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 Abstract: Dynamic buckling of stiffened panels under axial compression loading having the 
form of finite duration pulse was analyzed by finite element modeling. Welding induced defects 
modifying the skin plate curvature were incorporated. Material degradation in the heat-affected 
zone was also taken into account. The Budiansky and Roth criterion was employed to predict the 
collapse load. Various pulse shapes were investigated. The obtained results have shown that the 
pulse period and profile have severe effects on the buckling strength. For the considered boundary 
conditions and load pulses up to 56% reduction of the strength was observed in comparison with 
static buckling. 
 
 Keywords: Dynamic buckling, Stiffened panel, Pulse duration, Pulse shape, Geometric 
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1. Introduction 

 Stability of stiffened panels is a main concern in many engineering applications like 
for example in marine and aeronautics sectors [1], [2]. As modern structures are more 
and more designed to be light and of thin-walled shape, buckling risk constitutes a real 
problem to undertake while working for increasing the strength-to-weight ratio. 
Stiffened panels are structures that enable improved strength for a given weight. But, 
they are subject in service life to various destabilizing loading conditions either static or 
dynamic and may undergo also various alterations resulting from material degradation 
or initial geometric imperfections.  
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 Static buckling has been extensively investigated for many types of structures that 
are prone to undergo instabilities. This has been achieved under various loadings and is 
now a relatively good understood subject [3]. Buckling of structures under the action of 
dynamical loads that are suddenly applied has not yet received the same amount of 
attention, even if in practice this kind of loading occurs very frequently, especially for 
ships and aircrafts [4], [5].  
 In the literature different approaches have been presented by various authors to 
describe how the dynamic buckling load can be assessed. Simitses [6] classified the 
various concepts and methodologies used in estimating critical conditions for suddenly 
loaded elastic systems in two main approaches: equations of motion based methods and 
energy based methods.  
 Energy approach is applicable mostly to conservative systems having a low number 
of degrees of freedom, whereas the approach using the equations of motion [7] seems to 
be more suited for continuous structures like stiffened panels that are characterized by a 
huge number of intervening degrees of freedom. In this last approach, the equations 
governing the instability problem are solved for various values of parameters defining 
the loading to obtain the response of the system. The load parameter at which a large 
change happens in the response is called critical. This approach has become prominent 
in the field of dynamic buckling because of its ability to be easily adapted to 
computational methods such as the general methods based on finite element modeling. 
 Considering the case of an impacted beam Wooseok and Waas [8] have shown that, 
unlike the static case, dynamic buckling resulted in localized non-uniform buckle mode 
shapes due to the interactions between the in-plane and out-of-plane deformation 
responses. The authors concluded that dynamic buckling cannot be resolved by 
considering only static buckling analysis as it was found to be more severe.  
 Dynamic buckling of beams and plates subjected to axial impact was also 
investigated by Weller et al. [9]. They performed numerical calculations to determine 
the Dynamic Load Factor (DLF) of in-plane impacted beams and plates. The DLF is 
defined as the ratio between the dynamic buckling load and the static buckling load for 
the same structure and boundary conditions. Good agreement was observed between the 
predictions and experimental results. The DLF was in general larger than unity, both for 
beams and plates. However, in the presence of certain values of relatively large initial 
geometric imperfections and for pulse durations of the applied load that are close to the 
first period of natural flexural vibrations of either the beam or the plate, the DLF was 
found to be much smaller than unity which signifies that dynamic buckling could be 
more severe than static buckling. This observation has been found to be valid also for 
axially impacted composite plates [10]. The experimental tests these authors have 
performed on laminated composite plates have shown that a DLF smaller than unity can 
be obtained for a given composite plate which is axially impacted with a compressive 
load that has a period close to the first period of its natural lateral vibrations.  
 In the particular case of marine and aeronautic structures, there is a crucial need to 
determine how a dynamical load could affect the buckling strength in order to assess 
reliability of design. The particular case of stiffened panels that are loaded by a pulse 
impact compression load having a finite duration and acting axially in the direction of 
stiffeners is investigated in the following. The analysis is performed by using a 
nonlinear incremental formulation based on the ABAQUS/Explicit procedure under 
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Abaqus software package. Both initial geometric imperfections and material 
degradation associated to the Heat Affected Zone (HAZ) are included. The buckling 
state is determined according to Budiansky and Roth criterion [7]. This is based on 
fitting the curves giving end-shortening as function of time, for a given pulse durations 
and shape, while varying the load amplitude. The investigated pulses include 
rectangular, triangular, double triangular and half-sine shapes. The duration of these 
pulses is varied between the quarters and two times the natural period of vibration of the 
stiffened panel. Two kinds of analyses are performed: elastic plastic and purely elastic. 
The effects of load pulse characteristics on the dynamic buckling strength are analyzed.  

2. Modeling stiffened panels under dynamic buckling 

2.1. Geometry and imperfections 

 The initial geometric imperfections are taken into account in the actual modeling of 
dynamically loaded stiffened panels. Use is made of the nonlinear finite element 
method. A detailed description regarding the appropriate finite element formulation to 
be used for the numerical model of shell buckling problems can be found in [11]. In the 
following, the shell element S4R available in Abaqus software package is used [12]. 
This element has four nodes with six degrees of freedom at each node (nodal 
translations in x , y  and z  directions and nodal rotations about these axes). 

 Residual stresses developing after welding process induce distortions that have the 
main following effects: shrinkage in the transverse direction to the weld line, 
longitudinal shrinkage parallel to the weld line and rotation around the weld line. The 
ultimate form and magnitude of welding induced distortions depend on the actual 
welding parameters, the materials used, the geometric design of the panel being 
assembled and also the preventive restraints applied during welding.  
 In order to identify the initial geometric imperfection that is really involved, 
distortion measurements are required for sufficiently representative samples of the 
stiffened panel. This data may then be used within finite element analysis to assess the 
effect of initial distortions on the buckling strength. Lillemäe et al. [13] have measured 
these initial geometric imperfections for two assembled panels by welding and have 
obtained, when considering the transverse direction, almost the same profile for both of 
them. However in the longitudinal direction the distortion patterns measured by these 
authors were quite different for the two panels they have tested.  
 In the present study, the welds are assumed to connect the extruded parts of the 
stiffened panel in the middle of distance between stiffeners. The HAZ corresponds to 
the central strip of the skin separating two L-shaped stiffeners.  
 Denoting xu , yu  and zu  the displacement components and x , y  and z  the 

rotations, the boundary conditions considered in the subsequent numerical simulations 
are as follows. The lateral edges have the boundary conditions 0 zxxu  . The 

edge 0z  is assumed to be perfectly anchored, 0 zyx uuu , 0 zyx  , 
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while a uniform distributed edge load zP  is applied on the edge az   in addition to the 

rigid wall boundary conditions 0 zxxu  .  

 The considered boundary conditions are intermediate between the two limit cases: 
lateral edges completely fixed and these edges fully free. So the static buckling load is 
expected to be greater than that of free edges configuration and lower than that of totally 
fixed edges. This statement could not however be extrapolated a priori to the dynamic 
buckling case. 
 In the following, imperfections resulting from welding in the transverse direction are 
taken into account and the longitudinal distortion is assumed to be negligible. The 
imperfect stiffened panel considered has the geometrical configuration shown in Fig. 1.  

 

Fig. 1. Geometrical configuration of the stiffened panel and  
the considered boundary conditions  

 The total length of the base plate is mm 958a  and its width is mm 5.757b . The 
HAZ corresponds to the central strip of each segment, which is delimited with two 
straight lines. The plate and HAZ materials have the same depth, which is assumed to 
be uniform mm 9.4t . The stiffeners are L-shaped stiffeners and have the constant 
depth mm 95.2wt , the height mm 64wh , the flange depth mm 3.4ft  and the 

flange height mm 12fb , see Fig. 2. 

 The skin plate is assumed to have an initial distortion due to welding. This distortion 
is supposed to be represented by a constant curvature in the transverse direction and 
which is symmetric about the welding line. The initial geometric imperfection resulting 
from welding process is modeled as shown in Fig. 2. The amplitude 0w  of this 

imperfection is fixed at the value mm 6 . This value is of the same order than the depth 
of the skin plate. It was intentionally fixed like this for this particular stiffened panel in 
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order to emphasize dynamic buckling phenomenon. For amplitudes 0w  that are smaller 

than mm 5 , dynamic buckling will be in fact marginal as it will occur always with 
critical loads that are higher than those associated to the static case. This remark is quite 
general in the field of dynamic buckling affecting plate like structures as this 
phenomenon would be significant only in the presence of enough large initial geometric 
imperfections [14]. 

 

Fig. 2. Characteristics of the initial distortion in the transverse direction of the stiffened panel  
and stiffeners geometric parameters; the HAZ is located in the area adjacent to the welds 

2.2. Material properties 

 The stiffened panel considered here is assumed to be made from aluminum alloy 
6000 series, which is thermally treated and artificially aged after cooling from an 
elevated temperature shaping process. The numerical designation of this material is EN 
AW 6082 temper T6 according to EN 1999-1-1 [15]. Its chemical designation is 
AlSi1MgMn. Longitudinally stiffened panels made from this alloy were studied 
experimentally under axial compression in [16]. The elastic properties in the intact zone 
are taken from this last reference and correspond to Young’s modulus GPa 5.64E  
and Poisson’s coefficient 3.0 . The plastic behavior is assumed to be described by 
an isotropic bilinear constant hardening law having the yield stress MPa 265y  and 

plastic modulus GPa 5.5pE .  

 In the heat affected zone the material properties are given in [14]. The Young’s 
modulus is reduced to GPa 6.51HAZE  while Poisson’s coefficient is kept the same 

3.0HAZ . The HAZ plastic material loading curve is depicted in Fig. 3. The initial 

yield stress is MPa 135, HAZy  and the maximum resistance stress is 

MPa 220, HAZR . For both the stiffened panel intact area and HAZ stiffened panel, 

the material density was fixed at 3mkg 2700  . 

 To study sensitivity of dynamic buckling to material properties, both elastic plastic 
behaviors as described above and purely elastic behavior are considered. In the purely 
elastic case, the plastic part of the behavior is inactive while the other material constants 
are kept invariant. 
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Fig. 3. Elastic-plastic loading curve of the HAZ material 

2.3. Dynamic buckling 

 A finite element based modal model was developed at first. Convergence of this 
model was reached with a set of 2496 SR4 elements and a total number of 14200 free 
degrees of freedom. The obtained first frequency of natural vibrations is 

Hz 44.1041 f . Fig. 4 shows the first mode of natural vibrations of the stiffened panel 

structure. The first mode can be seen to correspond essentially to global flexure of the 
panel. 

 

Fig. 4. First natural mode of vibrations of the stiffened panel in terms of displacement magnitude; 
the associated first modal frequency is Hz 44.1041f  
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 Fig. 5 shows the second mode for which the natural frequency is Hz 81.2842 f . 

This mode is essentially local with strong coupling between the L-shaped stiffener and 
the plate skin.  

 

 Fig. 5. Second natural mode of vibrations of the stiffened panel in terms of displacement 
magnitude; the associated second modal frequency is Hz 81.2842f  

 The first modal frequency 1f  yields the characteristic time 10 1 fT  . This period is 

used in order to fix the pulse duration for the dynamic loading to be applied to the 
stiffened panel in the interesting zone. In the following pulse durations T  that are 
belonging to the following set   2 , ,75.0 ,5.0 ,25.0 00000 TTTTT  and four pulse shapes 

are investigated. These are defined as  
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where t  is the time and 0P  is the magnitude of the applied dynamic load. Fig. 6 shows 

these various pulse shapes when fixing the same duration for all of them.  

 

Fig. 6. Considered pulse shapes for the applied dynamic loading;  

ms 575.90  TT  and kN 8750  statPP  

2.4. Dynamic buckling criterion 

 In the literature various criteria have been proposed for assessing dynamic buckling 
stability. The most widely used is however the condition of Budiansky-Roth [7]. In this 
criterion, it is assumed that the instability occurs when the displacement rate is the 
highest for a fixed force increment. This can also be identified as the lowest load at 
which there is a large sudden change in the transient response. The critical value of 
dynamic load corresponding to loss of stability can then be found by drawing 
parametric curves giving the end-shortening as a function of time for various load steps.  
 In the following, the critical conditions for dynamic buckling are estimated 
according to Budiansky and Roth judgment. To compare the dynamic buckling load to 
the static buckling load, the dynamic load is divided by the lowest static load as 
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computed by means of the non-linear incremental method provided by the standard 
Static/Riks procedure of Abaqus software. The same model is used as in the dynamic 
problem regarding geometry, materials and boundary conditions 

 The static buckling bifurcation load is found to be kN 875statP .  

3. Results and discussion 

 The procedure ABAQUS/Explicit of Abaqus software package is used to solve the 
equations of motion with the automatic stepping option activated. The dynamic 
response in terms of end-shortening is then obtained for any load parameter 0P  and 

pulse shape of dynamical loading. The pulse duration was varied between 025.0 T  and 

02T  with ms 575.90 T .  

 The obtained results in terms of the DLF are given in Fig. 7 for the elastic-plastic 
analysis and Fig. 8 for the elastic case. Fig. 7 and Fig. 8 show that there are intervals of 
the pulse duration for which the DLF is lesser than unity, thus the dynamic buckling 
load is more severe than the static buckling load. This happens for periods that are close 
to the fundamental free vibration period of the stiffened panel ms 575.90 T . The 

triangular pulse shape does not appear in these two figures as it has always given a 
dynamic buckling load with a DLF greater than 2. The other pulse shapes yield huge 
reduction of the stiffened panel strength in comparison with the static case. The DLF is 
largely smaller that unity for some values of the pulse duration.  

 

Fig. 7. Elastic-plastic analysis; the DLF as function of the pulse duration  
for the considered pulse shapes  



22 O. MOUHAT, A. KHAMLICHI, A. LIMAM 

Pollack Periodica 11, 2016, 1 

 Fig. 7 shows, in the case of elastic-plastic analysis, that the half-sine pulse gives the 
most severe reduction of the buckling load. The maximum reduction of the buckling 
load in dynamic conditions, i.e. DLF variation, reached in this case 33% of the buckling 
load which corresponds to static conditions. The double-triangular pulse shape gives the 
second more important reduction of the dynamic buckling load as compared to the static 
buckling load and a decrease of 28% of the DLF is obtained. The rectangular pulse 
yields the smallest variation of the DLF and the dynamic buckling load is only 21% 
lower than the static buckling load. 

 

Fig. 8. Purely elastic analysis; the DLF as function of the pulse duration  
for the considered pulse shapes  

 Fig. 8 shows, in the case of elastic analysis, that the double triangular pulse is the 
most critical one. The reduction as evaluated from DLF variation reached 30% for the 
half-sine pulse. It reached 40% for the rectangular pulse which appeared to be more 
severe than the half-sine pulse. However the double-triangular pulse showed up to 56% 
reduction of the dynamic buckling load.  
 These results show that approximating the dynamic load by a rectangular pulse 
shape does not yield always the largest reduction of the buckling strength. On the other 
hand, material behavior affects largely the buckling load results. Plasticity appears to 
moderate buckling load reduction in the dynamical range as it passes from 56%  
to only 33%.  

4. Conclusions 

 In this work, dynamic buckling of a longitudinally stiffened panel has been analyzed 
for both elastic and elastic-plastic behaviors by using non-linear finite element 
modeling. The panel was assumed to be subjected to in-plane axial compression, which 
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is produced by a short pulse load applied on one transverse edge of the stiffened panel. 
The opposite edge was anchored and the three others were assigned symmetry about the 
transverse direction to the skin plate. Applying various dynamic loading conditions by 
using half-sine, rectangular, triangular or double triangular shapes, and with various 
pulse duration has enabled to assess dynamic buckling strength of the considered 
stiffened panel. This was achieved by means of the Budiansky and Roth stability 
criterion. The obtained results have shown that the most severe dynamic buckling case 
occurs when the pulse duration is close to two times the period of the first natural mode 
of vibrations. The dynamic load factor was found to be as low as 56% for the elastic 
range and about 33% for the elastic-plastic range of deformations. Therefore, dynamic 
buckling can be catastrophic for stiffened plates. This phenomenon cannot be 
undertaken by means of static analysis, or by fixing a priori pulse shape or pulse 
duration. Thorough parametric studies should be considered to mitigate this risk and 
guarantee structural integrity.  
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