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Abstract 
Spatial patterns of ecosystem processes constitute significant sources of uncertainty in 

greenhouse gas flux estimations partly because the patterns are temporally dynamic. The aim 

of this study was to describe temporal variability in the spatial patterns of grassland CO2 and 

N2O flux under varying environmental conditions and to assess effects of the grassland 

management (grazing and mowing) on flux patterns. We made spatially explicit measurements 

of variables including soil respiration, aboveground biomass, N2O flux, soil water content, and 

soil temperature during a four-year study in the vegetation periods at grazed and mowed 

grasslands. Sampling was conducted in 80×60 m grids of 10 m resolution with 78 sampling 

points in both study plots. Soil respiration was monitored nine times, and N2O flux was 

monitored twice during the study period. Altitude, soil organic carbon, and total soil nitrogen 

were used as background factors at each sampling position, while aboveground biomass, soil 

water content, and soil temperature were considered as covariates in the spatial analysis. Data 

were analyzed using variography and kriging. Altitude was autocorrelated over distances of 

40–50 m in both plots and influenced spatial patterns of soil organic carbon, total soil nitrogen, 

and the covariates. Altitude was inversely related to soil water content and aboveground 

biomass and positively related to soil temperature. Autocorrelation lengths for soil respiration 

were similar on both plots (about 30 m), whereas autocorrelation lengths of N2O flux differed 

between plots (39 m in the grazed plot vs. 18 m in the mowed plot). Grazing appeared to 

increase heterogeneity and linkage of the spatial patterns, whereas mowing had a 

homogenizing effect. Spatial patterns of soil water content, soil respiration, and aboveground 

biomass were temporally variable especially in the first 2 years of the experiment, whereas 

spatial patterns were more persistent (mostly significant correlation at p<0.05 between location 

ranks) in the second 2 years, following a wet year. Increased persistence of spatial patterns 

after a wet year indicated the recovery potential of grasslands following drought and suggested 

that adequate water supply could have a homogenizing effect on CO2 and N2O fluxes. 
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Abbreviations: AGB – aboveground biomass, ALT – altitude, DEM – digital elevation model, IDW – 

inverse distance weighting, Rs – soil CO2 efflux, SWC – soil water content, SOC – soil organic carbon 

content, TSN – total nitrogen content, Ts – soil temperature 
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1 Introduction 
Soil carbon dioxide (CO2) and nitrous oxide (N2O) fluxes are the two main components of grassland 

greenhouse gas cycles and their rising atmospheric concentrations have important effects on global 

warming (IPCC 2014). Being a potential source of uncertainty related to greenhouse gas flux 

estimates, the spatial variability and patterns of these fluxes have been widely studied (e.g., Kosugi 

and others 2007; Knohl and others 2008; Rodeghiero and Cescatti 2008; Herbst and others 2009; 

Porcar-Castell and others 2015). Nevertheless, our knowledge about how and why these spatial 

patterns change in time or persist for a longer period is still imperfect. 

Soil CO2 efflux, i.e., soil respiration (Rs) originates from the autotrophic (roots, root-associated 

microbes and fungi) and the heterotrophic (bulk soil microorganisms) respiration activities. It is the 

second largest CO2 flux in ecosystems after photosynthesis (Kuzyakov 2006) moving large quantities 

of carbon (C), sometimes as much as 50-90% of the total annual uptake by photosynthesis (Bahn and 

others 2008) from the soil into the atmosphere. However, soil N2O fluxes can be bi-directional 

resulting from different production and consumption processes taking place in the soil (Flechard and 

others 2005). N2O is produced by nitrification, nitrifier denitrification and denitrification with the 

contributions of the different pathways varying considerably depending on the soil types (Kool and 

others 2009) and their moisture contents (Turner and others 2008). Nitrous oxide has natural sinks 

since it can be removed from the soil air by denitrifiers induced by low soil temperature, anoxic 

conditions and low NO3
-
 availability (Flechard and others 2005; Chapuis-Lardy and others 2007). Soil 

N2O sink activities could be substantial with more than 40% of the total N2O fluxes being negative in 

temperate grasslands (Flechard and others 2005).  

Fluxes of CO2 and N2O show large temporal (Konda and others 2010; Livesley and others 2011) and 

spatial (Jungkunst and others 2008; Fang and others 2009) variability at field scale (within tens of 

meters) due to the complexity of pathways described above, which all are under the influence of 

spatio-temporally varying drivers. In general, spatial heterogeneity can be related to complex 

geomorphological conditions (Ohashi and Gyokusen 2007; Fang and others 2009; Konda and others 

2010), which, in turn, may determine the most important driving factors of the fluxes such as soil 

water content (SWC) (Clemens and others 1999) and soil aeration (Konda and others 2008), soil 

temperature (Ts), the availability of substrates, i.e., mineralizable C and nitrogen (N) (Yao and others 

2009; Horváth and others 2010) and soil organic matter contents (Jungkunst and others 2008; Konda 

and others 2008). Most of the European grasslands are managed (Soussana and others 2007) and the 

types, intensity and timing of the different management practices may affect these driving factors 

through the additional N-input, removal of biomass, trampling etc. (Skiba and others 2009; Lin and 

others 2010; Burzaco and others 2013). Another important aspect is the potential effects of summer 

droughts  likely to be more frequent in the future in East-Central Europe (Bartholy and Pongrácz 

2007)  on the coupling of C and N turnovers with consequences regarding the recovery capacity of 

the ecosystem (Evans and Burke 2013) or the linkage of the patterns (Fóti and others 2016). Changes 

in the magnitudes of the drivers may result in changing spatial patterns of CO2 and N2O fluxes 

(Domisch and others 2006; Ohashi and Gyokusen 2007; Luan and others 2012; Li and others 2013). 

The degree of temporal constancy of Rs patterns was found to be high within one day (Graf and others 

2010; Teixeira and others 2011; ArchMiller and others 2016), over several months (Søe and 

Buchmann 2005) or even seasons (Ohashi and Gyokusen 2007), whereas it was also reported to be 

very low on consecutive days (La Scala Jr. and others 2000). These findings all suggest that more 

detailed knowledge is to be gained in long term studies carried out under various environmental 

conditions in order to reveal the underlying causes of temporal variability in spatial patterns and to 

interpret spatial dynamics. Besides reducing uncertainties deriving from spatial variability in 

greenhouse gas flux studies, this knowledge could help us to find the drivers behind the functional 

stability of the ecosystems in which the asynchrony of species’ responses to environmental 

fluctuations is a stabilizing mechanism (Loreau and de Mazancourt 2013). 

The studies conducted to reveal the spatial patterns of these fluxes often use geostatistical tools 

(variography and kriging). However, relatively few studies are available investigating N2O spatial 

patterns in grasslands (e.g., Yao and others 2009; Imer and others 2013), as opposed to the more 

thoroughly studied cultivated and arable lands (Röver and others 1999; Yanai and others 2003; Konda 
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and others 2008, 2010; Li and others 2013, cf. also the review of Li and others 2013). As a result, 

studies on field-scale spatial variability could provide valuable information in this respect, too.  

The aim of this study was to describe the temporal variability of grassland CO2 and N2O flux spatial 

patterns and to assess which modifications can be attributed to the effects of different management 

regimes such as grazing and mowing. We hypothesized that patch structures in our study plots were 

determined by small (within 1.5 m) elevation differences due to the undulating surface (altitude: ALT) 

where wind and water erosion may move the topsoil from the crests into the depressions with a 

consequently larger soil organic carbon content (SOC), total nitrogen content (TSN) and wetter soil 

conditions prevailing in the depressions than on the crests. Furthermore, due to the uneven water and 

organic matter distribution and the semi-arid character of the ecosystem with frequent droughts the 

depressions are characterized by larger aboveground biomass (AGB) and cooler temperatures 

compared to the crests. The effects of all these driving factors may govern the Rs and N2O fluxes, 

which are expected to be larger in the depressions than on the crests, as the ecosystem under 

investigation can be described as soil moisture and substrate limited rather than temperature limited.  

2 Materials and methods 

2.1 Study plots 

The study plots can be found in the Kiskunság National Park, at Bugac (46.69° N, 19.6° E, 114 m 

a.s.l.). The vegetation, which is a semi-arid sandy grassland, is dominated by Festuca pseudovina 

Hack. ex Wiesb., Carex stenophylla Wahlbg. and Cynodon dactylon L. Pers. The mean annual 

precipitation in the 2004-2014 period was 562 mm and the annual mean temperature was 10.4 °C, with 

422 mm precipitation and 15 °C temperature in the vegetation period. According to the FAO 

classification (Driessen and others 2001) the soil type is Chernozem with a relatively high organic 

carbon content, the soil texture is a sandy loam with a sand:silt:clay ratio of 81:11:8 % in the topsoil 

layer (Balogh and others 2015).  

The grazed study plot has been under extensive grazing for decades. Grazing intensity was 0.66±0.18 

Hungarian Grey cattle animal ha
-1

 year
-1

 during the measurement period of 2012-2015. The grassland 

may potentially turn into a source of carbon in drought years (Nagy and others 2007) with the annual 

C-balances ranging from -171 (sink) to +96 (source) g C m
-2

 (Pinter and others 2010).  

The 1 ha area of the mowed study plot was fenced within the grazed grassland in 2011 to prevent 

grazing. This part was mown once a year in summer (except in 2014 when it was cut twice due to the 

high AGB production) with no fertilizers applied. Significant differences were not detected in the 

botanical composition between the grazed and the mowed management regimes until now (Koncz and 

others 2014). The same pedo-climatic and botanical conditions of the two study plots allowed us to 

describe the effects of mowing and grazing on the spatial patterns. 

2.2 Environmental conditions in the study period 

Meteorological data (e.g., in Figure 1) were available from a paired eddy covariance system 

functioning at Bugac continuously from 2002 and 2011 in the grazed and mowed plots, respectively. 

The yearly average air temperature and sum of precipitation for the investigated period were as 

follows: 2012: 10.8 °C, 431 mm, 2013: 10.9 °C, 590 mm, 2014: 11.5 °C, 813 mm, 2015: 11.2 °C, 523 

mm, respectively. Annual precipitation sum was lower by 23% in the driest (2012) and higher by 45% 

in the wettest year of the study period (2014) than the ten-year average. 

Figure 1. Daily mean temperature (°C) and daily sum of precipitation (mm) in the investigation period 

2012-2015. Vertical lines below the chart area show the sampling occasions (green: Rs measurements 
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together with AGB, SWC and Ts, orange: N2O measurements together with SWC and Ts, brown: soil 

sampling for SOC and TSN). 

2.3 Sampling and measured variables 

Both plots were monitored in the vegetation periods between 2012 and 2015 for SWC, Ts, Rs, AGB, 

N2O, SOC and TSN (Figure 1). The mowing dates were as follows: 24/06/2012, 01/07/2013, 

10/06/2014, 29/09/2014, 17/06/2015. 

Soil respiration was measured by means of closed chamber systems (Licor 6400, LiCor, Inc. Lincoln, 

NE, USA and EGM-4 PPSystems, Amesbury, USA) at 78 sampling locations per plot (arranged as a 

80×60 m grid; Figure 2) in each measurement campaign. Target CO2 concentration was set by placing 

the soil chamber on its side to the soil and monitoring the CO2 concentration over the surface. Collars 

were not used with the soil gas exchange chambers to minimize disturbance (Davidson and others 

2002; Wang and others 2005) since both measuring systems performed well without collars 

(Pumpanen and others 2004). Although the sampling positions remained relatively constant for the 

duration of the experiment, a shift of a few centimeters was applied in selecting the actual patch for 

measurements. The standing biomass was removed 1.5 hours before starting the soil respiration 

measurements. To minimize the effects of diurnal temporal patterns the measurements were started at 

noon and lasted ~1.5 h for one grid. In general, both plots were measured on the same day at the same 

time with two measuring devices. 

A static chamber method was used to determine the soil N2O emission as described by Horváth and 

others (2010). Nitrous oxide concentrations were determined with a HP 5890 II gas chromatograph 

(Waldbronn, Germany) equipped with a Porapak Q column (2x1.8 m, 80-100 mesh) and an electron 

capture detector (ECD). Equation for the N2O flux calculation can be found in the Supplementary 

Material (SM). 

Soil water content was measured at the same spots as the gas fluxes by time domain reflectometry 

(ML2, Delta-T Devices Co., Cambridge, UK; FieldScout TDR300 Soil Moisture Meter, Spectrum 

Technologies, IL-USA) in the top 0-5 cm layer of the soil. The measurements were performed usually 

after the Rs measurements in all positions in one run. Soil temperature was determined at a depth of 5 

cm by a digital soil thermometer near the Rs chambers in parallel with the Rs measurements. The 

aboveground biomass was sampled from patches of 10 cm diameter (~80 cm
2
) (used for Rs 

measurements) and oven dried for 48 hours before weighing. Soil organic carbon content of the soil 

samples was determined by sulfochromic oxidation while their TSN by the Kjeldahl method for the 0-

15 cm soil depth. These two variables and ALT were used as background factors (cf. SM for some 

further information about the correlation of the background factors) for all measuring campaigns.  

2.4 Spatial data processing  

The steps of the spatial data processing, detailed description of variography, inverse distance 

weighting interpolation, kriging and leave-one-out cross-validation can be found in SM. In brief, we 

performed variogram analysis (Venables and Ripley 2002; Pebesma 2004; Bivand and others 2014; R 

Core Team 2014) to (if necessary to fulfill the requirements of variography) temporally detrended and 

normally distributed (Fox and Weisberg 2011; Meyer and others 2014) data to determine the scale of 

spatial autocorrelation for each sampling date and sampled variable. Then, when the spatial range or 

autocorrelation length was larger than half of the maximum lag distance or a sill was not found, we 

performed surface detrending (detrending in space) with the least-squares method. Residuals were 

normalized, if non-normally distributed and variography was repeated. The variogram parameters 

were used in kriging and kriging results were evaluated with leave-one-out cross-validation (Pebesma 

2004). The best kriging model (from ordinary kriging, kriging with external drift and ordinary co-

kriging) was selected based on the cross-validation and the data were then back-transformed to the 

original scale for mapping. If kriging was not feasible (e.g., variogram models did not fit the 

variogram data well or autocorrelation length was less than the minimum grid size: 10 m), we used 

inverse distance weighting (IDW) for interpolation and mapping. To analyze the spatial correlation 

between variable pairs we used cross-variograms (Pebesma 2004).  

2.5 Temporal persistence of spatial patterns 

We used non-parametric Spearman rank correlation coefficients (Cs) to test the temporal stability of 

the spatial patterns and to determine the extent to which the location ranks persisted over time (Douaik 

and others 2006; Gao and Shao 2012). For this analysis we used the measured data without any 
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transformation or detrending and we used only the positions which were measured in each of the 8 

campaigns. (Few new measurement positions were added from the second sampling campaign and 

some positions were lost as some marker sticks were damaged by grazing animals. Therefore, finally 

we used 55 positions in the grazed, and 72 in the mowed plot, respectively.). The calculation was as 

follows: 

     
           

  
   

       
 , 

where n is the number of locations observed, Rij is the rank of a given variable at location i and in time 

j, while Rik is the rank of the same variable at the same i location in time k (k≠j). The correlation was 

calculated for all possible pairs of measuring occasions for SWC, Ts, Rs, AGB and N2O. A value of 

Cs=1 would signify a perfect temporal stability.  

3 Results 

3.1 Topography of the study plots 

The grazed plot had two slight parallel depressions running from the northwest to the southeast and the 

mowed plot had one crest running from northwest to southeast also with parallel depressions (Figure 

2). The overall ALT gradient in both plots was < 1.5 m.  

Figure 2. Digital elevation model of the grazed (a) and mowed (b) sampling plots and the sampling 

positions. Coordinates refer to the Uniform National Projection System (m). 

 

3.2 Rs dynamics: patterns, spatial correlations and their persistence in time 

The pattern of Rs showed spatial range, i.e., autocorrelation lengths (cf. definition for the different 

model variograms in SM Variography) of about 30 m (29.9±13.1 m and 35.1±19.9 m for the grazed 

and mowed plot campaigns, respectively, Figure 3, for further details of variogram parameters and 

best fitted models cf. SM Table 3). We detected two nugget variograms in the mowed plot (in May-

2014 and June-2014), while all of the 9 variograms reached a sill in the grazed plot. SWC was in 

positive spatial correlation (SM Table 6) with Rs (an increase in SWC from one position to another 

was accompanied with an increase in the Rs value) mainly during summer (3 and 4 times in the grazed 

and mowed plots, respectively). Generally, we detected negative spatial correlation between ALT and 

Rs (an increase in ALT from one position to another was accompanied with a decrease in Rs), negative 

correlation between ALT and SWC and positive correlation between SOC/TSN and Rs (SM Table 6). 

SOC/TSN-Rs correlation was detectable 8 times in the mowed plot, while only 5 times out of 9 in the 

grazed one. The soil water content-soil respiration joint pattern had a 50.7±14.6 m average length of 

autocorrelation for the grazed plot, while 3 from the 4 cross-variograms were unbounded for the 

mowed plot. (It has to be noted that SWC pattern was very homogeneous in the mowed plot with 

almost exclusively nugget variograms, cf. SM Results, SM Table 1.). The negative Ts-Rs correlation 
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we hypothesized was detected 5 times in the mowed plot, while only once in the grazed plot where 

positive correlations were also found in 2 campaigns in autumn.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Standardized variograms of Rs (µmol 

CO2 m
-2

 s
-1

) for the grazed and mowed plots. 

 

 

 

 

 

 

 

 

 
Figure 4. Maps (the interpolation method used 

is signed in each map: OK: ordinary kriging, 

KED: kriging with external drift, CK: ordinary 

co-kriging, IDW: inverse distance weighting) 

of Rs (µmol CO2 m
-2

 s
-1

) for the grazed and 

mowed plots. Coordinates refer to the Uniform 

National Projection System (m). 
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Maps of Rs (Figure 4) showed different patterns and different degrees of temporal persistence between 1 
pairs of measurement campaigns (Figure 5). We also detected seasonality in the Rs spatial patterns 2 
with higher Rs values in the summer in areas topographically more depressed and lower Rs values 3 
along the crests, while the autumn patterns for both plots tended to be the most homogenous. Based on 4 
the rank-correlation analysis, the Rs pattern was more stable in the mowed plot in the second half of 5 
the investigation period (after a wet year) in parallel with the stable SWC patterns (cf. SM Figure 3), 6 
while the persistence was less pronounced (Figure 5) and linked to a lesser extent to the SWC stability 7 
(SM Figure 3) in the grazed plot.  8 

9 
Figure 5. Temporal persistence of Rs (µmol CO2 m

-2
 s

-1
) spatial patterns for the grazed and for the 10 

mowed plots, represented by significant rank-correlations (p<0.05) between measuring campaigns. 11 
The darker the color, the more stable the pattern is, while directionality of the symbols represents the 12 

sign of the correlation, positive or negative. 13 
 14 

3.3 N2O dynamics: spatial co-patterns and temporal variation 15 

We detected positive spatial correlations between N2O flux pattern and SWC and N2O flux pattern and 16 
SOC, while negative spatial correlation between 17 
N2O and AGB and N2O and ALT patterns in the 18 
grazed plot in Oct-2012 (SM Table 6). The spatial 19 
correlation of N2O pattern was found to be 20 
positive with both AGB and Ts in the mowed plot 21 
in Oct-2012. We did not find any robust spatial 22 
correlations in the other campaign (May-2014) 23 
when none of the N2O variograms reached a sill 24 
(Figure 6). In addition, in Oct-2012 N2O flux 25 
showed 39.2 and 18.4 m autocorrelation lengths 26 
(spherical model both) in the grazed and mowed 27 
plots, respectively. The spatial variability of N2O 28 
flux was characterized by the largest values of the 29 
measured variables (SM Table 5). 30 
 31 

Figure 6. Standardized variograms of N2O 32 
flux (µg N m

-2
 h

-1
) for the grazed and mowed plots. 33 

 34 
Flux maps of N2O (Figure 7) indicated temporal variability of its spatial patterns, with large 35 
differences between the two campaigns in the two seasons. We could not detect persistence in the 36 
spatial patterns. With only two measuring occasions, distant from each other in time and conducted in 37 
different seasons, we were not able to detect any general co-patterns and their temporal persistence, 38 
other than moderate levels of spatial linkages and temporal variability. 39 
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 1 
Figure 7. Maps (the interpolation method used is signed in each map: OK: ordinary kriging, IDW: 2 
inverse distance weighting) of N2O flux (µg N m

-2
 h

-1
)

 
for the grazed and mowed plots. Coordinates 3 

refer to the Uniform National Projection System (m). 4 

4 Discussion 5 

Our overall results, which were in accordance with our hypothesis, showed that topographic 6 
differences, the patterns of depressions and crests had primary importance in the generation of spatial 7 
patterns in the grasslands under investigation. However, we also found that the expected spatial 8 
relationships were modified seasonally and the different management regimes may have important 9 
effects on them as well.  10 

4.1 Spatial correlations and accuracy of kriging estimates 11 

The autocorrelation lengths of N2O flux and Rs from our measurements were in good agreement with 12 
the findings of other studies carried out at the same spatial scale in non-forested ecosystems (bare soil: 13 
Herbst and others 2012, agricultural fields: Yanai and others 2003; Turner and others 2008; Allaire 14 
and others 2012; Prolingheuer and others 2014) or in woody vegetation (Kosugi and others 2007; 15 
Ohashi and Gyokusen 2007; Konda and others 2008, 2010; Li and others 2013; ArchMiller and others 16 
2016). Furthermore, other studies also found that the spatial patterns were not always detectable (Fóti 17 
and others 2016) or the spatial dependency was low (Konda and others 2010; Luan and others 2012; 18 
Prolingheuer and others 2014), as the actual characteristics of the patterns and the weights of potential 19 
driving factors varied widely from season to season (Ohashi and Gyokusen 2007) or from one study 20 
plot to another (ArchMiller and others 2016).  21 
Altitude proved to be an important factor in determining the patterns when there was a correlation 22 
detectable with SWC, Rs, AGB and N2O inversely related to the pattern of ALT in all cases. However, 23 
Ts was positively related to its pattern as found in other studies, too (Ohashi and Gyokusen 2007; 24 
Konda and others 2008, 2010; Li and others 2013). In general, we found more spatial linkages 25 
between ALT and the other patterns in the grazed plot than in the mowed one (ordinary kriging 26 
prediction was 3 times more frequent on datasets measured in the grazed plot indicating tight fit to 27 
ALT, kriging methods using DEM gave no further improvement in the estimation).  28 
In autumn we detected alterations from the hypothesized pattern linkages. Spatial distributions of the 29 
covariates may change in time (Huang and others 2011) but the uncoupling effects of grazing (e.g., 30 
effects of browsing on biomass), and/or the effects of the solar radiation may also play a role, as Ts-Rs, 31 
Ts-AGB, or SWC-Ts were positively linked. These altered couplings of patterns, however, can be a 32 
consequence of grazing resulting in the altered biomass patterns (e.g., N2O and AGB were negatively 33 
linked) rather than a direct effect characteristic of the season because the same exceptions were not 34 
observed in the mowed plot at the same measuring date (the only exception was the positive N2O-Ts 35 
correlation in Oct-2012). Grazing may affect vegetation heterogeneity, soil properties and processes 36 
depending on the stocking rate (Lin and others 2010). Sensitivity of the spatial patterns to disturbances 37 
could increase in autumn, but similar alterations in the spatial correlations can be typical in natural 38 
grasslands (i.e., without management) as well in autumn due to the physiological and community 39 
dynamical processes taking place (growth of autumn aspect species, regrowth after drought, 40 
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senescence, temperature-limitation etc.). Furthermore, the alterations taking place in autumn may have 1 
relevance in the mitigation strategies of grazed grasslands, provided that the stocking rate is adapted to 2 
the seasonality of the ecosystem. Nevertheless, the question whether the co-patterns are modified due 3 
to natural processes taking place in autumn or due to the effects of grazing still needs clarification. 4 
We could not always verify the potential coupling of AGB and Rs in our study, although in other 5 
studies the autotrophic component of Rs was largely influenced by different plant factors (community 6 
composition, stand structure etc.) (Søe and Buchmann 2005; Luan and others 2012; Barba and others 7 
2013; ArchMiller and others 2016). Even on bare soil the patterns may change in time (La Scala Jr. 8 
and others 2000; Herbst and others 2009). In forests the spatial patterns can be very similar temporally 9 
and persist for a year (Luan and others 2012) even if the understory vegetation shows some variability 10 
in time but has smaller overall importance in the total flux (Søe and Buchmann 2005). Variability in 11 
the species’ pheno-phases in non-woody vegetation (Mendonça and others 2010) or stands with 12 
remarkable heterogeneity (Konda and others 2010; ArchMiller and others 2016), as well as natural 13 
grasslands with a high number of coexisting populations can all cause an increased variability in AGB.  14 

4.2 Potential effects of grazing and mowing on the spatial variabilities and patterns 15 

We detected that mowing, similarly to the majority of other treatments generally used in agriculture 16 
(like tillage, fertilization, cf. Konda and others 2010), had a homogenizing effect. The uniform 17 
exposure of the surface after mowing and the uniform stand structure along re-growth may further 18 
result in decreased fit and linkage of the spatial patterns, which we found in the mowed SWC 19 
structure, but also detected in the Rs patterns having nugget variograms in two cases, while sill was 20 
reached in every case in the grazed plot. Moreover, in the mowed plot Rs and AGB (cf. also SM 21 
Results) were tightly linked to SOC/TSN spatial distributions, whereas in the grazed plot the link was 22 
not so pronounced. The reason behind all this could be that the spatial patterns of the background C 23 
and N contents in the grazed plot were more strongly mediated by factors other than ALT, including 24 
the ones which result from the random effects of grazing (dungs, urine, tread, browsing, biomass 25 
variability, litter mixing by trampling etc.), while a more stable background was ensured in the mowed 26 
plot due to the lack of animal activity. As much as 40% of the soil carbon is located in the upper 10 27 
cm of the main rooting zone and the quantity decreases gradually downward. Furthermore, more than 28 
half of the root biomass can also be found here (Balogh and others 2015) forming a rapidly adapting 29 
system to environmental constraints. Therefore, the importance of SWC and the regulatory effect of 30 
the stand structure on the SWC spatial patterns could be more pronounced in the grazed plot. Changes 31 
can take place in the stand structure under prolonged droughts as well (Evans and Burke 2013) leading 32 
to alteration of the regulatory processes with important consequences during the recovery period.  33 
The observed homogeneity also appeared in a smaller autocorrelation length of the N2O pattern in the 34 
mowed plot, while heterogeneity due to grazing could be captured in an increased scale (similarly 35 
found by Zhou and others 2008, but for overgrazed grassland). The overall very large spatial 36 
variability of N2O flux was due to the 22 (29%), 12 (15%) negative values in the mowed and the 11 37 
(15%), 21 (27%) negative values in the grazed plots on Oct-2012 and May-2014(N2O) measuring 38 
occasions, respectively.  39 

4.3 Seasonal variability and temporal persistence of the patterns  40 

We found that the patterns in the second part of the study period (2014-15) were more stable. The 41 
amount of precipitation higher than the average in one year could exert a long-term effect (Evans and 42 
Burke 2013) on the spatial patterns, which is also in line with our earlier findings on the homogenizing 43 
effects of wet years/good water supply conditions (Fóti and others 2014). This kind of homogenizing 44 
effect can also be seen by the Rs nugget variograms occurring uniquely in the wet year of 2014 (but 45 
only in the mowed plot) and the N2O variograms not reaching a sill either. We could not observe any 46 
stability in Rs and AGB patterns during the first two years of the study period in the mowed plot, while 47 
some stability was detectable in the grazed one for a few consecutive campaigns. On the other hand, 48 
after a rainy year, even the persistence of AGB pattern became detectable despite the small sampling 49 
patch size (leading to large variability) and the minor topographic differences (1-2 m differences) in 50 
the investigated grassland compared to those found in other studies (Ohashi and Gyokusen 2007; 51 
Konda and others 2008, 2010; Fang and others 2009; Acosta and others 2013). It was reported that 52 
well-developed canopy increased the persistence of Rs patterns (Graf and others 2010) and we found 53 
that AGB was slightly larger in the second part of the study period (cf. SM Results). 54 
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Although we expected more heterogeneity in the AGB patterns in the grazed plot, we detected much 1 
higher occurrence rate of negative correlations between temporal AGB patterns in the mowed one, 2 
which means that an opposite pattern could develop e.g., after mowing or from autumns to springs and 3 
from springs/summers to autumns. The observed negative temporal correlations may potentially be 4 
related to phenological growth stages since early and late species would be affected differently by 5 
uniform height cuttings. The regrowth potential of plants with larger size and biomass is more affected 6 
than plants in earlier growth stages and with smaller size. Higher rates of persistence in Rs patterns 7 
were reported under forests with relatively stable stand structure (Søe and Buchmann 2005) and within 8 
a day with stationary plant and soil factors (ArchMiller and others 2016). In our study we found higher 9 
(longer lasting) rates of persistence in Rs pattern in the mowed plot with more uniform stand structure 10 
than in the grazed one. 11 
The recovery of the patterns can be a common phenomenon in grasslands where summer droughts are 12 
frequent (Nagy and others 2007; Koncz and others 2015) but wet extremes may also occur. The 13 
process could be similar to that found in another study at micro-scale (Fóti and others 2014), involving 14 
a dynamic opening up and closing of the patterns during drying and wetting with the depressions 15 
providing a potential refuge for stable ecosystem functioning during droughts. It seems also that the 16 
variability in the Rs spatial patterns could be attributed to the rather dynamic responses of the 17 
autotrophic components as the background data were very stable (Jurasinski and others 2012; Li and 18 
others 2013) in our study as well. However, the exact processes taking place in the recovery period 19 
after drought and the role of the autotrophic components (e.g., canopy closure, phenology) throughout 20 
the period remains to be elucidated in further studies. 21 

5 Conclusions 22 

We found that topographic differences, however small they might be, had primary importance in the 23 
generation of spatial pattern in the investigated grasslands where drought is frequent but wet extremes 24 
also occur. The main background factors such as SOC, TSN and the covariates like SWC and Ts and 25 
also AGB, Rs and N2O were found to follow the patterns of depressions and crests to varying extent. 26 
However, we found that spatial patterns and correlations between them were dynamically changing 27 
characteristics: sometimes (in the high-precipitation year and primarily in the mowed plot) the co-28 
patterns were masked, or not detectable at all, other times, primarily in autumn, they were reversed 29 
compared to the expectations.  30 
Patterns and their persistence were also modulated by the management effects even with the applied 31 
low grazing pressure and yearly mowing. These management regimes may create different levels of 32 
heterogeneity/ homogeneity possibly due to selective grazing, trampling and the return of N by 33 
livestock in the grazed plot and due to the uniform cutting height (differently affecting the 34 
community’s species) in the mowed plot. Regulatory effect of stand structure on the spatial patterns 35 
was present in the grazed plot and less detectable or missing altogether in the mowed plot.  36 
Temporal persistence of the spatial patterns was also a dynamic phenomenon. During periods of 37 
drought the patterns were more variable, depending on the actual potential and pattern of vegetation 38 
functioning, while under well-watered conditions we could detect more stability as well as 39 
homogeneity. The recovery of the patterns could be a common phenomenon in similar grasslands 40 
apparently affected by annual water supply, which is a factor strongly varying in the region. Minor 41 
topographical differences seem to be of high importance in pattern dynamics with surface depressions 42 
offering potential refuge for stable ecosystem functioning during drought.  43 
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