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 Abstract: Several nonlinear simulations of concrete and reinforced concrete slabs are 
performed using a layered model. Two Drucker-Prager criteria are employed to form a concrete 
plasticity model that is used for simulating the plastic yielding of layers. Moreover, an interaction 
with elastic Winkler-Pasternak subsoil model is considered for the case of a reinforced concrete 
foundation slab that is subjected to a concentrated loading force. All computations are done by the 
SIFEL solver using finite element method.  
 
 Keywords: Foundation slab, Layered model, Double Drucker-Prager criterion, Concrete 
plasticity model, Finite element method 

1. Introduction 

 Concrete foundation slabs are common problem in engineering world and, in 
general, the designing process does not cause many difficulties. But in certain cases, 
especially for industrial buildings, there are specific requirements and boundary 
conditions that may certainly transform the designing process into a challenging task. In 
general, there are two main areas of interest. The first one is connected with the 
determination of load-bearing capacity while taking into account crack development in 
concrete material [1]. The other is then consisted of using advanced materials, e.g. fiber 
concrete, instead of reinforced concrete and examining the effect of fiber density on 
load-bearing capacity [2]. In many of these situations a nonlinear calculation has to be 
applied. A foundation slab can be modeled by the full 3D model where, except of the 
suitable model for subsoil, no additional treatments are required. In other approach, the 
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slab can be represented by plate elements with two parametric subsoil enhancements. 
For this purpose, the layered model [3] needs to be employed so the material parameters 
across the thickness of the slab can be included. The number of unknowns is, compared 
to the 3D model, significantly reduced and the variability of the 3D model is preserved 
because different material models can be applied to each layer. 
 The SIFEL software package [4], [5] has been extended by a new material class 
representing the layered model. Also, for better approximation of the nonlinear 
behavior, concrete plasticity model using two Drucker-Prager criteria has been added. 
With the help of the software and the new models, the simulation of a reinforced 
concrete foundation slab has been performed and the simulation was motivated by a real 
engineering problem of the heavy-loaded foundation slab in a storage hall. SIFEL has 
already been used for solving various nonlinear calculations such as [6], [7], [8]. 
 The paper is mainly focused on the implementation of the layered model into the 
SIFEL software, while further information about the concrete plasticity model is 
possible to find in [9]. The first part of the paper is dedicated to the basic description of 
the layered model and the following part to the principles of the implementation. Then, 
few examples of basic slabs simulation are shown and finally the analysis of the 
foundation slab including interaction with subsoil is examined. 

2. Description of layered model 

 The deformation of a general shell structure in x,y plane can be described by the 
middle plane strains 0ε  and the curvatures κ  as follows 

[ ] [ ]Txyyx
T

xyyx κκκγεε ,,,,, ,0,0,00 == κε . (1) 

 By the layered model, this structure can be divided into small layers where each 
layer is considered to be in the plane stress state defined by following strain and stress 
components 

[ ] [ ]Txyyx
T

xyyx τσσγεε ,,,,, == σε . (2) 

The strain components of the j-th layer can be evaluated as 

κεε jj z+= 0 , (3) 

where jz  is the distance of the j-th layer from the middle of the plane, depicted  

in Fig. 1.  
 From the strains, the stress components can be computed 

jjj εDσ = , (4) 
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where jD  is considered to be the stiffness matrix for the plane stress state of the j-th 

layer. The final product of the layered model is the determination of the stress resultant 
forces 

[ ] [ ]Txyyx
T

xyyx mmmnnn ,,,,, == mn , (5) 

that are computed as the summation of the contributions from all layers. The single 
contribution of the j-th layer is calculated by the following expressions 

jjjjjjj z σtmσtn  , == , (6) 

where jt  stands for the thickness of the current layer. After combining (3)-(6), the 

relation between the strains of the structure and the stress resultant forces can be 
obtained 
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Fig. 1. Decomposition of a structure into layers 

3. Modification of layered model for plates 

 In the calculation using plate elements, the only unknowns are the curvatures κ  and 
there is only the moment stress resultant force m. This is derived from the linear theory 
of plates where the neutral plane is considered to be identified with the middle plane 
and the normal component of the stress resultant forces is equal to zero. When applying 
the layered model on plates, the assumptions of the linear theory of plates have to be 
reconsidered. Since each layer can be assigned various stiffness matrixes, the neutral 
plane does not have to coincide with the middle plane. The main intention of the 
modification is to establish the stiffness matrix that appears in the following expression 

κDm stiffe,= , (8) 

z = z
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while considering the possibility of non-uniform distribution of layer stiffness. 
 Starting with an assumption that [ ]0n = , the system equation of (7) can be rewritten 
into the form 
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 From the first row of (9), the vector of the middle plane strain can be derived 

κDDε NMNN
1

0
−

−= . (11) 

 After substituting (11) into the second row of (9), the relation between the moment 
components and the curvatures including the requested stiffness matrix can be obtained 

( ) κDκDDDDm stiffeMMNMNNMN ,
1

=+−=
− . (12) 

4. Implementation and nonlinear behavior of layers 

 The implementation is based on the idea that layers can be assigned with various 
material models. In principle, there is a separate calculation on each layer that 
determines the stress components, based on the computed strain components of a layer, 
using the prescribed material model. Using this approach allows to perform full 
nonlinear calculation of a cross-section. But, considering nonlinear behavior of layers 
almost every time leads to an imbalance of the normal components of the stress 
resultant forces and that is, with respect to the plate theory, inadmissible. Therefore, a 
correcting procedure needs to be applied so the balance of the normal components is 
sustained during the whole calculation. 
 The procedure consists of an iterative algorithm that, on the basis of the imbalance 
of the normal components, calculates an additional middle plane strain and searches for 
new position of the neutral plane. In the first iteration step, both normal ni and moment 
mi components of the stress resultant forces are evaluated. The Euclidean norm of the 
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residual ni is then compared with the required accuracy err (the superscript i denotes the 
inner iteration step) 

errif
i

<
2

n . (13) 

 If the condition in (13) is satisfied the procedure is terminated, otherwise the 
position of the neutral plane needs to be corrected and the additional middle plane strain 
is calculated by the following expression 

i
NN

i nDε
1

0∆
−

= . (14) 

 The new additional middle plane strains are then added to the total strains 

iii
00

1
0 ∆εεε +=
+ , (15) 

that proceed to the next step (i+1) where the new stress resultant forces are computed 
and again compared with (13). This iteration process continues until the normal 
component equilibrium is reached. 

5. Computation example 

 In this chapter, a simple example of a rectangular slab is presented. There are two 
sets of results in which the computational effect of the layered model should be 
demonstrated. The rectangular slab (1.0 m/1.65 m) is formed of DKT plate elements 
[10] (the topology is shown in Fig. 2) and is supported simply alongside the upper and 
the side edges while the lower edge is fixed. The cross-section of the slab is 100 mm 
thick and, for the first set of results, divided into 10 layers all of them assigned with 
concrete plasticity model using two Drucker-Prager criteria (plain concrete) [11]. In the 
case of the second sets of results, two reinforcement layers with J2 plasticity model [11] 
are added to the both surfaces of the slab (reinforced concrete). The following 
parameters are used for concrete: compressive strength fc = 10 MPa, tensile strength ft = 
1 MPa and the Young’s modulus E = 30 GPa. The reinforcement layers are given the 
following values: As = 500 mm2/m’, yield strength fy = 500 MPa and the Young’s 
modulus E = 200 GPa. The slab is loaded uniformly and the initial value of the load is 
0.2 kN.m2. During the calculation, the load is increased in particular load steps by virtue 
of gradually increasing load factor λ. While using DKT elements, it should be also noted 
that calculation is based on the Kirchhoff theory of plates therefore the effect of shear 
deformation is not considered. 
 The load factor λ, in the case of plain concrete, has reached the value of 220 and 
the results are presented in Fig. 3 - Fig. 5. In Fig. 3, the plastic multiplier γ, that 
represents the magnitude of plastic strains in the current area, is shown. As expected, 
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the major plastic strains appear alongside the fixed edge and there are also the minor 
plastic strains in the sagging moment area of the slab. 

 

Fig. 2. Topology of the rectangular slab 

 

Fig. 3. Cumulative plastic multiplier γ [-] 

 

Fig. 4. Bending moment mx [Nm] 
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Fig. 5. Bending moment my [Nm] 

 In the case of reinforced concrete, the load factor has reached approximately the 
value of 1400. The effect of adding the reinforcement layers can be clearly observed on 
every variable presented in Fig. 6 - Fig. 8.  

 

Fig. 6. Cumulative plastic multiplier γ [-] 

 

Fig. 7. Bending moment mx [Nm] 
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Fig. 8. Bending moment my [Nm] 

The major difference can be then clearly recognized in the distribution of the plastic 
multiplier (Fig. 6) where a different cracking mechanism of the slab can be observed. 

6. Foundation slab 

 The described implementation was motivated by a real engineering problem of a 
foundation slab in a storage hall. This slab was placed between two compressors 
intended to push natural gas into a depository beneath the ground level. The idea was to 
design a slab that is able to resist a concentrated load in the form of a mobile crane. The 
following analysis is meant to verify the existing design and to establish the actual load 
capacity of the foundation slab. The layered model is applied mainly to include 
nonlinear behavior and the effect of reinforcement. For the detailed modeling of 
interaction between reinforcement and concrete, it is also possible to use more advanced 
approach that is based, for example, on the FETI method [12]. 

The topology is depicted in Fig. 9 where the green part represents the DKT plate 
elements of the slab and the grey elements, which are also implemented in the area of 
the slab, simulate the behavior of surrounding subsoil using two-parametric elastic soil 
model.  

 

Fig. 9. Topology of the area [m] 
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The cross-section of the slab is modeled by ten layers of concrete (20 mm thick each) 
applied with the double Drucker-Prager model and two reinforcement layers (0.5 mm 
thick each - corresponding with As = 500 mm2/m’) with the J2 plasticity model (Fig. 

10a). The loading scheme representing a mobile crane is presented in Fig. 10b and it is 
applied into the middle of the foundation slab where the mesh density has been 
increased due to the expectation of plastic strain development. 

 
 a) b) 

Fig. 10. a) Layered model of the foundation slab, b) loading scheme of a mobile crane 

 The following parameters are used for the analysis: fc = 30 MPa, ft = 3 MPa, 
Ec = 30 GPa, As = 500 mm2/m’, fy = 500 MPa, Es = 210 GPa. The soil model is set by 
parameters C1 = 3.0 MPa.m-1, C2 = 1.0 MPa.m and the initial value of the load is set to 
1/30 of the loading scheme. The nonlinear calculation, due to large amount of output 
data, has been stopped when the 5.8 multiple of the loading scheme has been attained. 
The results are displayed in Fig. 11 - Fig. 13. 
 It stems from Fig. 11 and Fig. 12 that the major bending moments are located right 
beneath the location of the load. As expected, the major plastic strains (Fig. 13) refer to 
this maximum bending moment area. While these positive moments are important for 
the determination of the load bearing capacity, there are also the negative moments (the 
dark blue area in Fig. 11 and Fig. 12) that are decisive from the serviceability point of 
view because they can be the source of cracks at the visible upper surface of the slab. In 
the presented case where the load factor has reached the value of 5.8, the circular light 
blue area can be observed in Fig. 13. If compared to the location of the negative 
moments, the development of the plastic strains indicates that cracks at the visible 
surface of the slab are very likely, in this case, to occur. 

7. Conclusion 

 The paper has been mainly focused on the description of the layered model and its 
specific use for plate structures. Furthermore, the implementation of the model into the 
SIFEL software has been presented by using modifications for nonlinear behavior of 
layers. At the end, the effect of the layered model has been demonstrated on the simple 
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rectangular slab subjected to plasticity calculation followed by the nonlinear analysis of 
the reinforced concrete foundation slab. From the analysis, it has been observed that the 
foundation slab is capable of resisting the load represented by the 5.8 multiple of a 
mobile crane but not without cracks development at the visible surface of the slab. 

 

Fig. 11. Bending moment mx [Nm] 

 

Fig. 12. Bending moment my [Nm] 

  

Fig. 13. Cumulative plastic multiplier γ [-] 
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