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 Abstract: This research presents a field-circuit coupled parallel finite element model of a 
switched reluctance motor embedded in a simple closed loop control system. The parallel 
numerical model is based on the Schur-complement method coupled with an iterative solver. The 
used control system is the rotor position based control, which is applied to the FEM model. The 
results and parallel performance of the voltage driven finite element model are compared with the 
results from the current driven model. Moreover, the results of the start-up of the loaded motor 
show why the model accuracy is important in the control loop. 

 
 Keywords: Coupled finite element method, Switched reluctance motor, Position control, 
Domain decomposition 

1. Introduction 

 The Switched Reluctance Motor (SRM) drives [1], [2] are widely used in special 
applications like conveyor belts, compressors, and vacuum cleaners because of the 
advantages like simple construction, no winding on rotor, high speed operation and high 
temperature handling capability. But its applications are restricted to some areas 
because of its high ripple content in the torque due to the saliency of the stator and rotor. 
Because the double saliency structure, necessary for the machine to produce reluctance 
torque, which complicates the analysis and control of the SRM [1], [2]. 
 Precise control of electric motors is an area of active research worldwide. Efforts 
concentrate on finding solutions which guarantee high immunity of the drive system to 
external disturbances, for instance changing load, in terms of realizing prescribed 



154 D. MARCSA, M. KUCZMANN 

Pollack Periodica 11, 2016, 3 

trajectories while minimizing associated errors in velocity or torque [1], [3]. However, 
the appropriate model of the electric motor is very important task of the control. Further, 
to set up the state space representation of a switched reluctance motor is impossible 
without any simplifications or experimental data are needed to estimate the unknown 
parameters of the parametric model of the SRM [1]. Ergo, to create the appropriate 
model of the SRM without simplifications or measurement, the computational 
electromagnetics can be an alternative technique. 
 One of the most popular techniques of computational electromagnetics is the Finite 
Element Method (FEM) [3], [4], [5]. FEM is a very useful technique to the appropriate 
modelling of switched reluctance motor. But only the finite element method in itself is 
not enough for this electro-magneto-mechanical coupled system. Modelling of physical 
behavior of the electromechanical devices is a very complex task, because 
electromagnetic field has strong interaction with other physical fields and external 
circuits [3], [5], [6], [7]. 
 The control system is constituted by both the numerical model of physical system 
via finite element method and its controller, as it can be seen in Fig. 1. However, the 
numerical field simulation and the analysis of control system often belong to two 
different software systems without any strong interactions. One of the possibilities is the 
integration of the numerical field computation and the control system into one 
simulation tool in the frame of the Matlab-Simulink system simulator [8]. The controller 
can be realized in the Matlab/Simulink environment [8], [9], [10]. The field 
computation parts are implemented under the Matlab computing environment in C 
language and in own scripting language of the Matlab. It can be embedded in the 
Simulink environment easily [10]. 

 

Fig. 1. Block diagram of the switched reluctance drive system 

 Nevertheless, the computation time of FEM within control loop is far longer than 
simulating with a state space model, because of the large sparse system of equations. 
There is an obvious solution to this problem, namely the parallelization of finite element 
method [6], [7], [11], [12], [13] in order to speed-up the computations. One of the 
possibilities is the Domain Decomposition Method (DDM) [6], [7], [13], [14], [15], 
[16], [17]. The used DDM is the Schur-complement method [13], [14], [15] with the 
parallel preconditioned conjugate gradient method [13], [14], which is currently one of 
the most popular methods for systems with real symmetric positive definite matrices. 
 This work presents the closed loop control of a switched reluctance motor, when the 
parallel finite element model of SRM is used. Additionally, the external circuit and 
mechanical equations coupled with the finite element method is used to the suitable 
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waveform of motor input and output signals. In addition, the performance of the parallel 
coupled motor model and the control loop are compared with the current excited 
parallel model. Moreover, the rotor position based control is applied to the FEM model, 
which seems to be an appropriate control strategy, when the electrical angle of rotor is 
convenient when considering commutation. 

2. Parallel finite element model of the motor 

 The switched reluctance motor has been modelled by the time-stepping parallel 
finite element method. The FEM formulation relies in a direct coupling between 
magnetic field, driving circuit and mechanical oscillation equations yielding a complete 
description of the state of the motor at every time instance during the numerical 
simulation [3], [5], [6], [7], [9]. 

2.1. Field-circuit coupled model of the motor 

 The switched reluctance motor has been simulated supposing a two-dimensional 
problem. The assumption of the two-dimensionality is usually valid if the axial length 
of the analyzed body is far greater than the dimensions in the cross-sectional plane. In 
the switched reluctance motor, this is usually not the case. This can be seen in Fig. 2. 
However, the magnetic flux flows only through the laminated structure of the rotor and 
stator, so the two-dimensional assumption is valid. 

 

Fig. 2. The structure of a 6/4 switched reluctance motor and the radial cross-section of the motor 

 In the field model the eddy current effect on the regions of rotor and stator core is 
taken into account. The electromagnetic field can be expressed in term of a state 
variable, the magnetic vector potential, A [4], [5]. In this formulation the magnetic flux 
density can be expressed as the circulation of the magnetic vector potential [4], [5], and 
B = curl A has only z-component i.e. A = (0, 0, Az) in Cartesian coordinate system. The 
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following well-known equation describes the magnetic field due to the winding currents 
and eddy currents resulting from transformation of the electromagnetic field [4], [5], [9] 
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where µ is the permeability; σ is the conductivity and the third term of left-hand side is 
the induced electric field. The summarization of externally forced currents in the 
windings is represented by Jz. 
 The equation describing the circuit supplying one phase of the switched reluctance 
motor may be written as [5], [10], [11] 
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where Nc turns of conductors with cross section Sc; and Ic is the phase current in the 
conductor; R is the d.c. resistance of a conductor; Us is the supply voltage at the 
terminal; and lc is the length of the conductor. 
 The equation system arise from (1) has been solved iteratively by means of a time 
stepping technique, where the temporal derivatives are discretized by the backward 
Euler’s scheme. To make this possible, the problem domain is needed to be spatially 
discretized using finite element method, which is based on the weak formulation of the 
partial differential equations. 
 In order to facilitate the coupling between the magnetic field equation (1) and circuit 
equation (2), the phase current density Jz can be expressed as 
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The coupled model of the switched reluctance motor can be expressed in matrix 
notation as [5], [10] 
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where A is the vector of magnetic vector potential; I is the vector of currents in the 
windings; U is the vector of voltages at the terminal of the winding; S is the matrix 
related to permeability; N is the matrix related to electric conductivity; P is the matrix 
associated with constant coil current; Q is the matrix associated with flux linkage; R is 
the matrix of d.c. resistance of windings. 
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 The above described formulation is the voltage fed formulation of the motor model. 
The formulation of current fed model is based on equation (1) and (3). 

2.2. Mechanical motion model 

 The mechanical motion of the rotor is a result of electromagnetic torque acting on 
the rotor. The force can be derived using the Maxwell’s stress tensor. To calculate 
electromagnetic torque the integral is performed using the following equation [5] 
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where lz is the active axial length; r is the position vector linking the rotation axis to the 
element dГ; and Г is a surface, which is placed in the middle of the air gap; B is the 
magnetic flux density; µ0 is the permeability of vacuum; and n is the normal unit vector 
to the surface. 
 The motion of the switched reluctance motor is analyzed using a well-known second 
order differential equation [3], [5] 
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where Jr is the rotor inertia moment; Dr is the friction damping coefficient; Te is the 
electromagnetic torque; TL is the load torque acting on the mechanical axis; ω is the 
rotor angular velocity; and φ is the rotor angular position. 
 Applying time discretization using Euler’s method the following system of equation 
results [3] 
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 Using a time-stepping method the rotor displacement is calculated at each time step 
and then transformed into discretized space using the sliding surface technique [16], 
[17], [18]. Furthermore, the first order interpolation technique has been used [19], which 
guarantees the continuity, when the stator and rotor part of the mesh are non-
conforming because of variation of angular speed. 
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2.3. Parallel coupled FEM model 

 When domain decomposition method is used, the problem domain Ω is divided into 
several sub-domains in which the unknowns can be calculated simultaneously, i.e. in a 
parallel way. The general form of a linear algebraic problem arising from the 
discretization of our problem defined on the domain Ω can be written as Ka = b, in 
more detail: 
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where K∈R
(n×n) is the mass matrix; b∈R

(n×1) on the right hand side of the equations; and 

a∈R
(n×1) contains the unknowns. Here n is a number of unknowns. 

 After the problem is partitioned into a set of NS disconnected substructures, as it can 
be seen in Fig. 3. The linear sparse system, Ka=b has been split into NS particular 
blocks [13], [14], [15]. It should be noted, that it is much easier to take into account the 
mechanical motional equation in the parallel computation, if the sliding surface is used 
as an artificial interface boundary in the air gap, as it can be seen in Fig. 3. This means, 
the stator and rotor are partitioned separately, because this is one of the way efficient 
parallel computation in moving structure [16], [17]. In this case, the efficient load 
balancing is compromised, but only the connectivity of artificial boundary, the Shur-
complement of the problem is changed in every instant, when the rotor is rotate. 

 

Fig. 3. Twelve substructures of the discretization of switched reluctance motor 
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 The assembly and the solution of the sub-matrices can be performed parallel by 
independent processors. However, the solution requires the exchange of interface value, 
between the processes in charge of the various sub-domains. In many practical 
applications, the conjugate gradient method is used because of its simplicity and 
efficiency. Hence, the solution of our problem can be obtained by applying a 
preconditioned conjugate gradient equation solver with diagonal preconditioning matrix 
[14]. The parallel implementation of the preconditioned conjugate gradient method can 
be found in [13], [14]. 
 The geometry has been meshed by the help of first order triangular element 
generated by Gmsh (a three-dimensional finite element mesh generator with built-in 
pre- and post-processing facilities) [20]. The used mesh consists of 94389 first-order 
triangular elements, and the number of unknown potentials is 46048. The number of 
unknowns with the unknown currents is 46054. In Fig. 4 the assembled solution of the 
problem can be seen. 

 

Fig. 4. The surface plot of magnetic flux density and the equipotential lines of magnetic vector 
potential inside the SRM 

3. Closed loop position control of switched reluctance motor 

 To achieve good performances the SRM drive requires an accurate shaft position 
feedback signal, implying the need for a high quality encoder [1], [21] (as it can be seen 
in Fig. 1) or, another way, a sophisticated sensor-less controller [1], [2]. The position 
sensor used in SRM drives have the disadvantages of extra cost, electrical supply, 
mechanical alignment problems, less suitability to space restricted applications, like 
vehicle applications and significant disadvantage of being inherent source of 
unreliability. On the other hand the sensor-less controllers need extra computation time 
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and memory to cover the huge amounts of mathematical operations and large lookup 
tables (e.g. linkage flux and torque networks as a function of current and position) 
required by the implementation of the advanced control strategy. Therefore they need 
costly very high performance processors. Due to these drawbacks most of the 
commercial controllers of SRM drives use sensors [1], [21]. 
 In this case, a simple control strategy used with the field-circuit coupling finite 
element model of the 6/4 (six stator per four rotor poles) SRM. The position of the rotor 
was used for controlling the turning on and turning off angles of the excitation after 
each time step. The speed, current and torque are not used to control the dynamic 
response of the motor, because the control strategy is not the main focus of the research. 
 The control loop is implemented in Matlab-Simulink (as it is shown in Fig. 1), 
where the inverter is not a power electronic circuit, the inverter is a switching block, 
which work as the asymmetric H-bridge converter [1] and it can excite the appropriate 
winding based on the rotor position. 
 The parallel finite element model of SRM is implemented as an interpreted Matlab 
function, which contains the finite element procedure, which is presented in Section 2. 
The finite element procedure means loading the finite element mesh from Gmsh, and 
data of materials, assembling the coupled equation system and solving it. Loading the 
data load and assembling of the permanent part of equation system have been done only 
in the first time step. 

4. Numerical experiment 

 In numerical experiment the rotor position control of switched reluctance motor is 
considered. The current excited static magnetic version of this problem is an Agros2D 
[22] example. The geometry and parameters are from [22]. 
 In this paper the parameters of modified example are the following, the number of 
turns of the windings is 15, and the coil resistance is 0.4 Ω. The B-H relationship of the 
iron is considered to be linear, because the magnetic flux density is not so high (as it is 
shown in Fig. 4), and the motor operates in the linear slope of the magnetization curve. 
The relative permeability is 1000, and the conductivity of iron is 1.39·106 S/m. The 
amplitude of the square wave current excitation is 13.1 A, and square wave voltage 
excitation is 10 V. The coils are assumed to be symmetrically wound, and eddy current 
effects are neglected. 
 The implemented control loop is analyzed with current fed and voltage fed model. 
The current fed model is useful for validating the correct operation of the implemented 
parallel program. Fig. 5 shows the computed electromagnetic torque as a function of 
mechanical angle, and as it can be seen the result of current fed model is almost the 
same as the current fed results of Agros2D free finite element software. Further, there is 
a big difference between the results of current and voltage fed FEM models, because the 
effects of self-inductance and mutual inductance are neglected in the case of current fed 
models. This conclusion is also supported by Fig. 6. Fig. 6 shows the phase currents as 
a function of rotor position. The upper figure shows the square waveform current of the 
current fed model, and the lower figure shows the calculated current waveform of the 
voltage fed model. 
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Fig. 5. Electromagnetic torque waveforms obtained the voltage fed model and current fed model 

 

 

Fig. 6. Phase currents of the current excited model (upper) and voltage excited model (lower) 
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 The next figure (Fig. 7) shows the start-up of the switched reluctance motor, when 
the load torque is 0.07 Nm. This figure shows more significant difference between the 
current and voltage fed models than the previous figures. The steady state angular speed 
of current fed model is approximately three times larger, than the voltage fed, however 
the amplitude of the current waves is more or less same. Position based control is used 
for the motor, so the voltage fed model is reached the desired angular position three 
times slower than the current fed model. Besides, the ripple torque is increased in the 
case of voltage excitation, because the torque is depend from the inductances and phase 
current, and the inductances are a function of the rotor position and the phase current. 
So, the different effects of the switched reluctance machine are hardly depend on each 
other, and the robustness and performance of the control loop are dependent on the 
accurate modelling of the machine. 

 

Fig. 7. Speed variation of the motor in time 

 The parallel performance of the position control of the switched reluctance motor is 
summarized in Fig. 8. The speedups are computed using the wall clock time of 
sequential calculation as the reference point. The results show a speedup as high as 2.1 
for the control loop with current fed model, and 1.9 for the control loop with voltage fed 
model. However, the curve of the voltage fed model is continually upward-sloping, 
when the speedup of current fed model is decreased in the case for 16 sub-domains. In 
other words, the critical number of sub-domains is more than 16 for the voltage fed 
model, therefore it is possible to get more speedup in this case. 

5. Conclusion 

 This paper presents the field-circuit coupling parallel finite element model 
embedded in position based closed loop control for analysis of a switched reluctance 
motor. The behavior of the SRM drive is analyzed by a current excited model and by a 



 FINITE ELEMENT ANALYSIS OF SWITCHED RELUCTANCE MOTOR 163 

Pollack Periodica 11, 2016, 3 

voltage excited model. The computation time of the numerical model is reduced nearly 
half of time by domain decomposition method. 

 

Fig. 8. Performance results for the control loops with parallel FEM 

 It can be concluded, that a control combining robustness and good performance is 
depending on an accurate modelling of the machine. The design of drive system 
requires an appropriate model of the electric machine, without significant simplification, 
which limit its accuracy. Further, this simple control problem shows the advance of 
using the finite element model in the control loop in the Matlab-Simulink environment 
is that the parallel numerical field analysis can be easily interconnected with different 
control strategies. 
 The aim of future research is to decrease the computation time of the model by the 
help of another domain decomposition method, and the torque ripple of the switched 
reluctance motor by an appropriate control method. 
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