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Abstract  

Intestinal microbiota are critical for health with changes associated with diverse human 

diseases. Research suggests altered intestinal microbiota can profoundly affect brain function. 

However, whether altering brain function directly affects the microbiota is unknown. Since it 

is currently unclear how brain injury induces clinical complications such as infections or 

paralytic ileus, key contributors to prolonged hospitalization and death post-stroke, we tested 

in mice the hypothesis that brain damage induced changes in the intestinal microbiota. 

Experimental stroke altered the composition of caecal microbiota, with specific changes in 

Peptococcaceae and Prevotellaceace correlating with the extent of injury. These effects are 

mediated by noradrenaline release from the autonomic nervous system with altered caecal 

mucoprotein production and goblet cell numbers. Traumatic brain injury also caused changes 

in the gut microbiota, confirming brain injury effects gut microbiota. Changes in intestinal 

microbiota after brain injury may affect recovery and treatment of patients should appreciate 

such changes. 
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1. Introduction 

It is becoming clear that intestinal microbiota play key roles in both host development and in 

maintaining homeostasis. Intestinal microbiota change with age and are also influenced by 

environmental factors such as diet, and disease 1–3. Recent research highlights the key role of 

microbial communities in the large intestine in essential immune defence mechanisms and 

control of inflammatory responses 4,5. Impaired regulation of the intestinal microbiota is also 

known to contribute to diseases of the intestinal tract, and is linked with the development of 

diverse inflammatory conditions such as sepsis, metabolic disease or cancer 6–9. Altered 

intestinal microbiota have also recently been linked to neuro-behavioural problems such as 

autism 10,11. In fact the effect of microbiota on brain function is profound with microbiota 

known to influence brain specific activity such as anxiety like behaviour, learning and 

memory, microglial activity and blood brain barrier integrity12.  However, much less is 

known about whether changes in the intestinal microbiota are themselves influenced by 

central nervous system function. Brain injury caused by stroke is the most common cause of 

lasting disability worldwide and has a huge socio-economic impact.  Beyond the detrimental 

effects of the initial injury on outcome after acute cerebrovascular events, one of the key 

causes for death or prolonged hospitalization and impaired recovery of patients is the 

development of post-stroke infections 13. In some clinical studies, preventive antibiotic 

therapy was found beneficial14, and recent data indicate that pattern recognition receptors that 

can recognise microbiota-derived products could contribute to stroke outcome 15,16. The 

enteric nervous system is under central autonomic control and it is believed that the 

autonomic nervous system contributes to regulation of intestinal immunity and microbiota 17. 

We and others have shown that acute brain injury induces diverse autonomic, neuroendocrine 

and inflammatory changes, which manifest in several organs in the body, leading to 
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immunosuppression and the development of infectious complications 13,18. The impact of an 

acute brain injury on the intestinal microbiota, and whether this is also influenced by 

neuroendocrine and inflammatory changes as a result of injury, is not known, but could be of 

importance to the outcome and recovery of the patient.  

 

Here we tested the hypothesis that an acute brain injury induced by experimental stroke or 

traumatic brain injury would induce specific changes in the gut microbiota. We demonstrate 

that brain injury profoundly impacts on microbial communities in the caecum and that brain 

injury is associated with specific changes in microbiota. We propose that these changes are 

due to increased noradrenaline (NE) release from the autonomic nervous system into the gut. 

These changes may influence recovery after an acute brain injury.   
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2. Methods 

 

2.1 Mice. Male 10-14 week-old C57BL/6 mice were kept at 22 °C ± 1 °C and 65 % humidity 

with a 12 h light-dark cycle and had free access to food and water. All animal procedures 

were performed under appropriate project licence authority and adhered to the UK Animals 

(Scientific Procedures) Act (1986) and the Hungarian Act of Animal Care and 

Experimentation (1998; XXVIII, section 243/1998), approved by the Animal Care and Use 

Committee of the IEM. 

 

2.2 Middle cerebral artery occlusion (MCAo). Transient focal cerebral ischemia was induced 

as described previously 19. Briefly, mice were anaesthetised with isoflurane, the common 

carotid artery was exposed and cerebral ischemia was induced by an intraluminal filament 

that was advanced along the internal carotid artery, to occlude middle cerebral artery. After 

60 min of MCAo, reperfusion was induced for 4 h or 72 h prior to sacrifice. Core body 

temperature was maintained at 37.0 °C ±0.5 °C throughout the surgery by a heating blanket 

(Homeothermic Blanket Control Unit; Harvard Apparatus, Kent, UK) and monitored after 

recovery. After surgery, animals were returned to their cages and allowed free access to water 

and food. Neurological deficit in mice was assessed by using Bederson scores (4 point scale 

of increasing neurological deficit) as described previously19. Animals that showed no obvious 

neurological deficit at 4 h reperfusion after MCAo (score 1 at minimum) have been excluded 

from the studies pre hoc (n=1). 

 

2.3 Surgical controls. We investigated the effect of surgical manipulation and anaesthesia in 

the absence of experimental stroke on changes in the intestinal microbiota. To achieve this, 
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two separate experimental conditions were used; the first involved only anaesthesia with no 

surgical manipulation, the second sham surgery, during which mice underwent all procedures 

as in the MCAo group, except for occlusion of the MCA with an intraluminal filament.  

 

2.4 Traumatic brain injury (TBI). A closed head model of TBI was performed in mice under 

isoflurane anaesthesia similarly to what has been described earlier, with slight modifications 

20. After induction of anaesthesia, the skull was exposed by a small, midline longitudinal 

incision. The head was held in place and a plastic cone was placed on the skull 2mm lateral 

of the midline after which a 100 g weight was allowed to fall on the top of the cone from a 

preestablished height resulting in injury to the left hemisphere, which localised around the 

affected cerebral cortex (Fig.7). Mice were allowed to recover and 1ml of saline was injected 

subcutaneously for rehydration. We used a relative mild form of TBI resulting in 2 out of 7 

mice with substantial neurological deficit as assessed 72 h later. Sham animals were 

subjected to the same procedure except for head injury. 

 

2.5 Pharmacological manipulation of the sympathetic nervous system. A group of mice was 

injected with the NE reuptake inhibitor atomoxetine (Sigma, 0.1 mg kg-1) and the α2-

adrenergic receptor antagonist yohimbine (Sigma, 1 mg kg-1) administered intraperitoneally 

(0.2 ml / mouse in total), once daily for three subsequent days. Another group of mice 

received a single intraperitoneal injection of 6-hydroxydopamine (6-OHDA) (0.2 ml, Sigma, 

100 mg kg-1) followed by 0.2 ml sterile saline for two subsequent days. Control mice were 

administered 0.2 ml saline daily for three days. Mice were sacrificed 72 h after the first 

injection; the caecum was quickly removed and was kept at -80 °C until use. 
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2.6 ELISA. To measure inflammatory changes and neurotransmitter levels in the gut, caecum 

tissues were washed in sterile saline and homogenised as described previously19. Samples 

were kept at -20 °C until processing. Protein concentrations calculated using a BCA assay 

(Pierce/Themo Fisher Scientific). Caecum homogenates were measured for granulocyte-

colony stimulating factor (G-CSF), RANTES (CCL5), KC (CXCL1), MMP-9, interleukin 6 

(IL-6), ICAM-1, VCAM-1 (R & D Systems, UK), adrenaline and noradrenaline (Eagle 

Biosciences, NH, USA), substance P (R & D Systems, UK), and serotonin (Enzo, UK) 

according to the manufacturers protocol.  

 

2.7 DNA extraction. Genomic DNA was extracted directly from total caecal content (~250 

mg) using the QIAamp DNA Stool Mini Kit (Qiagen) with pathogen protocol.  

 

2.8 Community profiling. Bacterial communities were profiled in the mouse caecum using 

Denaturing Gradient Gel Electrophoresis (DGGE), 454 sequencing (Roche, USA), and 

Illumia MiSeq (USA). DGGE assessment of the bacterial communities was as follows: PCR 

amplification of the 16S rRNA gene used universal primers 341F-GC and 518R 21, and 

reaction conditions: 5U BioTaq polymerase in 1X buffer (Bioline, UK), 1.5 mM MgCl2, 20 

pmol primers, 0.2 mM dNTPs, 5 µg BSA, and 10-50 ng of template DNA in a final volume 

of 50 µL. The cycle sequence consisted of initial denaturation step of 95 °C 5 min, then 30 

cycles of 95 °C 1 min; 55 °C 1 min; 72 °C 1 min, and final extension of 72 °C 10 min. PCR 

products were purified (QiaGEN Minelute kit) before loading onto a DGGE gel (150 ng / 

lane). Samples were separated using the D-code system (Bio-Rad, USA) on 10 % w/v 

acrylamide gel with a gradient of 30-70 % denaturant at 60 °C for 16 h at 63 V. Gels were 

stained for 30 min using SYBR Gold (Invitrogen, USA). DGGE Gels were analyzed with 
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Phoretix 1D Advanced gel analysis software (Ver. 5.0, Nonlinear Dynamics Ltd.), with 

binary matrix of band presence/absence of individual bands  used for sample comparison.   

2.8.1 Pyrosequencing. 454 sequencing of the bacterial communities were as follows: The 16S 

rRNA gene was amplified using the modified 16S primers 66f and 518R (italicised) to 

include Lib-A (underlined) linker primer sequences required to 454 sequencing and a MID 

tag to allow sample pooling (Forward primer (Primer A-Key): 

5’‐CGTATCGCCTCCCTCGCGCCATCAG(MID)CAGGCCTAACACATGCAAGTC‐3’ 

Reverse primer (Primer B-Key): 

5’‐CTATGCGCCTTGCCAGCCCGCTCAGATTACCGCGGCTGCTGG‐3’  

Roche multiplex identifiers (MID tags), which are unique "barcode" sequences for each 

amplified sample were used to allow the pooling of different samples into the same 

sequencing run. Post sequencing these samples could then be separated on their MIDs back 

into the individual sample amplified for analysis. MIDs used are detailed in Table S1. All 

samples were amplified by PCR using the same batch of reagents/buffers to eliminate reagent 

difference effects, they were also amplified in triplicate to reduce variation in PCR amplicon 

products 22. Samples were amplified using the following reaction conditions: 3U Velocity 

polymerase in 1X buffer (Bioline, UK),  20 pmol primers, 0.2 mM dNTPs, and 10-50 ng of 

template DNA in a final volume of 50 µL. The cycle parameters  used a low cycle number to 

reduce chimera production 23, and were as follows: Initial denaturation 95 °C 2 min 30 s, then 

18 cycles of 95 °C 10 s; 55 °C 10 s; 72 °C 30 s; with final extension of 72 °C 2 min. 

Triplicate PCR reactions were pooled, before size selection by gel extraction with the 

QIAquick gel extraction kit, concentrated by using MinElute PCR Purification Kit (Qiagen), 

quantified using Qubit dsDNA HS Assay (Life technologies) before pooling of MID tagged 

products in equimolar amounts in preparation for multiplex barcode pyrosequencing. Roche 
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454 GS-FLX sequencing was undertaken at the Centre for Genome Research, University of 

Liverpool. yielding a total of 305,216 reads Sequences were processed with flows trimmed to 

400 and processed/cleaned using PyroDist for distance calculation, FCluster for clustering 

analysis, PyroNoise in mothur based on AmpliconNoiseV1.25 24.  

 

2.8.2 Ilumina MiSeq. Sequencing of the bacterial communities were undertaken by Centre for 

Genome Research, University of Liverpool using paired end Ilumina MiSeq, and library prep 

was as follows: The 16S rRNA gene was amplified using the primers described by Caporaso 

et al 25 producing 254 bp insert, and then nested PCR to add MID tags and including Ilumina 

adaptor sequences as in the Ilumina Nextera protocol. Samples were amplified using the 

following reaction conditions: 1X Kapa Mastermix (KapaBiosystems, UK) 10 µM primers, 

and 5-10 ng of template DNA in 20 µl final volume. Samples were then purified using 

Ampure beads and resuspend in 10 µl. In the second round PCR 5 ng of template DNA is 

replaced with 9 µl of purified PCR product. The cycle parameters used a low cycle number to 

reduce chimera production 23, and were as follows for both rounds of PCR: Initial 

denaturation 98 °C 2 min, then 10 cycles of 95 °C 20 s; 65 °C 15 s; 70 °C 30 s; with final 

extension of 72 °C 5 min. Samples were quantified using Qubit dsDNA HS Assay (Life 

technologies) before pooling. The sequencing run had on average of 111,536 sequences per 

sample. Samples were paired and quality trimmed to q20. OTUs were picked at 97 % using 

Open-reference OTU picking strategy (utilizing Greengenes database release Feb-2011; 

http://greengenes.lbl.gov), and chimera checked with cluster less than 4 sequences removed 

using scripts in QIIME.  

NMDS statistical analysis of all sequencing and the community compositional analysis were 

undertaken in R statistical package.  
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All sequencing data has been deposited in the European nucleotide archive and available 

under accession number PRJEB12833. 

 

2.9 [3
H]NE uptake and release from the caecum. Mice 72h after sham surgery or 

experimental stroke were killed by decapitation and the caecum was rapidly removed. 

Caecum tissues without caecal content were dissected into 2-3 mm pieces, immediately 

placed into ice-cold Krebs' solution (113 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 2.5 mM 

CaCl2, 25 mM NaHCO3, 1.2 mM KH2PO4, 115 mM glucose, 0.3 mM Na2EDTA, and 0.03 

mM ascorbic acid), and continuously gassed with a mixture of 95 % O2 and 5 % CO2. 

Caecum slices were washed with 5 ml of Krebs' solution, and loaded for 45 min with [3H]NE 

at a concentration of 10 µCi in 1 ml of Krebs' solution. Slices then were washed three times 

with 10 ml of ice-cold oxygenated Krebs' solution and transferred into a four-channel 

microvolume (100 µl) superperfusion system kept at 37 °C 26 superfused with Krebs' solution 

at a rate of 0.5 ml min-1 for 60 min (preperfusion period), and the effluent was discarded. 

After preperfusion, 19 x 3 min fractions were collected. Electrical stimulation (20 V; 10 Hz; 

2 msec; 1200 impulses) was applied during the third (S1) and the thirteenth sample (S2). In 

some experiments tetrodotoxin (3µM) was added during the ninth sample (after S1) which 

was present thereafter in the perfusion fluid to investigate its effect on S2-induced NE 

release. Then, the caecum slices were removed from the chamber and homogenized in 5 ml 

of 10 % trichloroacetic acid. A 0.5 ml aliquot of the supernatant was added to 2 ml of 

scintillation mixture (Ultima Gold; Packard, Meridian, CT), and the radioactivity was 

measured with a Packard 1900 TR liquid scintillation counter. Radioactivity was expressed in 

terms of disintegration per minute per gram of wet tissue (becquerels per gram). The [3H]NE 

uptake of slices was defined as the tissue content of radioactivity at the beginning (CB) of the 
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perfusion period. This value was calculated according to the following equation: Σi = 1-19 FRi + 

CE = CB, where FRi is the released radioactivity in the fraction number i, and CE is the tissue 

content measured at the end of the experiment. The neuronal release of [3H]NE was measured 

by the integration of the surplus release over baseline in response to electrical stimulation. 

 

2.10 Histology. 72 h after sham surgery or experimental stroke the caecum was removed and 

placed immediately into 4 % paraformaldehyde (PFA, pH=7.4) for 24 h prior to paraffin 

embedding. 5 µm thick sections were mounted onto gelatin-coated slides, deparaffinized and 

stained with haematoxylin and eosin (H&E), Azan or periodic acid Schiff-alcian blue (PAS), 

then dehydrated and coverslipped with Depex mounting medium. Mucin-containing cells 

visualized by PAS staining have been quantified in a blinded manner on 3-3 randomly 

selected caecum sections in each mouse (n=4). Catecholaminergic nerve fibers in the caecum 

were visualized with immunohistochemisty using mouse-anti TH monoclonal antibody 

(1:100, DiaSorin). The staining was developed with anti-mouse ImmPRESS reagent followed 

by DAB-Ni peroxidase kit (Vector Laboratories, Burlingame, CA, US), and sections 

counterstained with cresyl violet. 

 

2.11 Statistical analysis. Statistics were undertaken using the R-package, with multivariate 

analysis was undertaken on these data using the Vegan 27 and Ecodist 28 packages in R.  A 

Non parametric version of multidimensional scaling (NMDS) was used to assess 

communities using bray-curtis dissimilarities to characterise the difference between 

communities.  The calculated dissimilarity matrix is compressed and modelled in 2 

dimensions for NMDS figures in which the physical distances represent the level of similarity 

between samples, and permutational multivariate analysis of variance using distance matrices 
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(Adonis in Vegan) for comparisons between groups on the distance matrix to give 

significance values.  

 

3. Results  

3.1 Experimental cerebral ischemia 

Experimental stroke induced in mice by occlusion of the middle cerebral artery (MCAo) 

resulted in cerebral ischemia affecting the ipsilateral striatum and the cerebral cortex 

consistent with our earlier studies 19,29 (Fig 1a). Sensory-motor functional assessment 

indicated severe neurological deficit in mice that had undergone 60 min MCAo and 4 or 72 h 

reperfusion, but no deficit was observed in naïve or sham mice (Fig 1b). We then sought to 

determine the effects of this injury on the intestinal microbiota. Since experimental stroke 

induced by MCAo requires acute surgical intervention that includes anaesthesia, we set up 

additional experimental groups to control for the potential effects of surgical stress and the 

anaesthetic isoflurane. 

 

3.2 Characterisation of microbial communities. 

To determine the effects of experimental stroke on intestinal microbiota we initially used 

bacterial community profiling of the caecum by DGGE. Caeca were removed and total 

genomic DNA was extracted for bacterial community profiling by DGGE. Data were 

analysed using non-metric multidimensional scaling (NMDS). Figure 1c reveals specific 

changes in the bacterial communities. No significant change was observed between naïve 

mice, sham mice, or mice that had undergone MCAo at 4 h post operation using 

PERMANOVA on the distance matrix created. However, at 72 h post operation there was a 

shift in microbial populations as result of surgery with an indication of the separation of sham 
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and brain injury animals on their community profile (Fig 1c). The caecal microbial 

community composition in mice that had experimental stroke and 72 h reperfusion had 

significantly different communities to naïve mice.  Sham operated individuals also had a 

significantly different microbial community to the naïve population (Fig 1c), indicating that 

sham surgery alone causes a profound change in caecal microbial community structure. To 

determine whether differences in caecal microbiota between naïve and operated mice were a 

result of anaesthesia rather than surgery, we analysed the caecal microbiota in animals that 

had received anaesthetic alone. Caeca were sampled 72 h post anaesthesia, and from control 

mice, and community profiled as described above by DGGE (data not shown). NMDS 

analysis demonstrated that there was no significant difference between mice as a result of the 

anaesthetic (S1 Figure, adonis: F.Model1,9 =1.83, pr = 0.081). Therefore the changes 

identified in the sham mice were mostly a result of the surgery, not the anaesthetic with the 

small sample (n=5-6) tested. 

 

To characterise the specific changes occurring as a result of brain injury the composition of 

the caecal microbiota were determined by 16S rRNA gene amplification followed by 

pyrosequencing generating an average of 12,335 sequences per sample. Samples 

demonstrated deep coverage by the levelling of rarefaction curves (S2 Figure) and using 

goods coverage estimate 30 we found on average 98.99 % coverage of operational taxanomic 

units in samples (OTUs : bacterial species defined at the level of > 97 % similarity on 

sequence level of the 16S rRNA gene).  

 

Assessment of the Shannon diversity index 31 of the sequence data showed that  there were no 

significant differences between samples (ANOVA: F2,12 = 0.50,  p  = 0.62).  However, 



  

Page  14  
 

NMDS analysis identified that there was a significant shift in communities as result of stroke 

or surgery (Fig 2). To identify any specific bacterial taxa that change as a result of brain 

injury alone the rarefied sequence data was analysed using proportional data for each taxa 

calculated using QIIME. ANOVA tests were undertaken for each taxa to identify if treatment 

had a significant effect on their proportion. To account for any increases in type I errors, the 

resulting p values table was corrected using the commonly used FDR correction which is 

commonly used for this type of analysis 32. We identified that brain injury had a significant 

effect on the proportion of Peptococcaceae (Fig 3a). TukeyHSD posthoc tests confirmed that 

as a result of brain injury there was a significant increase in the proportion of Peptococcaceae 

in comparison to Naïve and Sham mice (p < 0.05). The proportions of Prevotellaceace 

decreased as a result of either treatment (Fig 3b). TukeyHSD posthoc tests identified that 

there was a decrease in the proportions of Prevotellaceace as a result of sham in comparison 

to naïve although not significant (p = 0.08), which declined further as a result of stroke (p < 

0.05). Therefore these data establish that there are specific significant changes to the caecal 

microbiota as a consequence of experimental stroke that cannot be attributed to the effects of 

surgery alone. 

 

To assess whether changes as a result of brain injury could occur by chance variation in 

microbial communities, another experiment was undertaken where 10 naïve mice (n =5 per 

cage) were monitored by stool sampling at 0, 28, and 41 days, with the samples subjected to 

454 pyrosequencing as detailed above.  No significant effect of time or cage housed was 

found in Shannon bacterial diversity (ANOVA: F2,16 = 0.40, p = 0.676) and (ANOVA: F1,8 = 

1.46, p = 0.261) respectively (S3 Figure). NMDS analysis of bacterial composition (S4 

Figure), identified a small time dependent change on the bacterial community composition 
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(adonis: F.Model1,28 = 1.71, p = 0.022), which would not be unexpected over 41 days. 

ANOVA with FDR correction did not identify any taxa that changed with time between 

samples. This would indicate that microbial communities are very stable in C57BL/6 mice 

caged in our animal facility, giving us confidence in the brain injury effects identified. 

 

3.3 Linking bacterial changes to functional outcome after stroke. 

To investigate whether brain injury drives autonomic changes in the gut, we assessed levels 

of key neurotransmitters in the tissue of the caecum. Levels of adrenaline, serotonin, and 

substance P in the caecum did not change (S4 Figure), but noradrenaline (NE) was 

significantly increased 72 h after experimental stroke (Fig 4a). Increased NE levels positively 

correlated with neurological deficit scores (S5 Figure). Relative abundance of 

Peptococcaceae in the caecum showed a significant positive correlation, whereas abundance 

of Prevotellaceae showed a significant negative correlation with NE levels (Fig 4b & 4c) and 

neurological deficit demonstrated the same correlations (S5 Figure). We have also tested 

changes in several inflammatory markers in the intestinal tissue, which are known to be 

associated with alterations in the microbiota. Of these markers RANTES (CCL5) levels 

showed a positive correlation with the relative abundance of Peptococcaceae in the caecum 

(S6 Figure). 

 

3.4 Brain injury leads to increased release of NE from sympathetic nerves in the caecum and 

altered mucoprotein production. 

To investigate how brain injury leads to increased NE production in the caecum, we used a 

well-established ex vivo approach allowing selective assessment of noradrenergic autonomic 

regulation in the tissue. Caecum tissue blocks isolated 72h after sham surgery or experimental 
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stroke were rinsed carefully to eliminate caecal content and were incubated with 3H-NE, 

allowing uptake and release of 3H-NE upon electric stimulation. Brain injury resulted in a 

profound increase in autonomic outflow in the caecum indicated by an over three-fold 

increase in 3H-NE tissue uptake and release induced by a 10 Hz stimulation (Fig 5a). To 

further confirm that brain injury altered autonomic nerve function in the gut and increased 

NE production / release (Fig 5a) is not due to other cells, such as macrophages that can 

produce catecholamines 33, tetrodotoxin was used that selectively blocks the firing of action 

potentials in nerves by inhibiting voltage-gated sodium channels 34. Tetrodotoxin completely 

prevented stimulation-evoked 3H-NE release in the caecum (S7 Figure), indicating that brain 

injury increases noradrenergic autonomic outflow in the caecum. Histology also confirmed 

that nerves containing tyrosine hydroxylase (TH, a rate-limiting enzyme of catecholamine 

biosynthesis) were more abundant in the caecum of mice 72 h after brain injury compared to 

sham animals (Fig 5b). TH-positive nerve fibers and nerve endings were mostly found in 

close proximity to mucoprotein-containing cells at the basis of the intestinal epithelium (Fig 

5b). To test whether the increased levels of NE were directly affecting the growth of 

Peptococcaceae and Prevotellaceae in the caecum, caecal contents were obtained from naive 

mice and cultured anaerobically for 24 h with increased levels of NE. Analysis by Q-PCR 

showed no correlation between the level of NE and the growth of both bacterial genera (S8 

Figure). As such it is our hypothesis that the effects of increased levels of NE on the 

Peptococcaceae and Prevotellaceae are indirect. It is known that autonomic regulation could 

indirectly influence the gut microbiota via altered goblet cell function 35. To test whether 

brain injury had any effect on mucoprotein production in the caecum the number of cells in 

the intestinal mucosa containing mixed (both acidic and neutral) mucoproteins and the total 

number of goblet cells was counted. Both the number of cells containing mixed mucoproteins 
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and the total number of goblet cells were significantly reduced 72 h after brain injury 

compared to sham mice (Fig 5c and 5d). However, no sign of local tissue inflammation, 

leukocyte infiltration, fibrosis or tissue lesions were seen in the caecum after brain injury as 

assessed on haematoxylin and eosin (H&E)- and Azan- stained caecum sections (Fig 5c). 

 

3.5 Manipulation of the sympathetic nervous system leads to altered mucoprotein production, 

bacterial community changes, and reduced Prevotellaceae levels in the caecum 

To investigate whether changes in sympathetic activity lead to similar alterations in the 

caecal microbiota in vivo to those seen after ischemic brain injury, two different 

pharmacological approaches were used 1) A mild increase in systemic sympathetic 

autonomic tone induced by daily administration of atomoxetine (a NE reuptake inhibitor) and 

yohimbine (an α2-adrenergic receptor antagonist) or  2) intraperitoneal administration of 6-

hydroxydopamine (6-OHDA), which leads to robust NE release followed by depletion of 

noradrenergic nerve terminals in peripheral tissues. Impact on microbial communities was 

assessed by sequencing of 16 rRNA gene amplicons using illumia Mi-seq platform resulting 

in an average of 111,536 sequences per sample with greater than 99.8 % coverage of OTUs 

estimated by good coverage estimates 30. A rarefied subset of 36904 sequences was used for 

all subsequent analysis. The mild increase in systemic sympathetic autonomic tone had no 

effect on microbial communities in the caecum 72 hours later, as identified by 16S rRNA 

sequencing (Fig 6a). In contrast, the administration of 6-OHDA resulted in profound changes 

in the gut microbiota (Fig 6a). The 6-OHDA treatment resulted in differential perturbations of 

the microbial community causing a significant spread and separation from the control mice 

when assessed by NMDS (adonis F.model1,12 = 2.90, p = 0.0012).  Correlation of bacterial 

abundances in relation to the NMDS plot identified significant correlations with the Phyla of 
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Firmicutes (R2 = 0.60, p =0.008) and Bacteriodetes (R2 = 0.58, p = 0.01) and the 

Bacteroidetes family S24-7 (R2 = 0.78, p = 0.017) (Fig 6a) populations indicating dramatic 

and differential shifts in the populations.  6-OHDA treatment significantly decreased goblet 

cell numbers in the caecum, whilst atomoxetine / yohimbine treatment had no effect (Fig 6b). 

Moreover, 6-OHDA treatment specifically resulted in a 20 fold reduction in Prevotellaceae 

levels in the caecum, a reduction also observed after experimental stroke (Fig 6c).  

 

3.6 Severity of traumatic brain injury correlates with changes in the gut microbiota.  

We next investigated the impact of alternative models of brain injury on the gut microbiota, 

and thus subjected mice to mild traumatic brain injury (TBI) using a closed-head injury 

model (Fig 7a). As with the manipulation of the sympathetic nervous system, communities 

were assessed using illumina Mi-Seq multiplexed with the run described above. The severity 

of injury from TBI, as with ischemic brain injury described above, correlated with changes in 

caecal microbiota (Fig 7b). Bacterial population shifts on NMDS that indicate correlations 

with neurological deficit as a result of TBI, were identified in Bacteroidetes, the 

Bacteroidetes family Porphyromonadaceae, Firmicutes and α-Proteobacteria. However in 

contrast to ischemic brain injury, TBI did not result in changes in Peptococcaceae and 

Prevotellaceae. Correspondingly, goblet cell numbers after TBI were identical to that seen in 

control mice (Fig 7c), suggesting that different forms of brain injury shape changes in the gut 

microbiota through multiple mechanisms. 
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4. Discussion  

There is an increasing appreciation of the importance of the intestinal microbiota and its 

contribution to the development and maintenance of physiological systems and homeostasis. 

Altered intestinal microbiota are linked to neuro-developmental disorders 11, in addition to a 

number of immune and inflammatory disease states 1–9. While a number of factors are known 

to influence the intestinal microbiota, such as diet, age, and disease, the effects of brain 

function per se have not been studied. We show that impairment in brain function, induced by 

experimental stroke, caused specific and significant changes in the caecal microbiota. These 

stroke-specific changes occur relatively rapidly, within 72 h, and involve a significant 

decrease in the levels of Prevotellaceace and an increase in the levels of Peptococcaceae. 

Prevotellaceace have been shown to be part of the core microbiota of C57Bl/6 mice 36, as 

such the consequences of reducing the prevalence of Prevotellaceace is likely to be 

significant. In humans Prevotellaceace are associated with agrarian diets rich in plant derived 

material and reductions in the abundance of Prevotellaceace have been detected in the 

microbiota of autistic children 12, Crohn’s disease 37 and in children suffering from type 1 

diabetes 38. In contrast, abnormal increases in Prevotellaceae has been found to exacerbate 

DSS-induced colitis in mice 39. The significance of the increase in the abundance of 

Peptococcaceae is less clear since little is known about their role in the intestinal microbiota. 

Peptococcaceace are relatively minor components of the intestinal microbiota of both mice 

and humans, and the changes we detect here may be a consequence of the decrease in the 

levels of Provetellaceace. Nevertheless, since only brain injury, but not surgical stress 

resulted in changes (over 3-fold) in Peptococcaceae, these changes could be specific 

indicators of brain injury and their predictive value for functional outcome should be tested in 

patients with various forms of brain injury. Interestingly, the proinflammatory cytokine, 
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CCL5 (RANTES), which we found to positively correlate with Peptococcaceae levels, has 

been linked with the development of colitis 39, therefore the functional role of RANTES in 

stroke-induced gut microbiota changes will need to be investigated in future studies.  

 

These changes in the caecal microbiota were correlated both with increased levels of NE and 

noradrenergic innervation as well as the severity of injury. It is well known that NE levels 

increase following trauma or injury 40–42 and stroke is known to induce NE in the circulation 

in line with increased sympathetic activity in both humans and experimental animals 43,44.  

However this is the first evidence for increased NE release and noradrenergic innervation in 

the caecum following stroke. It is known that NE can be sensed and utilised by bacteria in 

caecal microbiota and that NE-like molecules can be synthesised by bacteria 45–47. However 

the anatomical and neurochemical evidence data presented here demonstrate the source of the 

NE in the caecum following stroke would appear to be host derived from sympathetic 

innervation. It is currently unclear whether brain injury-induced increases in sympathetic 

outflow in the caecum are due to direct actions of altered central sympatho-motor responses 

or could also be influenced by changes in parasympathetic activity mediated by the vagus 

nerve.  However these data suggest that specific brain-induced changes in gut NE will 

influence the microbiome-gut-brain axis and thus affect outcome and behaviour. The effect of 

early life stress on microbiota has been demonstrated previously, suggesting that stress-

induced central or peripheral events could alter the intestinal microbiota 48.   

 

Gastrointestinal dysfunction occurs frequently in stroke patients in the form of altered 

intestinal motility, abdominal pain, gastric distension, constipation or ulcers that are linked to 

altered autonomic activity 49–52. Increasing stroke severity is associated with progressive loss 
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of overall autonomic modulation and a progressive shift toward sympathetic dominance in 

stroke patients 52. These data therefore suggest that a specific neuronal input or an imbalance 

in neuro and inflammatory mediators (such as NE reported here for example) in the 

interstitial intestinal tissue contribute to the signals that regulate the structure of the intestinal 

microbiota. Although it is known that the growth in pure culture of Prevotella intermedia is 

inhibited by the presence of stress hormones such as NE 53, when the mouse microbiota was 

cultured in vitro in increasing concentrations of NE we did not detect any difference on the 

levels of Prevotellaceace or Peptococcaceae (S8 Figure). This difference may well reflect that 

in our experiments we were studying the growth of caecal microbiota consisting of many 

interacting bacterial species, an approach more likely to reproduce effects inside the caecum 

rather than pure culture. As such the increase in host-derived NE seen in the experimental 

stroke may be indirectly affecting the relative growth of Prevotellaceace and Peptococcaceae 

within the caecal microbiota resulting their changes in abundance. Pharmacological 

manipulation of the peripheral autonomic nervous system by 6-OHDA strengthened our 

conclusions that a decrease in Prevotellaceae in the caecum seen after experimental stroke 

could be due to altered autonomic activity. Intraperitoneally administered 6-OHDA does not 

cross the BBB 54 and leads to rapid release of NE in the periphery, which has been shown to 

lead to immediate changes in diverse bacterial species 55,56. This is followed by depletion of 

noradrenergic terminals. We found decreased Prevotellaceae levels 72h after 6-OHDA 

administration, which was similar to what seen after experimental stroke. It is currently 

unclear whether ischemic brain injury leads to increased sympathetic outflow in the caecum 

via increasing central autonomic tone, or whether cessation of central autonomic control after 

brain injury is compensated by local increases in NE in the gut. Nevertheless, increased NE 
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release or the dysregulation of autonomic control of the gut after both ischemic brain injury 

and 6-OHDA would explain similar changes seen in Prevotellaceae. 

 

It is known that autonomic regulation can effect goblet cell function 35. As such NE could 

indirectly influence the gut microbiota via altered goblet cell function 35. Analysis of caecal 

tissue from stroke animals demonstrated that the number of cells containing mixed 

mucoproteins and the total number of goblet cells were significantly reduced 72 h after brain 

injury compared to sham mice (Fig 5c, and 5d). As such changes to the mucosal surface are 

likely to be generated as a consequence of brain injury. Changes in mucin levels have been 

linked to gut health and susceptibility to infection 35, of which bacteria from the family 

Prevotellaceae have been demonstrated to colonise and utilise mucin 57. The autonomic 

nervous system is also known to dampen immune responses 58 although here no sign of local 

tissue inflammation, leukocyte infiltration, fibrosis or tissue lesions were seen in the caecum 

after brain injury as assessed on haematoxylin and eosin (H&E)- and Azan- stained caecum 

sections (Fig 5c). Importantly, 6-OHDA treatment resulted in reduced number of goblet cells 

in the caecum similarly to what was found after experimental stroke and a decrease in 

Prevotellaceae was observed in both cases. In contrast, traumatic brain injury did not alter 

goblet cell numbers or Prevotellaceae levels in the caecum, and caused different community 

changes.  

 

It should be noted that an important observation of our studies was the effect of sham surgery 

on the caecal microbiota. We have previously reported the surprisingly significant effects of 

sham surgery on levels of inflammatory mediators in peripheral tissues and the circulation 59. 

In the closed head model of mild traumatic brain injury used here, sham mice only 
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experienced a relatively small manipulation (a small cut on the skin covering the skull) 

compared to the sham surgery required for the MCAo model of experimental stroke, whilst 

brain injury and functional deficit were much smaller in the TBI model. This could explain 

why TBI did not lead to profound changes in goblet cell function and a decrease in 

Prevotellaceae in the gut, whilst a correlation between increasing neurological deficit and 

specific changes in microbiota were found. Thus, microbiota changes after TBI could be in 

part due to a generic stress response that follows tissue injury and also to a different form of 

brain injury compared to that seen after experimental stroke. Whether the changes we observe 

on the intestinal microbiota in response to sham surgery and levels of systemic inflammation 

reported are functionally linked is unknown. However the implications of these observations 

are far reaching. Firstly, these data indicate that any surgical intervention may profoundly and 

rapidly influence the caecal microbiota. Such changes could have effects on post-surgical 

outcome, particularly if the dysbiosis (microbial imbalance on or inside the body) results in 

changes that favour the growth of potential opportunistic pathogens within the host 

microbiota. Secondly, the interpretations of experimental observations made from models 

that utilise surgical intervention may be confounded by surgery-induced changes in the caecal 

microbiota and inflammatory status. Thus surgical intervention essentially changes the 

organisms’ baseline and could in effect create a co-morbid state. 

 

In conclusion, our results are the first to show specific changes in the microbiota due to a 

change in brain function, and also to surgical stress following tissue injury, with the likely 

involvement of the autonomic nervous system and goblet cells under certain conditions.  

Identification of the mechanisms involved in this dysbiosis could help us understand how the 

connectivity between brain function and the intestinal microbiota contributes to health and 
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disease and have important implications in the treatment of patients following traumatic brain 

injury. 
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Figure legends 

 

Fig 1) Neurological deficit and bacterial community profiling of brain injury mice and 

controls by DGGE: a) Brain injury is shown after 60min MCAo and 72h reperfusion as 

identified by cresyl violet staining, dotted line indicates infarct boarder. b) Neurological 

deficit score for mice post surgery significant effect of treatment (ANOVA: F4,20 = 33.88, p = 

<0.01) post hoc TukeyHSD confirmed stroke increase neurological deficit (p <0.001), with 

no difference between 4h or 72h post brain injury ( p = 0.58) Error bars are standard error of 

the mean, n=5. C) NMDS analysis of caecal bacterial communities assessed by DGGE of the 

16S rRNA gene, profile of Naïve, Sham and Brain injury mice caecal bacterial communites at 

t = 4 h and 72 h post operation. Samples are as follows: � = t 0 ; ∆ = t 4h;  �= t 72 h post 

treatment; white = naïve; grey = sham; black = brain injury. Axis represent scale for 

simularity distance scores between sample centered to (0,0). PERMANOVA: Naïve vs Sham 

and Brain injury at 4 h post operation (adonis: F.Model2,12 =1.34, p = 0.159), Naïve vs. Sham 

72 h (adonis: F.Model1,8 =3.59, p = 0.016); Naïve vs. Brain Injury 72 h, (adonis: F.Model1,8 

=5.90, p = 0.008); Sham 72 h vs. Brain Injury 72 h, (adonis: F.Model1,8 =1.51, pr = 0.17). 

 

Fig 2) 16S amplicon pyrosequencing analysis of mouse caecum from niave, sham and 

brain injury mice.  Bacterial species relative abundances from rarefied OTU data (1866 

sequences) were used for NMDS analysis Samples are as follows: � = t 0 ; �= t 72 h post 

treatment; white = naïve; grey = sham; black = brain injury. Axis represent scale for 

simularity distance scores between sample centered to (0,0). Pair-wise comparisons were 

undertaken to identify significant differences using PERMANOVA. Naïve vs. Sham (adonis: 
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F.Model1,8 = 2.12, p = 0.008); Naïve vs. Brain Injury (adonis: F.Model1,8 = 2.24, p = 0.008); 

Sham vs. Brain injury, (adonis: F.Model1,8 = 1.02, p = 0.484). 

 

Fig 3) Proportions of bacterial taxa that were identified to change significantly as a 

result of experimental stroke or sham surgery. ANOVA was undertaken on all taxa 

identified with FDR correction of P-values. a) Peptococcaceae proportions of community 

between naïve, sham, and brain injury mice were significantly different (p-adjust = 0.026). 

with labels a and b denoting treatments significantly different (p < 0.05) identified using 

TukeyHSD posthoc test  b) Prevotellaceae  proportions of community between naïve, sham, 

and brain injury mice were significantly different (p-adjust = 0.019) with labels a and b 

denoting treatments significantly different (p < 0.05) identified using TukeyHSD posthoc 

test.  Upper and lower limits of box represent 75th and 25th percentile, solid line in median, 

dotted line mean.  Dots represent actual values for each mouse. 

 

Fig 4) Intestinal microbiota changes correlate with gut noradrenaline (NE) levels a) 

Mice that had undergone 60min MCAo and 72h  reperfusion show significantly increased NE 

levels in gut tissue homogenates (ANOVA: F2,12 = 10.02,  p  = 0.003; Posthoc TukeyHSD 

significance <0.001, with the labels a and b denoting samples  significantly different, error 

bars are standard error of the mean, n = 5. b). Peptococcaceae relative abundance correlate 

with intestinal NE levels (Regression: R2 = 0.370, F1,13 = 7.56, p = 0.02),  Equation of line y 

= 0.322*x + 0.114. c). Prevotellaceae decrease in the intestinal proportionally to increasing 

NE levels after injury (Regression: R2 = 0.512, F1,13 = 13.58, p = 0.003),  Equation of line y = 

-3.299*x + 3.480. Samples are as follows: � = Naïve ; ∆ = Sham 72h post treatment;  �= 

Brain injury 72 h post treatment. 
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Fig 5. Brain injury results in altered noradrenaline (NE) release and mucoprotein 

production in the caecum. a). Tissue uptake and stimulated release of 3H-NE was 

significantly increased in the caecum 72 h after experimental stroke (**P<0.01, 

***P<0.0001, unpaired t test), error bars are standard error of the mean, n =6-8) b). Tyrosine 

hydroxilase immunopositive nerve fibers (arrowheads) are most abundant at the basis of the 

intestinal epithelium found often in the proximity of goblet cells in mice 72 h after brain 

injury (cresyl violet counterstain). c). Haematoxylin and eosin (H&E), Azan and periodic 

acid-Schiff-alcian blue (PAS) staining of paraffin-embedded caecum sections is shown, 72h 

after sham surgery or experimental stroke. PAS staining identifies mucoprotein-containing 

cells (magenta – neutral mucins, blue – acidic mucins, magenta / blue –mixed mucins) and 

indicates less mucoproteins associated with the apical part of intestinal epithelial cells (shown 

by arrowheads on insert). d). Quantification of PAS staining (C). Brain injury is associated 

with less mucin-containing cells in the caecum compared to sham animals (*P<0.05, 

***P<0.0001, one-way ANOVA followed by TukeyHSD posthoc test), error bars are 

standard error of the mean, n= 4. Scale bars: B – 50 µm; C – 100 µm. 

 

Fig 6. Impact of manipulations of the sympathetic nervous system. a) Impact on 

community microbiota assessed by NMDS analysis of 16S amplicon illumina sequencing 

relative abundances from rarefied OTU data (36,904 sequences). Controls = white, 6-OHDA 

treated = Light grey, Increased systemic sympathetic autonomic tone = dark grey. 6-OHDA 

samples were significantly different to controls (adonis F.model1,12 = 2.90, p = 0.0012), 

whereas Increased systemic sympathetic autonomic tone had no impact. Significant 

correlations were identified with the Phyla of Firmicutes (R2 = 0.60, p =0.008), Bacteroidetes 
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(R2 = 0.58, p = 0.01) and the Bacteroidetes family S24-7 (R2 = 0.78, p = 0.017). b) Periodic 

acid-Schiff-alcian blue (PAS) staining of paraffin-embedded caecum sections is shown in 

control mice and after 6-OHDA administration or atomoxetine / yohimbine treatment that 

leads to mild increase in sympathetic tone (Inc. symp). Number of PAS-positive goblet cells 

is significantly reduced 72 h after 6-OHDA compared to Control (p<0.001) and Inc. symp. 

(&p<0.05) mice. Scale bar: 100µm. Error bars are standard error of the mean, n=5-6 c) 

Significant shifts (*) in the proportions of Prevotellaceae as a result of 6-OHDA treatment p 

<0.05. Upper and lower limits of box represent 75th and 25th percentile, solid line in median, 

dotted line mean.  Dots represent actual values for each mouse. 

 

Fig 7. Impact of traumatic brain injury (TBI) on microbiota. a) Cresyl violet staining 

indicates brain injury induced by TBI in the cerebral cortex. Scale bar: 500 µm. b) Impact on 

community microbiota as a result of TBI assessed by NMDS analysis of 16S amplicon 

Ilumina sequencing. Rarefied OTU data (36,904 sequences) was used with samples as 

follows: Controls = white, TBI = dark grey. A strong correlation between neurological deficit 

and community compositions was seen label N (R2 = 0.6797 p =0.0013). Other significant 

correlations explaining the shifts in NMDS were identified and marked with the letters as 

follows  A) Clostridiales (R2 = 0.76 p = 0.015) B) Bacteroidetes (R2 = 0.63 p = 0.02) C) α-

proteobacteria (R2 = 0.59 p = 0.039) D) Proteobacteria (R2 = 0.73 p = 0.008) E) 

Cyanobacteria (R2 = 0.76 p = 0.002) F) Porphyromonadaceae (R2 = 0.66 p = 0.027). c) 

Periodic acid-Schiff-alcian blue (PAS) staining of paraffin-embedded caecum sections is 

shown 72h after sham surgery or traumatic brain injury (TBI). Scale bar: 100µm. Error bars 

are standard error of the mean, n=7-8. 
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Highlights 
 

• Ischaemic brain injury drives profound changes in the gut microbiota 

 
• The effects of brain injury on the gut microbiota are mediated by the release of 

noradrenaline from the host autonomic nervous system with altered mucoprotein 
production and goblet cell numbers in the caecum. 

 
• Traumatic brain injury (TBI) also changes the gut microbiota 

 




