ASSESSMENT OF ELECTRIC POTENTIAL GENERATED DURING LIGHTNING STRIKE BY FINITE ELEMENT METHOD

Larisa MARIUT, Elena HELEREAA

Department of Electrical Engineering and Applied Physics, Electrical Engineering and Computer Science Faculty, Transilvania University of Brasov, 29 Eroilor Str, RO-500036, Brasov, Romania, e-mail: 1elena-larisa.mariut@unitbv.ro, 2helerea@unitbv.ro

Received 26 July 2015; accepted 17 December 2015

Abstract: The main effect of lightning is the induced surge voltage within power networks. The paper deals with the assessment of electric potential generated during lightning. A time domain simulation using Finite Element Method was done, considering that the lightning current flows within a discharge channel with variable lengths (15-91 m) and impedances, having various peaks (2.5-40 kA). Both 8/20 µs and 5/320 µs lightning current wave shapes have been considered. The surge voltage waveforms were determined for each lightning current. The assessment of electric potential generated during lightning through phase wire, in soil and near underground power cable was done.

Keywords: Boundary conditions, Electric potential, Finite element method, Lightning strike, Surge voltage

1. Introduction

Power networks are affected by electromagnetic interferences, especially during transient states [1]-[4]. Electromagnetic disturbances [5] generated by indirect/direct lightning strikes may cause, through galvanic/inductive/capacitive couplings, faults in the electrical network [6]-[9]. Many studies [10]-[15] deal with the complex evaluation of lightning through high voltage networks by time-domain analysis, but few of them are directed through the assessment of lightning effects on medium and low voltage networks [16]-[20]. New studies are required for taking into account the effects generated by lightning in the electric distribution power system.

The paper focuses on the following objectives:
1) To highlight the dependency of lightning surge wave shape on the electric potential distribution near overhead and underground power lines;
2) To underline the dependency of the ground potential rise on the peak lightning current and soil resistivity.

The simulations are done for a particular structure of an overhead distribution line near which an underground power cable is installed.

2. Lightning strike model and parameters

2.1. Induced voltages by lightning currents

If a lightning current flows through conductive components of power networks, the distribution of the electric potential is influenced by the electric current and impedances of each component [21]. Thus, if the current flows through a single point on a homogeneous conducting surface, the electric potential \(V \) rises, with a specific \(r \), meaning the distance from the point of strike. The same effect occurs when lightning hits the homogeneous ground (Fig. 1a) [22].

The slope \(\Delta i/\Delta t \) of the lightning current wave is connected with the amplitude of the induced voltage, in all conductors through which lightning current flows [23]. Fig. 1b shows the wave voltage \(U \) induced during the time interval \(\Delta t \) [21]. The current waveform of 8/20 \(\mu \)s, is considered according [22]-[23] for tests and this lightning current may lead to conventional voltage waveform like 1.2/50 \(\mu \)s.

2.2. Mathematical model of the lightning current

The mathematical model of the lightning current \(i_{\text{surge}}(t) \) is described by the Heidler function

\[
i_{\text{surge}}(t) = k_1 \cdot \left[\frac{I_p}{k_{\text{surge}}} \cdot \left(\frac{t}{\tau_1} \right)^{\eta_{\text{surge}}} \cdot e^{-t/\tau_2} \right].
\]

(1)

where \(k_1 \) is current correction coefficient; \(\tau_1, \tau_2 \) are rise and fall time of the pulse; \(\eta_{\text{surge}} \), \(k_{\text{surge}} \) are wave shape correction coefficients; \(I_p \) is the peak value of the surge current.

The function (1) describes a lightning pulse [24] and \(k_{\text{surge}} \) is strongly dependent on the parameters of the wave lightning pulse:

\[
k_{\text{surge}} = \exp \left[-\frac{\tau_1}{\tau_2} \cdot \left(\frac{\eta_{\text{surge}} \cdot \tau_2}{\tau_1} \right) \right].
\]

(2)
Fig. 1. Lightning strike effect
a) Potential distribution of a lightning strike into homogenous soil; b) Induced square-wave voltage in loops via the current steepness $\Delta i/\Delta t$ of the lightning current

The parameters for different lightning current wave shapes, according to IEC 61000-4-5:2013, are presented in Table I [23]-[24].

<table>
<thead>
<tr>
<th>Test type</th>
<th>k_i</th>
<th>η_{surge}</th>
<th>t_1 [µs]</th>
<th>t_2 [µs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surge current 8/20 µs</td>
<td>1</td>
<td>2.741</td>
<td>47.52</td>
<td>4.296</td>
</tr>
<tr>
<td>Surge current 5/320 µs</td>
<td>1</td>
<td>1.556</td>
<td>1.355</td>
<td>429.1</td>
</tr>
</tbody>
</table>

Pollack Periodica 11, 2016, 2
As it is specified in [23], the front time of the lightning current shape is about 8 µs, and the duration is around 20 µs.

The lightning discharge channel is equivalent to a copper channel with cross section of \(S = 7.85 \times 10^{-3} \) m\(^2\), outer diameter of \(d = 0.1 \) m, with different lengths \(L \) and impedances \(Z \), according to peak value of the lightning current \(I_p \) [17]. In Table II the parameters of the lightning channel are given for various lightning strike cases (LS1 - LS2), considering that channel length has a strong influence on the lightning current.

Table II

Parameters of lightning channel

<table>
<thead>
<tr>
<th>Lightning strike cases</th>
<th>(I_p) [kA]</th>
<th>(L) [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS1</td>
<td>2.5</td>
<td>15</td>
</tr>
<tr>
<td>LS2</td>
<td>6.5</td>
<td>27</td>
</tr>
<tr>
<td>LS3</td>
<td>13</td>
<td>45</td>
</tr>
<tr>
<td>LS4</td>
<td>40</td>
<td>91</td>
</tr>
</tbody>
</table>

Each lightning strike case was applied for both lightning current wave shapes (8/20 µs and 5/320 µs), according to [23]. Based on the mathematical description of the Heidler function (1), considering the lightning channel parameters corresponding to each lightning strike case (Table II), the lightning currents wave shapes are obtained (Fig. 2a - Fig. 2b).

The 8/20 µs wave is applied during testing of low voltage lightning protection equipment.

2.3. Mathematical model of the surge voltage

The surge voltage model is obtained based on Ohm’s law [21]

\[
\begin{align*}
U_{\text{surge}}(t) = k_v \cdot \left[\frac{U_p}{k_{\text{surge}}} \cdot \frac{(t/\tau_1) \eta_{\text{surge}}}{1 + (t/\tau_1) \eta_{\text{surge}}} \cdot e^{-t/\tau_2} \right],
\end{align*}
\]

where, the values of the voltage wave shape parameters (Table III) are specified in [23]-[24].

Table III

Parameters of voltage surge wave shape

<table>
<thead>
<tr>
<th>Test type</th>
<th>(k_v)</th>
<th>(\eta_{\text{surge}})</th>
<th>(\tau_1) [µs]</th>
<th>(\tau_2) [µs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surge voltage 1.2/50 µs</td>
<td>1</td>
<td>1.852</td>
<td>0.356</td>
<td>65.845</td>
</tr>
<tr>
<td>Surge voltage 10/700 µs</td>
<td>1</td>
<td>1.556</td>
<td>1.355</td>
<td>429.1</td>
</tr>
</tbody>
</table>

Pollack Periodica 11, 2016, 2
Thus, for each lightning strike case, the surge voltage variations have been obtained (Fig. 3a - Fig. 3b), considering the peak amplitude of the lightning current and the impedance of the conductive component the current flows through.

For each lightning current wave an equivalent surge voltage could be obtained as per IEC 61000-4-5: 8/20 µs surge current is equivalent to 1.2/50 µs surge voltage and 5/320 µs surge current is equivalent to 10/700 µs surge voltage.

3. Assessment of lightning strike effect propagation and FEM simulations

3.1. Effects of surge wave propagation - A case study

It is considered that the lightning strike hits the ground wire of a 20 kV overhead power line and the generated surge wave propagates through tower structure to a
surrounding underground power network. It is supposed that fault currents of large magnitude, generated during lightning strike, flow through the earth connection of the underground network and the electric potential of the grounding raises. The effects caused by lightning studied hereafter, are presented in Fig. 4.

![Image 1](image1.png)

a)

![Image 2](image2.png)

b)

Fig. 3. Surge voltage according to IEC 61000-4-5: a) 1.2/50 μs; b) 5/320

The lightning current flows through the tower structure/ground wire of the power line to earth, generating an electric potential: through phase wires of the power line (EP1 case), in soil near tower (EP2 case), and nearby underground cable (EP3 case). The concrete foundation of the tower is neglected.

The case study is performed for a three-phase overhead power line with parameters given in *Table IV.*
3.2. Simulation with finite element method

Finite Element Method (FEM) comprises methods for connecting many simple element equations over many small subdomains, named finite elements, to approximate a more complex equation over a larger domain. This method is used to find approximate solutions to different boundary problems based on Maxwell’s solving, being used in many engineering applications.

FEM was applied using Comsol Multiphysics and the AC/DC [25] module was used for a 2D Geometry design, within a Time Domain Simulation. For each lightning strike case, the analysis is performed considering that both the overhead and the underground
power lines of 20 kV AC, have the parameters of the lightning strikes described in Table II, for 8/20 μs and 5/320 μs lightning current wave shapes.

![Figure 5](image)

Fig. 5. Front view of the tower structure with the transversal displacement of the underground power cable: 1-Lightning channel; 2-Tower structure; 3-Overhead power line phases (R,S,T, ground wire-N); 4-Air; 5-Ground reference; 6-Soil; 7-Underground power cable; 8-Sand

A triangular mesh was applied (56785 triangular elements, 4077 edge elements and 118 vertex elements). The boundary conditions were established according to the electrostatics interface, as for a quasi-static analysis: equations (4) and (5) for Charge conservation; equation (6) for zero charge; equation (7); equation (8) for electric potential; equation (9) for ground.

\[\nabla \cdot (\varepsilon_0 \mathbf{E} \cdot \mathbf{E}) = \rho V , \]
(4)

\[E = -\nabla \cdot V . \]
(5)

The charge conservation describes the macroscopic properties of the medium, relating the electric displacement \(\mathbf{D} \) with the electric field intensity \(\mathbf{E} \). The charge conservation boundary was applied for the entire model of the simulation geometry (*Fig. 6a*). The zero charge condition imposes zero charge on the boundary, so that:

\[-\mathbf{n} \cdot \mathbf{D} = 0 . \]
(6)

This is the default boundary condition at exterior boundaries. At interior boundaries, it means that no displacement field can penetrate the boundary and that the electric

Pollack Periodica 11, 2016, 2
potential is discontinuous across the boundary. The zero charge boundary condition was applied for the entire model of the simulation geometry according to Fig. 6b.

\[V_0 = V_I(t) . \]

(7)

The boundary condition \(V = V_0 \), where \(V_0 \) is being provided. Various boundary conditions of \(V_I \) were established, as for the conductors of the overhead/underground lines and for the lightning surge that propagates during strike, like: for the overhead and underground conductors of the power lines, AC voltage waveforms were applied according to the working voltage range. For the lightning channel, the surge voltage waveforms previously described were considered. The zero ground boundary condition was applied for the ground reference, ground wire of the overhead power line and for the sheath of the underground power line (Fig. 6c).

\[V = 0 , \]

(8)

\[n \cdot J = 0 . \]

(9)

Electric insulation boundary is used to model a thin sheet of a resistive material, connected to a reference potential \(V_{\text{ref}} \). This condition imposes that no electric current flows into the boundary. It was applied for the underground power cable.

4. Results and discussions

4.1. Dependency of lightning surge wave shape on the electric potential distribution

The results refer to the distribution of the electric potential for EP1, EP2, EP3 locations (Fig. 1).

In Fig. 7 the electric potential distribution for 8/20 μs lightning current waves is shown, where: 1 is the lightning channel (15 m); 2 is the tower structure; 3, 4, 5 are the
phase R, S, T wires of the 20 kV overhead power line, 6 is the ground reference, 7 is the soil near underground power cable, 8 is the 20 kV underground power cable.

Fig. 7. Electric potential distribution when a direct lightning strike hits the tower structure of a 20 kV overhead power line, for 8/20 μs lightning current wave shape, $t=0.003$ s

The results were analyzed in comparison with the ones from [25]-[26]. Two shots were captured for each lightning surge wave shape (8/20 μs and 5/320 μs) at $t=0.003$ s of the AC voltage wave (Fig. 8).

Fig. 8. Electric potential distribution around underground power cable for a peak lightning current of 2.5 kA, corresponding to the surge voltage wave shape of a) 1.25/50 μs; b) 10/700 μs

Pollack Periodica 11, 2016, 2
Table V and Table VI represent the maximum values of the electric potential, for different lightning current peak values (kA) and shapes (8/20 µs and 5/320 µs).

Table V
Maximum values of electric potential in kV for 8/20 µs lightning current in kA

<table>
<thead>
<tr>
<th>Location</th>
<th>Description of location</th>
<th>(I_p = 2.5)</th>
<th>(I_p = 6.5)</th>
<th>(I_p = 13)</th>
<th>(I_p = 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP1</td>
<td>Within power line phases</td>
<td>200</td>
<td>425</td>
<td>1382</td>
<td>3400</td>
</tr>
<tr>
<td>EP2</td>
<td>Near ground</td>
<td>71</td>
<td>223</td>
<td>510</td>
<td>1733</td>
</tr>
<tr>
<td>EP3</td>
<td>Near underground power cable</td>
<td>22</td>
<td>75</td>
<td>171</td>
<td>656</td>
</tr>
</tbody>
</table>

Table VI
Maximum values of electric potential in kV for 5/320 µs lightning current in kA

<table>
<thead>
<tr>
<th>Location</th>
<th>Description of location</th>
<th>(I_p = 2.5)</th>
<th>(I_p = 6.5)</th>
<th>(I_p = 13)</th>
<th>(I_p = 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP1</td>
<td>Within power line phases</td>
<td>187</td>
<td>218</td>
<td>1323</td>
<td>3190</td>
</tr>
<tr>
<td>EP2</td>
<td>Near ground</td>
<td>59</td>
<td>64</td>
<td>744</td>
<td>1313</td>
</tr>
<tr>
<td>EP3</td>
<td>Near underground power cable</td>
<td>14</td>
<td>51</td>
<td>131</td>
<td>351</td>
</tr>
</tbody>
</table>

4.2. Dependency of electric field intensity on lightning current and soil resistivity

The electric field intensity near underground cable was calculated, according to [27]-[28], for the case when the soil resistivity varies between \(\rho = 100-1000 \ \Omega \text{m} \) and the installation depth of the cable is -0.8 m, with the relationship:

\[
E_s(r) = \rho_s \cdot \frac{I_p}{2\pi r^2},
\]

where \(I_p \) is the lightning current discharges through the ground, and the intensity of electric field \(E \) is calculated in the soil at a radius \(r \) from the strike point (Fig. 9).

5. Conclusions

Simulations show that the effect of lightning surge propagation through underground structures is strongly dependent by the lightning channel parameters like length, current, wave shape. It is shown that the 8/20 µs lightning wave induces high surges than in the case of 5/320 µs. It was highlight that the soil resistivity has a great influence on the electric potential variation, as for the soils with resistivity higher than 500 Ωm, are more exposed to high electric potentials variations. High electric fields generated by lightning near ground reference can cause electric potential rise in low voltage networks/residential buildings. Of great importance is the rise of the ground electrodes resistance, which can affect the earth connection of low/medium voltage networks, especially in the case of the IT connections.

Pollack Periodica 11, 2016, 2
Fig. 9. Dependency of electric field intensity on lightning current and soil resistivity
 a) Sketch for the case study; b) Electric field intensity dependency on the peak lightning current for different soil resistivities

Acknowledgements

This paper is supported by the Sectoral Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the project number POSDRU/159/1.5/S/134378.

Pollack Periodica 11, 2016, 2
References

