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Supplementary material 1 

SM Methods 2 

N2O flux equation 3 

Emission fluxes were calculated based on the accumulation of N2O gas [μgN2O m
–2

 h
–1

] per 4 

each chamber during the 20 – min sampling time by equation SM 1: 5 

     
                

          
         (SM 1) 6 

where ΔC is the difference in mixing ratios [ppb] in chambers at the end and start of 7 

samplings, MN2O is the molecular weight of N2O, Vch is the volume of the chambers [4×10
-4

 8 

m
3
], 60 is the time conversion factor for hour [min h

–1
], f is the factor taking into account the 9 

residual pressure in the evacuated tubes, Vm is the molar volume – 24 liters at laboratory 10 

temperature [t = 20 °C] during measurements –, Ach is the surface of soil covered by chambers 11 

[80 cm
2
], t20 is the sampling time [20 min]. 12 

Correlation of background factors from different campaigns 13 

SOC and TSN data sampled in Oct-2012 in the grazed treatment were used as a background 14 

for that day but the Oct-2014 data from the grazed and mowed treatments were used for the 15 

other datasets because of the slight modification of the sampling positions mentioned in the 16 

main text. We found statistically significant positive correlation between the two sampling 17 

dates’ (Oct-2012 and Oct-2014) SOC and TSN data (p<0.01 for both) for the grazed site, so 18 

joining the datasets was justified.  19 

Spatial data processing 20 

The data analysis consisted of the steps summarized in Supplementary material (SM) Figure 21 

1. 22 
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 1 

SM Figure 1. Steps of the spatial data processing. 2 

Variography 3 

Spatial patterns of the variables were investigated by variograms, cross-variograms and 4 

kriging. Raw data were often non-normally distributed and were affected by elevation (micro-5 

relief topography) or temporal trends (the latter was suspected in Ts and Rs datasets, because 6 

these variables may change rapidly within a few hours). In the presence of temporal trends 7 

linear detrending of the data against time was applied (2
nd

 step, SM Figure 1). In case of non-8 

normality data were normalized by the Box-Cox power transformation (Fox and Weisberg 9 

2011; Meyer and others 2014; R Core Team 2014) prior to geostatistical analysis. Variogram 10 

and cross-variogram analysis was done on normally distributed data after excluding outliers 11 

by variance cloud analysis (Pebesma 2004) (3
rd

 step, SM Figure 1). In case of spatial 12 

(elevation) trends, when either the autocorrelation length was larger than allowable (larger 13 

than half of the maximum lag distance: Rossi and others 1992; Stein and Ettema 2003), or sill 14 

was not found in variography (4
th

 step, SM Figure 1), surface detrending was done by fitting 15 

1
st
, 2

nd 
and 3

rd
 order polynomial trend surfaces by using the least squares method (Venables 16 
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and Ripley 2002; Vieira and others 2010)(5
th

 step, SM Figure 1, SM Figure 2). Similarly to 1 

Vieira and others (2010), the simplest detrending polynomial was chosen when a stable sill 2 

had already been found for the residuals. After detrending, residuals were retained for further 3 

analysis. Residuals were also normalized, if necessary (5
th

 step, SM Figure 1), and 4 

variography was repeated (6
th

 step, SM Figure 1). The variogram parameters from 5 

variography in the 4
th

 or 6
th

 steps of the data processing were used in kriging (7
th

 step, SM 6 

Figure 1, see the different types below). Kriging results were evaluated using the leave-one-7 

out cross validation (8
th

 step, SM Figure 1, (Oliver and Webster 2014)). The best kriging 8 

method was selected on the basis of the cross validation errors and data were back-9 

transformed to the original scale for mapping (9
th

 step, SM Figure 1).  10 

SM Figure 2. Example of spatial detrending of the Oct-2012 N2O dataset from the grazed 11 

plot. Circles are proportional to the N2O flux, dashed lines represent trends (1
st
 order: 12 

yellow, 2
nd

 order: red, 3
rd

 order: cyan) in space.  13 

All variables were standardized to zero mean and unit variance before variography and 14 

kriging to facilitate comparison of different variables (Katsalirou and others 2010).  15 

Semivariance (γ(h)) was calculated as:  16 
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,     (SM 2) 17 

where z(s) is a data value at a particular location, h is the average separation distance between 18 

data pairs, and N(h) is the number of data pairs separated at a distance of h (Dale 1999).  19 
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Gaussian, exponential and spherical models were fitted to the experimental semivariances 1 

against lag distance.  2 

Gaussian: 3 
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Exponential: 5 
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Spherical: 7 
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     (SM 5)  8 

In the models, h is the lag distance, a is the autocorrelation length (the distance at which the 9 

variogram reaches a plateau or, in the case of models with an asymptotic plateau, at which the 10 

variogram reaches its 95%, and is calculated from a0 as a=a0×3 in the case of the exponential 11 

model, a=a0×3^0.5 in the case of the Gaussian model, and a=a0 in the case of the spherical 12 

model), y0 is the variance resulting from measurement errors and smaller scale processes 13 

(‘nugget effect’) and c is the structural variance. The following model parameters were also 14 

used in the subsequent analysis: (y0+c) or ‘sill’, the total sample semivariance; psill, the ratio 15 

of structural variance and total variance, expressed as a percentage.  16 

The criterion for model selection was the residual sum of squares (SSErr). The goodness of 17 

model fit was quantified by the Nash–Sutcliffe model efficiency coefficient (ME), which is 18 

calculated similarly to the coefficient of determination, but ranges from -, indicating a better 19 
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prediction of the observed values by the mean than by the model to 1, which points to a 1 

perfect match of the observed and modelled data. Only fits with ME≥0.5 were accepted.  2 

Cross-variograms were used to investigate the spatial correlation of two variables. Cross-3 

semivariance yx(h) was calculated from normally distributed variables, but without trend 4 

removal as follows: 5 

  h)z(r)z(rh)z(s)z(s
N(h)

(h)γ ii

n

i

iix  
12

1

,   (SM 6) 6 

where z(s) and z(r) are the two investigated variables. In contrast to direct variograms, cross-7 

variograms could become negative, indicating that the two variables are negatively correlated 8 

in space and their patterns change inversely (while the value of the driver variable increases in 9 

space, that of the dependent variable decreases). Positive values indicate positive spatial 10 

correlation, i. e. joint/linked change (while the value of the driver variable increases the 11 

dependent variable also increases, that is the driver has a controlling effect on the dependent 12 

variable) in space, while values close to zero indicate that they change independently in space. 13 

The same theoretical models were fitted to the cross-variances as to the semivariances, and 14 

the same set of variogram parameters (y0, c, sill, psill, a and ME) were obtained. Furthermore, 15 

as surface trends were not removed, we complemented the cross-variogram analysis, with 16 

linear model (Pebesma 2004) to be able to describe the spatial correlation between the pairs of 17 

variables if the cross-variogram was unbounded (not saturated/did not reach sill). Linear 18 

model reflects the changes of the variables without spatial threshold. 19 

Kriging 20 

Kriging is an interpolation technique for the estimation of the values of a variable at 21 

unsampled locations, based on the measured values in the neighbourhood and the variogram 22 

parameters. Three types of kriging methods were investigated (then one of them was 23 

selected)(Pebesma 2004) on SWC, Ts, Rs, AGB and N2O data. For ordinary punctual kriging 24 

(OK), those variograms with ME>0.5 values were used, the ones which had already been 25 
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found to be the best fitting models from exponential, Gaussian and spherical. The kriging 1 

neighbourhood was set to the autocorrelation length of the variogram in question (Goslee 2 

2006), and 7 to 25 nearest data (Oliver and Webster 2014) within this range were used for the 3 

estimation. Universal kriging or kriging with external drift (KED) is a technique when the 4 

values of the sparsely measured target variable at unsampled locations are estimated on the 5 

basis of a high resolution auxiliary variable. In our study the DEM of the study plots was used 6 

as the auxiliary variable. Here, the autocorrelation length of the residual variograms (fitted on 7 

the residuals’ - received after subtracting the correlation with ALT from the measured 8 

variable - semivariances) and the 7 to 25 nearest points were set as kriging neighbourhood. 9 

Finally, ordinary co-kriging (CK) is a technique when the high resolution auxiliary data is 10 

used for the estimation on the basis of fitting a linear model of co-regionalization on the 11 

experimental semivariances of the target variable and the auxiliary data (here: ALT) and on 12 

their cross-semivariances. CK was performed on a reduced spatial resolution (Plant 2012) 13 

DEM (one tenth of the original DEM data was used) because of computational limits. (The 14 

kriged maps by this method are patchy due to this data reduction, cf. Figure 4). 15 

For the evaluation of the kriging methods leave-one-out cross-validation was performed. The 16 

procedure consisted of a series of estimations by omitting the observed data one by one and 17 

predicting their values by kriging. The following error estimates were used to compare the 18 

different kriging methods’ goodness: 19 

 normalized root mean square error (nRMSE): 20 

       
 

 
         

 
                    ,  (SM 7) 21 

where y is the variable in question, yi is one observed value of the variable at a given position, 22 

ŷi is the estimated value for the given position by the kriging method when the point has been 23 

omitted from the dataset, n is the number of observations. 24 
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 mean squared deviation ratio (MSDR), because we could compare the goodness of the 1 

three methods on the same dataset and choose the method with MSDR closest to 1. This 2 

comparison allowed us to assess the importance of the auxiliary variable in the estimation. 3 

     
 

 
    

 
       

       ,     (SM 8) 4 

where the parameters are the same as in SM 7, and varkr is the kriging variance. 5 

 and with regard to prediction bias: the closer the mean error (meanERR) to zero, the 6 

better the prediction is. Its negative values mean over-estimation, whereas its positive values 7 

mean under-estimation by the method. 8 

        
        

 
   

 
,       (SM 9) 9 

with the same parameters as SM 7. 10 

When the spatial estimation was not successful either due to non-normality of the datasets, 11 

ME<0.5 for the variogram fitting, occurrence of smaller autocorrelation length for the 12 

variogram than the grid scale (10 m), or large deviation between predicted (kriging) and 13 

measured values (the average of the estimated values by the best kriging method differed 14 

more than 100% from the average of the measured data) due to e. g. large nugget variance, we 15 

used inverse distance weighting (IDW) interpolation method (Baddeley and others 2015) 16 

before mapping. IDW estimates the values of a variable at unsampled locations on the basis of 17 

neighbouring data values in such a way that the closer the measured data position is to the 18 

unsampled location, the more influence (weight) it will have on the estimation. (Presence of 19 

the random measuring positions allowed us to use this method, rather than simply the linear 20 

interpolation.) 21 

SM Results  22 

Spatial co-patterns and temporal persistence of the driving variables 23 

The autocorrelation lengths of ALT were similar between 45-59 m and 36-52 m in the grazed 24 

and mowed plots, respectively (depending on the spread of positions actually taken into 25 
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account) despite the slight topographic differences. We found that the direct variograms of 1 

SOC had 30 and 40 m and TSN had 20 and 40 m autocorrelation lengths in the grazed and 2 

mowed plots, respectively. The cross-variogram autocorrelation lengths for ALT-SOC/TSN 3 

negative spatial correlations were around 40 m for both treatments.  4 

Descriptive statistics and variogram model parameters of the driving variables, SWC and Ts 5 

and those of AGB can be found in SM Tables 1, 2 and 4, while sign of the spatial correlation 6 

between all possible variable pairs (based on the cross-variogram analysis) can be found in 7 

SM Table 6.  8 

SWC had 43±17.7 m autocorrelation length on average in the grazed plot (SM Table 1) and 9 

was negatively linked to ALT with 53.6±5.5 m average cross-variogram autocorrelation 10 

length. At the mowed plot nugget variograms occurred 8 times out of 10, indicating 11 

homogeneity at the study scale and the average autocorrelation length was more than 60 m for 12 

the successfully fitted datasets. The SWC-ALT cross-variograms had 53.8±6.3 m average 13 

autocorrelation length for the whole study period. The spatial pattern of SWC in the mowed 14 

plot showed larger scales than the background variables (ALT, SOC, TSN), while scales were 15 

more similar in the grazed treatment.  16 

Ts (detectable in 6 cases in both plots, SM Table 2) generally showed smaller autocorrelation 17 

length than SWC with 27.3±14.3 m and 32.9±15.4 m on average for the grazed and mowed 18 

plots, respectively. In most of the cases SWC and Ts were negatively correlated in space, 19 

while Ts-ALT spatial correlations were generally positive except for autumn occasions in the 20 

grazed plot when the spatial patterns of SWC and Ts changed jointly (two campaigns), while 21 

ALT and Ts changed inversely (three campaigns).  22 
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The pattern of AGB (SM Table 4) showed 29.7±12.7 m and 33±21.7 m average 1 

autocorrelation lengths in the grazed and mowed plots, respectively. Concerning the spatial 2 

correlations, we found joint AGB-SWC patterns (except for one autumn datasets from the 3 

grazed plot again), while AGB-Ts and AGB-ALT patterns correlated negatively. Correlation 4 

between AGB and SOC/TSN was rarely detectable in the grazed plot, while joint patterns 5 

were found in 7 out of 9 cases in the mowed plot. The hypothesized joint spatial changes of 6 

AGB and Rs in space were detected in 3 out of 9 cases in both plots.  7 

SM Figure 3. Temporal persistence of SWC, Ts and AGB spatial patterns for the grazed and 8 

for the mowed plots, represented by significant rank-correlations (p<0.05) between 9 

measuring campaigns. The darker the colour, the more stable the pattern is, while 10 

directionality of the symbols represents the sing of the correlation, positive or negative. 11 

The non-parametric rank correlations showed relatively strong persistence of SWC patterns 12 

for the second part of the investigated period (SM Figure 3), quite similarly for both the 13 
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grazed and mowed plots. This period corresponded to the year with levels of precipitation 1 

higher than the average and in the following years. For Ts (SM Figure 3) a relatively stable 2 

pattern was characteristic in the mowed plot along the study, while low persistence and 3 

negative correlations could also be detected in the grazed one. AGB was the least stable 4 

among the variables (SM Figure 3) with practically no temporal persistence except for a few 5 

cases in the second part of the study period when the average AGB was slightly larger than in 6 

the first part (SM Table 4). However, we found high occurrence rates of negative correlations 7 

in the mowed plot between consecutive measuring occasions or between measurements being 8 

distant in time.  9 

 10 
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SM Table 1. Average (mean, %), standard deviation (sd), coefficient of variation (cv, %), minimum (min, %) and maximum (max, %) as well as 

the best variogram model and the model parameters, the nugget variance (y0), the structural semivariance (c), the total sample semivariance 

(y0+c, or ‘sill’), the ratio of structural variance and total variance, expressed as a percentage (psill), autocorrelaion length (a, m) and the 

goodness of model fit (ME) for the grazed and mowed plots’ SWC data by measuring campaigns.  

date transect mean sd cv min max model y0 c sill psill a ME 

Oct-2012. 

SWC 

grazed 

16.49 5.03 30.50 4.10 25.7 Sph 0.38 0.84 1.22 68.85 55.67 0.97 

May-2013. 14.73 4.39 29.80 3.60 23.3 Sph 0.43 0.77 1.2 64.17 62.76 0.98 

June-2013. 14.19 5.67 39.96 4.10 30.6 Sph 0.06 0.96 1.02 94.12 19.6 0.98 

Oct-2013. 14.07 3.69 26.23 6.60 22.3 Exp 0 1.05 1.05 100 21.92 0.96 

May-2014. 16.16 4.39 27.17 7.10 26.2 Gau 0.65 0.56 1.21 46.28 47.86 0.87 

May-2014 (N2O) 20.31 4.93 24.27 9.50 30.1 Sph 0.34 0.89 1.23 72.36 56.66 0.97 

June-2014. 14.60 4.38 30.00 6.10 26.2 Exp 0.03 1.3 1.33 97.74 64.88 0.84 

Sept-2014. 23.25 6.49 27.91 9.00 35.5 Sph 0.22 0.95 1.17 81.2 46.84 0.98 

June-2015. 7.92 2.60 32.83 3.60 15.4        

Nov-2015. 16.96 5.61 33.08 6.60 27.2 Sph 0.13 0.91 1.04 87.5 21.61 0.99 

Oct-2012. SWC 

mowed 

15.31 6.02 39.32 2.20 29.20        

May-2013. 13.97 4.33 31.01 2.70 25.20        
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June-2013. 14.06 5.03 35.78 5.10 31.60 Gau 0.85 0.34 1.19 28.57 71.75 0.54 

Oct-2013. 10.48 4.14 39.45 3.10 22.80        

May-2014. 15.47 4.36 28.17 5.10 26.70        

May-2014 (N2O). 13.96 4.15 29.73 7.10 25.70        

June-2014. 12.38 4.77 38.52 3.60 27.70        

Sept-2014. 18.77 7.38 39.31 8.10 37.50        

June-2015. 6.42 2.65 41.28 2.70 13.90        

Nov-2015. 11.05 6.11 55.29 3.60 28.70 Gau 0.71 0.6 1.31 45.8 68.9 0.88 
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SM Table 2. Average (mean, %), standard deviation (sd), coefficient of variation (cv, %), minimum (min, %) and maximum (max, %) as well as 

the best variogram model and the model parameters, the nugget variance (y0), the structural semivariance (c), the total sample semivariance 

(y0+c, or ‘sill’), the ratio of structural variance and total variance, expressed as a percentage (psill), autocorrelaion length (a, m) and the 

goodness of model fit (ME) for the grazed and mowed plots’ Ts data by measuring campaigns. 

date transect mean sd cv min max model y0 c sill psill a ME 

Oct-2012. 

Ts 

grazed 

16.93 1.25 7.37 14.40 20.2        

May-2013. 21.03 0.99 4.71 19.10 25.2 Sph 0.84 0.19 1.03 18.45 48.45 0.97 

June-2013. 19.28 1.27 6.61 17.20 22.4        

Oct-2013. 17.11 0.63 3.68 15.86 18.92        

May-2014. 20.72 1.56 7.52 17.40 24.5        

May-2014 (N2O). 19.84 0.71 3.58 17.70 21.6 Sph 0.72 0.3 1.02 29.41 40.62 0.85 

June-2014. 20.05 0.92 4.59 17.77 22.27 Sph 0 1.07 1.07 100 24.68 0.92 

Sept-2014. 15.78 0.50 3.17 14.22 17.14 Exp 0 1.09 1.09 100 21.6 0.78 

June-2015. 26.51 1.51 5.70 22.71 30.94 Exp 0 1.02 1.02 100 11.43 0.64 

Nov-2015. 10.48 0.21 2.00 10.04 11 Gau 0 1.05 1.05 100 16.89 0.96 

Oct-2012. Ts 

mowed 

14.47 0.76 5.27 12.90 17.10        

May-2013. 22.16 1.10 4.96 19.50 25.70 Exp 0.44 0.62 1.06 58.49 46.11 0.94 
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June-2013. 19.79 1.04 5.26 17.00 22.40 Sph 0 1.07 1.07 100 21.55 0.99 

Oct-2013. 17.03 0.61 3.58 15.80 18.90 Gau 0 0.99 0.99 100 12.28 0.91 

May-2014. 19.89 1.25 6.29 17.17 22.35        

May-2014 (N2O). 19.58 1.17 5.98 12.70 22.00        

June-2014. 21.13 2.02 9.54 8.72 25.70        

Sept-2014. 15.80 0.69 4.37 13.90 17.20 Sph 0.76 0.31 1.07 28.97 39.67 0.96 

June-2015. 26.69 2.24 8.39 21.70 31.60 Sph 0.13 1.2 1.33 90.23 51.87 0.99 

Nov-2015. 10.63 0.34 3.20 9.90 11.80 Sph 0.65 0.37 1.02 36.27 25.89 0.98 
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SM Table 3. Average (mean, %), standard deviation (sd), coefficient of variation (cv, %), minimum (min, %) and maximum (max, %) as well as 

the best variogram model and the model parameters, the nugget variance (y0), the structural semivariance (c), the total sample semivariance 

(y0+c, or ‘sill’), the ratio of structural variance and total variance, expressed as a percentage (psill), autocorrelaion length (a, m) and the 

goodness of model fit (ME) for the grazed and mowed plots’ Rs data by measuring campaigns. 

date transect mean sd cv min max model y0 c sill psill a ME 

Oct-2012. 

Rs 

grazed 

6.10 1.41 23.11 3.66 10.16 Exp 0.2 0.85 1.05 80.95 24.97 0.92 

May-2013. 9.40 2.33 24.70 2.97 14.58 Sph 0.64 0.41 1.05 39.05 29.65 0.79 

June-2013. 5.60 1.85 33.04 2.08 11.17 Sph 0.27 0.68 0.95 71.58 19.12 0.85 

Oct-2013. 5.47 1.22 22.30 3.27 8.01 Gau 0.71 0.32 1.03 31.07 20.87 0.8 

May-2014. 8.50 1.57 18.47 4.48 14.84 Sph 0.62 0.35 0.97 36.08 24.44 0.84 

June-2014. 10.28 1.97 19.16 6.52 15.9 Sph 0.3 0.66 0.96 68.75 18.54 0.91 

Sept-2014. 7.35 1.82 24.76 4.60 16.7 Gau 0.72 0.43 1.15 37.39 55.47 0.88 

June-2015. 9.89 2.52 25.48 4.88 17.2 Sph 0.41 0.66 1.07 61.68 26.97 0.93 

Nov-2015. 2.44 0.60 24.59 1.17 3.88 Sph 0.71 0.33 1.04 31.73 45.81 0.9 

Oct-2012. 

Rs 

mowed 

4.06 1.08 26.60 1.45 6.63 Gau 0.24 0.77 1.01 76.24 11.33 0.62 

May-2013. 10.28 2.29 22.28 5.24 15.40 Exp 0 1.01 1.01 100 11.27 0.55 

June-2013. 7.38 1.94 26.27 2.53 12.50 Sph 0.78 0.32 1.1 29.09 40.11 0.93 
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Oct-2013. 5.15 0.88 17.09 3.41 7.77 Gau 0.89 0.19 1.08 17.59 66.59 0.79 

May-2014. 9.50 1.84 19.36 5.81 14.30        

June-2014. 9.28 1.81 19.56 5.97 13.40        

Sept-2014. 7.98 1.63 20.43 5.24 15.40 Sph 0.57 0.45 1.02 44.12 34.25 0.88 

June-2015. 7.52 2.36 31.38 3.41 14.02 Exp 0.24 0.96 1.2 80 52.43 0.98 

Nov-2015. 2.09 0.75 35.89 0.88 4.10 Sph 0 1.09 1.09 100 25.91 0.98 

  



17 
 

SM Table 4. Average (mean, %), standard deviation (sd), coefficient of variation (cv, %), minimum (min, %) and maximum (max, %) as well as 

the best variogram model and the model parameters, the nugget variance (y0), the structural semivariance (c), the total sample semivariance 

(y0+c, or ‘sill’), the ratio of structural variance and total variance, expressed as a percentage (psill), autocorrelaion length (a, m) and the 

goodness of model fit (ME) for the grazed and mowed plots’ AGB data by measuring campaigns. 

date transect mean sd cv min max model y0 c sill psill a ME 

Oct-2012. 

AGB 

grazed 

2.26 1.39 61.50 0.45 6.7        

May-2013. 2.03 0.97 47.92 0.41 5.04        

June-2013. 3.50 1.80 51.43 0.48 11.33 Exp 0.71 0.31 1.02 30.39 28.73 0.91 

Oct-2013. 1.82 0.76 41.76 0.46 3.71 Exp 0 1.01 1.01 100 18.27 0.89 

May-2014. 3.07 1.60 51.96 0.72 10.5        

June-2014. 1.02 0.80 78.99 0.16 4.65        

Sept-2014. 3.55 1.96 55.21 0.73 8.68 Sph 0 1.09 1.09 100 16.76 0.8 

June-2015. 3.38 1.90 56.21 0.52 12.1        

Nov-2015. 5.20 2.33 44.81 1.11 10.84 Sph 0.05 1.07 1.12 95.54 18.69 0.83 

Oct-2012. 

AGB 

mowed 

3.35 1.42 42.39 0.50 7.65 Gau 0 0.95 0.95 100 17.98 0.79 

May-2013. 2.93 1.25 42.66 0.47 7.13        

June-2013. 3.89 1.83 47.04 0.80 9.33 Gau 0.8 0.33 1.13 29.2 60.76 1 
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Oct-2013. 1.52 0.70 46.14 0.38 3.11        

May-2014. 3.15 1.22 38.73 0.80 6.75 Sph 0.64 0.31 0.95 32.63 26.48 0.93 

June-2014. 1.43 0.86 59.72 0.33 5.36        

Sept-2014. 5.43 2.17 39.96 1.80 12.67 Sph 0.73 0.35 1.08 32.41 59.66 0.83 

June-2015. 4.76 2.28 47.90 1.19 13.18 Sph 0.75 0.31 1.06 29.25 21.29 0.91 

Nov-2015. 4.99 3.03 60.72 1.63 18.92 Gau 0 1.02 1.02 100 12.01 0.96 
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SM Table 5. Average (mean, %), standard deviation (sd), coefficient of variation (cv, %), minimum (min, %) and maximum (max, %) as well as 

the best variogram model and the model parameters, the nugget variance (y0), the structural semivariance (c), the total sample semivariance 

(y0+c, or ‘sill’), the ratio of structural variance and total variance, expressed as a percentage (psill), autocorrelaion length (a, m) and the 

goodness of model fit (ME) for the grazed and mowed plots’ N2O flux data by measuring campaigns. 

date transect mean sd cv min max model y0 c sill psill a ME 

Oct-2012. N2O 

grazed 

9.04 8.3 92.3 -7.32 38.91 Sph 0.55 0.53 1.08 49.07 39.2 0.97 

May-2014 (N2O). 8.62 15 171 -21.4 64.84        

Oct-2012. N2O 

mowed 

6.79 9.8 144 -10.4 31.7 Sph 0.44 0.5 0.94 53.19 18.37 0.9 

May-2014 (N2O). 9.53 11 112 -14.7 37.5        
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SM Table 6. Sign of the spatial correlations between variable pairs on the basis of the cross-variogram analysis for the grazed and mowed plots’ 

measuring campaigns (n in blue cells: negative, p in red cells: positive). (It has to be noted that we had only one SOC, TSN and ALT datasets.) 
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Rs-N2O      -          -     
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Kriging methods selected for interpolation 1 

We compared the goodness of kriging estimates based on the root means square error and the 2 

mean squared deviation ratio (MSDR) values (see SM: Kriging) before plotting. The best 3 

method for a given variable was selected for each measuring occasion then the mean error 4 

(meanERR) was checked for bias. We found the meanERR to be relatively low in almost all 5 

cases (SM table 7). The general pattern was very diverse (SM Table 8): the best estimate was 6 

given 17, 27 and 7 times ordinary kriging (OK), universal kriging (KED) and ordinary co-7 

kriging (CK), respectively, while kriging was not applicable in further 29 cases out of 80. In 8 

these 29 cases inverse distance weighting (IDW) estimates were used before plotting. 9 

Differences between the arithmetic mean and the estimated mean were generally small for 10 

abiotic variables (absolute values for the normalized difference <0.1: SM Table 8, arithmetic 11 

means: SM Tables 1-5) and larger for biotic variables. 12 

SM Table 7: nRMSE, MSDR and meanERR of Rs and N2O kriging estimates (when adequate 13 

variograms were found and kriging was successful) for the grazed and mowed plots’ 14 

measuring campaigns. 15 

  Grazed Mowed 

  nRMSE MSDR meanERR nRMSE MSDR meanERR 

Oct-2012. 

Rs 

0.21 1.87 -0.01 0.23 1.34 0.07 

May-2013. 0.20 0.90 -0.02 0.27 1.51 0.00 

June-2013. 0.20 0.84 0.00 0.19 0.96 -0.02 

Oct-2013. 0.25 1.08 0.00 0.20 0.94 -0.01 

May-2014. 0.16 0.95 0.02    

June-2014. 0.20 1.42 -0.01    

Sept-2014. 0.19 1.00 -0.01 0.19 0.95 0.02 

June-2015. 0.17 1.08 0.01 0.19 1.58 -0.01 

Nov-2015. 0.17 1.01 -0.01 0.18 1.23 0.02 

Oct-2012. 
N2O 0.19 1.03 -0.01 0.19 0.76 0.00 
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SM table 8. Relative difference between the arithmetic mean of the measured data and the average of the estimated values (estimated-

measured)/estimated) (kriging estimates: black letters with blue, green and yellow background for the OK, KED and CK predictions, 

respectively, IDW estimates: grey letters).

Sampling dates 

SWC Ts Rs AGB N2O 

Grazed Mowed Grazed Mowed Grazed Mowed Grazed Mowed Grazed Mowed 

Oct-2012. -0.01 -0.03 0.00 0.00 -0.07 0.12 0.00 -0.02 -0.23 -0.42 

May-2013. 0.04 0.00 -0.03 -0.04 -0.08 0.12 0.05 0.02   

June-2013. 0.03 0.02 0.00 -0.07 -0.28 0.15 0.40 -0.28   

Oct-2013. 0.08 -0.02 0.00 0.00 -0.02 -0.08 -0.03 0.02   

May-2014. 0.01 -0.01 0.00 0.00 0.00 0.01 0.00 0.21   

May-2014 (N2O) 0.07 0.00 0.00 0.00     -0.09 0.03 

June-2014. 0.08 0.00 -0.05 0.00 -0.02 0.00 -0.06 -0.03   

Sept-2014. 0.03 -0.01 0.00 -0.05 -0.05 -0.02 0.44 -0.05   

June-2015. 0.01 -0.03 0.00 -0.10 -0.17 -0.01 -0.05 -0.06   

Nov-2015. 0.08 0.16 0.00 -0.02 -0.14 0.23 -0.03 -0.07   
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