the new values 
of E n/ . The relaxation time is found to be of the order of few 
times ten nanoseconds. Here we recall the importance of the 
energy loss frequency νu, as this de!nes the time scale of the 
relaxation of the mean energy. An estimation at ε = 0.5 eV 
gives ν ≈− 20u

1  ns, in accordance with our observations of the 
relaxation time scale.

The peculiarities of the transitions can be understood by 
following the heating and the cooling of the electrons at the 
speci!c conditions. The rate of electron heating is propor-
tional to σ ε( )E /2 m  and the rate of energy loss is proportional to 
σ ε ε σ ε ε( ) = ( ) ( )m M  2 /  u m .

First we discuss the transition from the ‘low-energy’ solu-
tion at =E n/ 0.035 Td to the !nal state at =E n/ 0.045 Td.  
The change of the mean energy in this case is slow at the 
beginning but becomes very fast afterwards. In the initial 
state the EEDF is narrow and the mean energy is low, where 
the momentum transfer cross section is high. As the heating 
rate is proportional to σ ε( )−

m
1  and the cooling rate is propor-

tional to σ ε( )m , the rate of change of ε̄ is low at high σm in the 
!rst phase of the transition. When the mean energy becomes 
higher σ ε( )m  decreases, giving more preference to the heating. 

Figure 3. ((a), (b), (c)) The convergence of the particle simulation method starting from a ‘high-energy’ distribution (solid red lines) and 
a ‘low-energy’ distribution (dashed dark blue lines), for the E n/  values indicated. Two solutions are found for =E n/ 0.035 Td. The dotted 
horizontal black lines indicate the mean energy values obtained from BE calculations. ((d), (e), (f)) ε( )f  for the stable solutions: Boltzmann 
equation data (lines) in comparison with particle simulation data (symbols). η = −10 7 for all plots.

Figure 4. Time dependence of the mean electron energy (response 
of the swarm) following a sudden change of the electric !eld (at 

=t 0) from =E n/ 0.035 Td to =′E n/ 0.025 Td and 0.045 Td. The 
thick lines correspond to solutions of the BE, while thin lines show 
the particle simulation results. Unique solutions are found for the 
‘new’ values of the reduced electric !eld. η = −10 6.
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This, together with the increasing slope of σ ε( )m , results in an 
abrupt increase of ε̄ beyond a certain time.

The transition from the ‘high-energy’ solution at 
=E n/ 0.035 Td to the !nal state at =E n/ 0.025 Td is more 

complex. The three stages of relaxation—seen in !gure 4—
can be explained as follows. Under the steady state condi-
tions at =E n/ 0.035 Td the mean electron energy is relatively 
high, ε̄ ≈ 0.48 eV. At this energy the momentum transfer cross 
section  is low (due to the Ramsauer–Townsend minimum) 
and, as a consequence, the rate of electron heating is rela-
tively high. The high rate of heating is balanced by a high 
rate of energy loss. The decrease of the electric !eld causes 
an instant decrease of the heating. The unbalanced high rate 
of energy loss leads to the rapid decrease in the mean electron 
energy (during the !rst stage of ε( )t  relaxation) and, conse-
quently, to a decrease of the rate of energy loss. The decrease 
in the rate of energy loss leads to near-balanced conditions, 
i.e. the difference between the rate of energy loss and the 
rate of heating becomes moderate, leading to the #attening 
of the ε( )t  curve (second stage of relaxation). When the mean 
energy decreases below ε ≈ 0.2 eV, the momentum transfer 
cross section  increases sharply and the rate of energy loss 
increases noticeably, while the rate of heating decreases sig-
ni!cantly. Consequently, ε decreases faster below 0.2 eV, 
during the third stage of the relaxation. We note that since 
under the conditions considered here the electron–electron 
collision frequency is higher than the electron-atom energy 
exchange frequency (νu), the EEDF is nearly Maxwellian 
during the relaxation process.

The transitions, which involve a small change of the mean 
energy (from the ‘high-energy’ solution at =E n/ 0.035 Td to 
the final state at =E n/ 0.045 Td, and from the ‘low-energy’ 
solution at =E n/ 0.035 Td to the final state at =E n/ 0.025 Td)  
are much faster, compered to the two cases discussed 
above.

5. Summary

We have investigated the bistability of the EEDF in Xe gas at 
low reduced electric !elds via the solution of the Boltzmann 
equation  and via a !rst principles particle simulation tech-
nique. The solution of the Boltzmann equation  adopted 
the usual, widely accepted approximations: it (i) searched 
for the distribution function in the form of two terms, (ii) 
neglected the electron–electron part of the collision inte-
gral for the anisotropic part of the distribution function, (iii) 
treated Coulomb collisions as binary events, and (iv) trun-
cated the range of the electron–electron interaction beyond a 
characteristic distance. The particle simulation method [26], 
being devoid of any of these approximation has provided 
!rst-principles solutions to the problem, via a combination 
of a Molecular Dynamics simulation method (that described 
accurately the many-body interactions within the electron gas 
governed by the full Coulomb potential) and a Monte Carlo 
method (that handled the interaction of the electrons with 
the atoms of the background gas). Both methods allowed 

the computation of the EEDF and the related quantities, and 
have indicated the existence of two stable solutions for the 
EEDF for a range of E n/ . The electron mean energies and the 
full EEDFs, obtained by the two methods agreed generally 
well for most od the parameter settings covered. Differences 
found for the domain of the bistability and for the shapes of 
the EEDFs may be attributed to approximations adopted in 
the BE solutions and to the presence of statistical noise in the 
particle simulations.
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