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 Abstract: A methodology is proposed to calculate statistical average and standard deviation 
of long time water quality parameter series along a river network. The method considers the water 
network as a graph consisting of straight sessions and junctions. With a Taylor-series 
approximation, statistical values of an arbitrary point of the network can be calculated from 
upstream ones without the need to calculate the single downstream values. According to 
preliminary results of the first calculations on a pilot area, mean value of the downstream 
biological oxygen demand and the so called ‘transfer coefficient’ can be approximated with a 
relative accuracy of 10%. 
 
 Keywords: Water quality, Water quality monitoring, Water monitoring statistics, Point-
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1. Introduction 

 The quality of waters of Europe remains an important issue despite the introduction 
of the EU Water Framework Directive (WFD) several years ago [1], [2]. According to 
the WFD models provide important means of process understanding [3]. However, 
some existing models are characterized by high data demand, which is difficult to 
satisfy, while others having less data requirements only reproduce water quality 
parameters with significant errors [4], [5]. As sampling times do not coincide inside the 
stream network in most of the cases, the consistent spatial profile for single water 
bodies can rarely be reproduced. This fact makes mass balance calculations extremely 
difficult [6], [7]. Nevertheless, many models require some kind of on-site mass-balance 
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data for calibration, so often additional field measurements are conducted to patch the 
holes of routine monitoring databases [8], which increases the costs of regional-scale 
modeling. At the same time, there is a lot of useful information in routine monitoring 
databases [1], [9], [10], [11]. 
 In Hungary, regular, comprehensive surface water quality sampling was launched in 
1968 [12]. The 113 most important rivers were monitored in 300 monitoring stations. 
Sampling was done at least monthly, but on some stations so often as twice a week, 
with determination of about 50 parameters all over the country [12]. All the data was 
collected in the Water Quality 2000 (VM2000) database. The basics of this system 
remained unchanged until implementation of the EU WFD in 2006, when systematic 
monitoring of smaller reaches and creeks started [13]. At the same time, sampling 
stations with decade’s long series were closed. Since 2006, data are collected in Surface 
Water Information System (SWIS). In Fig. 1 a portion of the Hungarian river and 
monitoring network is visualized in order to give the reader an impression on their 
density and distribution. 

 

Fig. 1. Portion of the Hungarian river and monitoring network 

 Current work at the Department of Sanitary and Environmental Engineering, 
Budapest University of Technology and Economics aims to develop a method suitable 
for assessing performance of a water quality database. The means is a process-based 
statistical model that describes the connection between distributions of water quality 
parameters at junctions of the stream network in order to make predictions for junctions 
that are not covered by measurements. In a series of papers, it is intended to describe 
functioning and accuracy of the different elements (edge, node) of the method for 
several in-stream processes (settling, decay, etc.) and different geometry. 
 The present paper is the first one in this series, reporting first steps of the model 
development. A stand-alone river-reach without any sources/sinks in between the two 
endpoints is investigated. The water quality constituent is considered to follow first-
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order kinetics with no influence of other constituents. Also, results of testing the method 
against measured data are reported. 

2. Methods 

2.1. Water quality model 

 The model is based on a graph representation of the stream network. Confluences of 
rivers, wastewater inlets, and sampling stations are represented by graph vertices; 
stream reaches by edges (see Fig. 2). Edges are characterized by their physical 
properties: width, length, slope, etc. Internal changes (e.g. reactions, decay) are assigned 
to edges and increment/decrease of discharge and/or pollutant to nodes (supposing 
instant total mixing inside the node). 

 

Fig. 2. Graph of an example river network 

 A single edge is a river reach without any side inflow/outflow but at the endpoints. 
Assuming first order decay kinetics along the edge, the downstream concentration of a 
water quality constituent can be calculated from the upstream concentration according 
to the well-known formula 

)exp(1 ktCC o −= , (1) 

where C1 and C0 are up- and downstream concentrations [g m-3] (e. g. of Biological 
Oxygen Demand, (BOD)) respectively; k is the first-order decay coefficient; and t is the 
travel time [d], [14]. For the downstream end of an edge the nonlinear part of Eq. (1) 
can be compressed into a single transfer coefficient (� [–]): 

( ) oCTQC ,1 α= , (2) 

where � can be derived from discharge and water temperature based on (2): 
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where k20 is decay coefficient in the 20 °C water; L is length of the reach [m]; B is 
characteristic width of the channel [m]; kst is bed roughness [m1/3 s-1]; and I is mean 
slope of the reach [-]. Fixing the calibration constant also means supposing all it’s 
components to be constant in time. 

2.2. Statistical model 

 The objective was to develop a method for transforming statistics (mean and 
variance) of water quality parameters measured in a certain node to non-monitored 
ones. 
 As a first step, was intended to calculate the mean and variance of the transfer 
coefficient from the mean and variance of Q and T. Deriving long-term average of the 
2nd-order Taylor-approximation for Eq. (3) around the mean values (��� ��� yields 
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� is the standard deviation and the stroke above any letter means mean value throughout 
this paper. 
 According to Eqs. (2) and (3), there is a time-variable nonlinear transformation of 
concentration between the upstream and downstream nodes. This transformation 
distorts the distribution of C0 into the distribution of C1. Based on Eq. (2) the mean of 
C1 is precisely: 

( )αα ,cov 0

_

0

_

1

_
CCC +⋅= . (8) 

If C0 and � are independent, this simplifies to 

_

0

_

1

_
α⋅= CC , (9) 

which is the basic approximation. 
 Due to the nonlinear transform, there is no precise solution for the variance of C1, 
but there is a possibility to use the 2nd-order approximation again: 
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Again assuming independence of C0 and � yield to: 
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In contrast to Eq. (9), Eq. (11) was built on 2 stages of approximations, first the 2nd-
order Taylor-approximation and then the assumption of independence of C0 and �. 
Accordingly, the error associated with Eq. (11) is expected to be larger than the error of 
Eq. (9). The magnitude of these errors was tested in the case study and was decided if 
the proposed approach is suitable for making predictions within an entire graph of the 
stream network.  

3. Case study  

3.1. Site description 

 To test the model, a river reaches monitored both at the inflow and the outflow point 
is needed. The outflow point sample series are needed to test the above equations’ 
accuracy. According to the VM2000 database, only a few reaches, satisfying the above 
requirements, exist. One of them is a reach of the Kapos River between Dombóvár and 
Kurd (Western Hungary). The Dombóvár WasteWater Treatment Plant (WWTP) 
discharges 16 000 population equivalent, i. e. about 2000 m³ d-1 treated wastewater into 
the Kapos River 1.4 km upstream of the Dombóvár sampling site (see Fig. 3). Mean 
BOD concentration of the WWTP effluent is about 30 g m-³ (data from year 2007 - it 
used to be much higher in last decades of the 20th century). Yearly mean discharge of 
the Kapos increases by 20% (ranging from -6% to 75%, based on bi-weekly data) along 
this section due to base flow and the smaller side reaches (Fig. 3). Although this 
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increment is not negligible, in the calculations it was disregarded. From the many water 
quality parameters only BOD was examined in this phase of the research. 

Fig. 3. River reaches and sampling stations at the pilot area 

3.2. Input data 

 In the tests data from two sampling stations was used: 1. Dombóvár and 2. Kurd. 
Following parameters were involved in the calculations: 

1. Discharge time series [m³ s-1]; 
2. Water temperature time series [°C]; 
3. BOD time series [g m-3]. 

 Besides, transfer coefficient � has been calculated for each date after fixing the 
calibration constant � of Eq. (3). 
 The original database contained 465 and 597 records in the period of 1968–1980 and 
1994–2006 for Dombóvár and Kurd, respectively. Data from 1981–1993 were missing 
from the database. BOD values after 1994 were significantly lower than before 1980 
(annual means decreased from 10.5-38.2 g m-3 to 4.6-6.3 g m-3 in Dombóvár and from 
6.7-24.8 to 3.9-5.5 in Kurd). The discharge measurement was missing for some dates; 
however, only dates with all discharge, temperature and BOD concentration available 
were taken into account. 
 Following six (sub)series of data were generated: St is the test series; years 1968 and 
1994: 

S0: Full series; 
S1: Series consisting of data from odd years; 
S2: Series consisting of data from even years; 
S3: Series consisting of data from years dividable by 3; 
S4: Series consisting of data from years with remainder of 1 after division by 3; 
S5: Series consisting of data from years with remainder of 2 after division by 3. 

 With this process independent pairs/triplets of subseries were produced while ruling 
out effects of systematic changes. Since S2 is independent from S1, and S4 and S5 are 
independent from S3, they are suitable for validation. All 6 series were divided into two 
periods: 1968 - 1980, and 1994 - 2005, and the whole time period (1968 - 2005) was 
also investigated. The number of records in the various data series and periods are 
summarized in Table I. 
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Table I 

Number of records in the various data series and periods 

 
1968-1980 1994-2005 1968-2005 

Dombóvár Kurd Dombóvár Kurd Dombóvár Kurd 
St 13 12 24 26 37 38 
S0 157 296 293 286 450 582 
S1 75 144 148 144 223 288 
S2 82 152 145 142 227 294 
S3 60 108 99 91 159 199 
S4 51 93 94 92 145 185 
S5 46 95 100 103 146 198 

3.3. Calculations 

The sequence of calculation is: 

1. Determination of �� and �	
�� from Eqs. (5) and (6), respectively; 
2. Determination of ����� from Eq. (8) or (9); 
3. Determination of �	
��� from Eq. (10) or (11); 
4. Comparison of modeled and measured statistics of � and C1. 

 The measurements for C1 (downstream sample series) allowed to calibrate the 
parameter � and control it’s value calculated based on literature and real data. 

4. Results and discussion 

4.1. Calibration constant �

 Considering our series of equations as a model, the parameters of model calibration 
are constants � and � of Eq. (3). According to literature data, � varies between 
1.0,…,1.1; BOD decomposition is usually calculated with �=1.04 or �=1.047 [14], 
[15]. �=1.04. was set. 
 Substituting literature (k20 0.35 d-1, kst 10 m1/3 s-1) and true geometrical data 
(L=17.0 km, B=20 m, I=0.04 %) into Eq. (4), it was found that �=-0.6 m1.2 s-0.4. 
However, the above values were slightly modified to get an insight on the uncertainty. 
In Table II, the range of values for the calibration constant � is shown. 

Table II 

Calculated and calibrated values for � [m1.2 s-0.4] 

� Minimal Average Maximal 
Substituting literature and true 
geometrical values into Eq. (4). 

-3.2 -0.6 0.0 

Calibration -1.5 -0.5 -0.2 
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4.2. Transfer coefficient �

 The mean value of the transfer coefficient (��) can be calculated via Eq. (5). 
According to pilot calculations, the error caused by the approximation is always less 
than 11%; (2.4% in average). According to our investigations on the particular pilot 
area, there is a certain correlation between temperature and flow: low waters happen 
usually during summer. The correlation coefficient for the data series was usually 
around -0.2, ranging from -0.6 to 0. Still the weight of the covariance term in Eq. (5) is 
less than 1%, so there is no big advantage in calculating cov(Q,T). 
 Investigating Eq. (6) the following conclusions can be drawn. The covariance term 
here has a higher proportion (<12%), and the relative error for �(�) ranged between  
12–49% (32% in average), which is not negligible. 

4.3. Outflow BOD concentration C1

 According to the assumptions behind Eq. (9) the dependence between C0 and � 
might be negligible. For the data series used in the case study, the correlation between 
C0 and � was between -0.08 and 0.36. The cov(C0,�) was between -0.26 and 0.17, so for 
the test dataset the cost of using Eq. (9) instead of Eq. (8) was maximally 2% relative  
error in �����. 
 Calibration and verification happened as follows: 

• calibration with series S1, verification with series S2; or 
• calibration with series S3, verification with series either S4 or S5. 

 The measured and calculated values can be found in Table III. The difference 
between calculation and measurement is below 10% except for one case. In that case the 
mean outflow BOD concentration was below 50% of the inflow one (the usual value 
was between 60-70%). This might be due to the time shift between upstream and 
downstream sampling in that particular series of years. As can also be seen, accuracy of 
the model decreases with decrease of the sample amount. 

Table III 

Measured (m) and calculated (c) values of mean outflow BOD concentration (�����) [g m-3] and the 
difference between calculated and measured values in [%] 

 S2 S4 S5 

 m c m c m c 

1968-1980 11.85 11.37 (-4%) 10.38 16.68 (+38%) 15.28 17.03 (+10%)

1994-2005 4.53 4.83 (+6%) 4.83 4.92 (+2%) 4.57 4.69 (+3%)

 For the calculation of the outflow BOD concentration’s standard deviation according 
to Eq. (10), cov(C0,�) is needed, meaning that the transfer coefficient has to be 
calculated for each sample. This is in contradiction with the intention of using statistical 
parameters instead of unique values. Comparing the weight of unique terms of Eq. (10) 
to the exact value of �²(C1), it was found that the error of the approximation is below 
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10%, and that neglecting the covariance term would make an additional error of less 
than 6% for the test series. This means, that the error caused by using Eq. (11) instead of 
Eq. (10) was less than 16%. Both errors decreased with increasing series length. 
 The performance of the proposed method in estimating the standard deviation of the 
measured outflow BOD values was variable. In Fig. 4 calculated � values as function of 
measured values’ deviation were plotted. 

 

Fig. 4. Approximated standard deviation versus standard deviation of measured downstream 
concentration 

 According to calculations on the test series, Eq. (10) overestimates �(C1) by about 
30% compared to the measured std. deviation, the (over)estimation value ranging from  
-10 to 110%. Again, larger errors appear in the shorter series of S3-S5. 
 Summarizing, both mean values (�� and �����) are approximated with satisfying 
accuracy. However, approximation of both standard deviations (�(�) and �(C1)) 
contains considerable errors. In general, errors can be caused by 

• neglection of the covariance term in the 2nd-order Taylor-series; 
• neglection of higher order terms of the Taylor-series; 
• time-shift in upstream and downstream sampling dates. 

 In this paper, the first possibility was eliminated: it was shown, that neglecting of the 
covariance term does not lead to major errors. Thus, further investigation is needed to 
locate the errors learned. 
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5. Conclusions 

 A statistical method is proposed to calculate statistical average and variance of water 
quality parameter series along stream sections. With a Taylor-series approximation 
downstream values can be calculated from upstream ones. First tests of this novel 
analysis tool on the VM2000 gave promising results. Generally, the suggested 
simplifications did not cause unacceptable errors for the case study. Mean and variance 
of the downstream BOD and the transfer coefficient could be approximated with an 
accuracy of +/-10% in most cases. The accuracy can be potentially improved with the 
estimation of higher order terms of the Taylor-series.  
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