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 Abstract: The paper describes efficient methods to post-process results from the finite 
element analysis. Amount of data produced by the complex analysis is enormous. However, 
computer performance and memory are limited and commonly-used software tools do not provide 
ways to post-process data easily. Therefore, some sort of simplification of data has to be used to 
lower memory consumption and accelerate data loading. This article describes a procedure that 
replaces discrete values with a set of continuous functions. Each approximation function can be 
represented by a small number of parameters that are able to describe the character of resulting 
data closely enough. 
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1. Introduction 

 Finite Element Method (FEM), as well as other numerical methods used in scientific 
and engineering problems, generate large amount of data results in the form of numbers 
in output files. Numbers has to be translated to graphical representation to be suitable 
for humans to post-process. However, complex finite element analyses can generate 
output files with the size in order of gigabytes per each time step. As an example can 
serve thermo-hydro-mechanical analysis described in [1]. This analysis uses 6 
unknowns per node, which leads to a large system of equations, high computational 
time and large amount of output data. These types of analyses are often parallelized on 
some supercomputer to reach the end of analysis in reasonable time. But the results are 
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then post-processed on commonly-used personal computer. Therefore, some kind of 
simplification and compression of results is needed to allow efficient post-processing. 
Data structures used for representation of large finite element meshes are described in 
[2]. Some techniques for compression of polygonal meshes can be found in [3], [4]. 
However, these methods are not suitable for handling the results from the finite element 
analysis. 
 Therefore, it was decided to develop a new compression method for visualization of 
the results from the finite element analysis. The main idea behind this method is to 
decompose discrete data in the problem domain into multiple levels of detail and then 
on each level of detail to describe the shape of discrete data by replacing them by 
continuous functions. Inspiration for this work is the Multigrid method [5], [6] and also 
some image reconstruction techniques [7]. The main task is to preserve the quality and 
accuracy of visualization using continuous functions that are as simple as possible 
(describable by a few parameters). Results of this compression method are presented in 
this paper. 
 Post-processor is required to display various kinds of data, e.g. temperature, 
displacements, stress, strain. These quantities are scalars, vectors or tensors of second 
order. Components of vectors and tensors could be considered in post-processing as a 
scalar and therefore scalars will be dealt in the following text. Every scalar is 
represented in the finite element analysis by a set of discrete values computed in nodes 
or Gauss points. In the following text, the set of discrete values describing a scalar will 
be denoted as the discrete function or original function, but approximation of the 
discrete values for graphical purposes by continuous function will be called 
approximation function (shape functions used in FEM are not used here). 

2. Implementation 

 Results from the finite element analysis are discrete values. But it cannot be blindly 
replaced by a single approximation continuous function, because to achieve low 
approximation error, the approximation function would have to be very complex and 
would not save much memory to represent it. However, in the typical case there are 
areas in the results that have smooth function development and also areas where the 
function rapidly changes its character. It is therefore necessary to properly divide the 
domain to segments and apply approximation function in each segment separately. 
 The use of suitable division of function domain can lead to significantly better 
approximation with very simple continuous functions. But in general it is not possible to 
know the exact division of space in advance. 
 To automate this process the octree data structure can be used (see Fig. 1). It is 
hierarchical data structure that is often used in computer graphics. Its purpose is to 
recursively divide the space into octants (for 3D domains). 

2.1. Octree generation 

 The algorithm for generating domain decomposition data structure in the form of 
octal tree is depicted in Fig. 2. The process starts with inserting all data into octree root 
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node, which is one big cube that surrounds (or contains) the whole mesh. Then the 
algorithm tries to replace the data by a single continuous approximation function. Then 
the approximation error is calculated and compared to some designated epsilon value 
that describes the required precision. If the error is too high, the algorithm continues, 
divides the cube into eight segments (smaller cubes) and sends the approximation errors 
for each data point to sub-nodes. Then the algorithm does the same thing in each sub-
node. It continues until approximation is good enough in all segments. Sending 
approximation errors instead of original data is important, because it allows catching the 
low frequency character of function on top levels and high-frequency changes in 
function on bottom levels of octree. When the algorithm finishes, all original discrete 
data can be deleted, because the created octree data structure with approximation 
functions in its nodes is all that is needed to reconstruct the original data. 

 

Fig. 1. Octree data structure visualization; left: recursive subdivision of a cube into octants;  
right: the corresponding octree 

 This approach was chosen to enable the top levels of the octree to describe main 
character of function (lower frequencies) and bottom levels of the octree catch higher 
frequencies of function values. 
 Computation of data value in some position is then made by traversing the octree 
from the root to the leaves. In each octree level, the coordinates of data point are put 
into approximation function and it yields the approximation error in current octree level. 
When all these values across all levels are summarized from the top to the bottom the 
original data value in the point is reconstructed. 

2.2. Approximation functions 

 Various types of approximation functions were investigated and tested. Besides 
polynomial functions also Discrete cosine transform [8] and Wavelet transform [9] were 
examined. Since the data compression algorithm has to be very fast, simple polynomial 
approximation functions were preferred. Tri-linear interpolation function was chosen as 
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the best compromise between low approximation error and memory consumption. It 
needs 8 parameters to describe function shape. It is consistent with neighboring octree 
cells, almost ‘seamless’ transitions between octree cells.  

                   

a) b) 

Fig. 2. Octree generation; a) activity diagram; b) example of octree creation driven by 
approximation error 

 Value v in the point with coordinates x, y, z is computed using tri-linear interpolation 
function in the form 

87654321 czcycxcyzcxzcxycxyzc +++++++=ν . (1) 

 The least squares method is applied to find parameters 81 ,, cc L . The problem is 

solved by minimizing the sum of squared residuals G of the linear regression model 
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where N is number of values, which are interpolated. When the parameters of 
interpolation are known, value in any point of the approximated volume can be found 
simply by providing x, y and z coordinates of the point in the equation. 
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3. Results 

 The benchmark is designed to compare maximal relative approximation error, 
average error and compression ratio using tri-linear approximation functions. Maximal 
relative approximation error is the highest relative error of an approximation method in 
single element node across all data components and time steps. Average relative error is 
a weighted sum of relative approximation errors in all nodes and data components 
divided by the number of these approximations and is calculated as 
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where  is the number of data points in original discrete function representing exact 
data values;  is the i-th value of original discrete function;  is the value of the 
approximation function in the same location; and  is the weight of the i-th test point 
with the meaning of volume surrounding the point.  and  are maximum and 
minimum values of original discrete function. 
 Compression ratio is memory consumption of the proposed data representation 
divided by memory consumption of original post-processor that does not use any data 
approximation techniques. 
 As a test analysis serve the thermo-mechanical analysis of model of Charles Bridge 
in Prague. Analysis results contain displacement vector values with three components 
(u, v and w) (see Fig. 3) and scalar values of temperature distribution (see Fig. 4). 
Analysis has 46 time steps. Total number of data sets that are processed by compression 
algorithm is therefore 184. Each data set has 73749 values that correspond to number of 
nodes in the finite element mesh. Results are summarized in Table I. 

Table I 

Benchmark results 

 Max error [%] Average error [%] Compression ratio [%] 

Displacement u 26.49 0.13 13.3 

Displacement v 70.71 0.19 27.4 

Displacement w 48.49 0.14 16.3 

Temperature 92.46 0.41 59.0 

Average  0.22 29.0 

 Fig. 5 contains visualization of the exact data values whereas Fig. 6 contains 
visualization of approximation of the same data series. Significant visible 
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approximation errors are marked by arrows. Visualization of approximation is shown in 
Fig. 7 where differential function of exact and approximated values are presented. 
Colors are emphasized for clarity. Fig. 8 shows same kind of error on different data set. 
For better illustration of the method, the octree segments are also visualized using lines 
representing surrounding boxes of each octree segment. 

 

Fig. 3. Model of Charles Bridge in Prague; heat transport analysis results (displacements) 

 

Fig. 4. Model of Charles Bridge in Prague; heat transport analysis results (temperature) 
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Fig. 5. Exact data values; no approximation applied 

 

Fig. 6. Approximation method’s artifacts (marked by arrows) 
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Fig. 7. Visualization of approximation error. Differential function between exact and 
approximation function 

 

Fig. 8. Glitches in approximation function caused by octree-based space decomposition.  
Octree segments are visualized using their surrounding boxes 
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 Fig. 9 shows results from the analysis of coupled hydro-mechanical behavior of 
soils that is described in detail in [10] and [11]. In Fig. 10 the tri-linear approximation 
function is applied.  

 

Fig. 9. Chotkova example. Exact data values, no approximation applied 

 

Fig. 10. Chotkova example. Tri-linear approximation of data values  
 with visualization of octree segments using border lines 
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The octree-based compression algorithm preserves almost seamless transition between 
octree cells with varying depth of the octree according to smoothness of the 
approximated function. However, the method can’t capture high frequent changes in 
data which is common problem of all lossy compressions. Differential function in 
Fig. 11 illustrates the results presented in Table I by showing locations with maximal 
approximation error. 

 

Fig. 11. Chotkova example. Visualization of approximation error. Differential function between 
exact and approximated data values. The octree segments are visualized using border lines 

 The imperfections of the method can have two causes. Artifacts can appear typically 
for results with high-frequency changes in data, for which the octree data structure 
cannot be fine enough. Special condition in the octree creation algorithm specifies the 
minimum number of discrete function values to be contained in the octree cell to replace 
them by the continuous approximation function. This minimum number is related to the 
type and order of the approximation method that is used in the algorithm. If the 
condition is not met, the octree cell cannot be divided into eight child cells even if the 
approximation error is still too high. The possible solution could be to allow the use of 
higher-order approximation functions in these rare cases, but it would grow the memory 
consumption and considerably complicate the algorithm.  
 The second reason for these kinds of errors is strictly local nature of the 
approximation algorithm that cares only about data values in current octree cell and 
does not take the neighbor segments into account. The transitions between cells can be 
sometimes far from smooth as can be seen in Fig. 6 and Fig. 7. 
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4. Conclusion 

 A lossy compression method was developed for post-processing large amount of 
data obtained by complex finite element analyses. In average case the compression ratio 
is about 30% with quite low relative approximation error at 0.2%. However, in some 
extreme cases (rough, unpredictable function shape) the maximal error can be quite 
high, up to 100% and the method does not even guarantee any upper limit on the 
approximation error. 
 The compression ratio is not as low as was expected at the beginning, but in the 
following work the compression ratio can be significantly decreased by applying the 
same approach also for time - the temporal dimension of the problem. The current 
algorithm produces the continuous approximation functions for each time step. The 
algorithm can be extended to recognize the time steps in which the function does not 
change or changes linearly and can be therefore interpolated from neighboring time 
steps. Whole approximation functions in these steps can be then disposed, because they 
are not necessary - they can be computed from other time steps. 
 However, isolated but unpredictable and excessive maximum approximation error is 
the crucial disadvantage of the method. The future work will address these issues. Some 
possible direction can be to try more sophisticated types of approximation functions or 
some time-frequency transformations that will better describe discontinuities in input 
data e.g. Discrete cosine transform or Wavelet transform. Other inspiration for the work 
is the Multigrid method that can be used in the finite element method to accelerate 
iterative solvers by using levels of different mesh densities. Similar approach could be 
used for visualization of the results from the finite element method.  

Acknowledgement 

 Financial support for this work was provided by project number 15-05935S of 
Czech Science Foundation. The financial support is gratefully acknowledged. 

References 

[1] Krejčí T., Koudelka T., Kruis J. Numerical modeling of coupled hydro-thermo-mechanical 
behavior of concrete structures, Pollack Periodica, Vol. 10, No. 1, 2015, pp. 19-30. 

[2] Beneš Š., Kruis J. Efficient methods to visualize finite element meshes, Advances in 

Engineering Software, Vol. 79, 2015, pp. 81–90. 
[3] Maglo A., Courbet C., Alliez P., Hudelot C. Progressive compression of manifold polygon 

meshes, Computers & Graphics, Vol. 36, No. 5, 2012, pp. 349–359. 
[4] Váša L. Optimised mesh traversal for dynamic mesh compression, Graphical Models, 

Vol. 73, No. 5, 2011, pp. 218–230. 
[5] Shaidurov V. V. Multigrid methods for finite elements, Mathematics and its Applications, 

Springer, 1995.  
[6] Hackbusch W. Multigrid methods and applications, Springer. 2010.  
[7] Magoulès F., Gbikpi-Benissan G. Coarse space construction based on Chebyshev 

polynomials for graphic analysis, Pollack Periodica, Vol. 9, No. 2, 2014, pp. 3-14. 



176 Š. BENEŠ, J. KRUIS 

Pollack Periodica 11, 2016, 3 

[8] Roma N., Sousa L. A tutorial overview on the properties of the discrete cosine transform 
for encoded image and video processing, Signal Processing, Vol. 91, 2011, pp. 2443–2464. 

[9] Li B., Chen X. Wavelet-based numerical analysis: a review and classification, Finite 

Elements in Analysis and Design, Vol. 81, 2014, pp. 14–31. 
[10] Koudelka T., Krejčí T., Brouček M. Numerical modeling of consolidation processes under 

the water level elevation changes, Advances in Engineering Software, Vol. 62-63, No. 72, 
2014, p. 166–178.  

[11] Koudelka T., Krejčí T., Brouček M. Modeling of coupled hydro-mechanical problem for 
porous media, 11th International Conference of Numerical Analysis and Applied 

Mathematics, 2013, American Institute of Physics Conference proceedings, Vol. 1558, 
New York, 2013, pp. 984–987. 


