
1

A mathematical framework for
statistical decision confidence

Balázs Hangya1, 2, Joshua I. Sanders1, Adam Kepecs1, ∗

1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, United States.
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Abstract

Decision confidence is a forecast about the probability that a decision will be correct.

From a statistical perspective decision confidence can be defined as the Bayesian pos-

terior probability that the chosen option is correct based on the evidence contributing to

it. Here we used this formal definition as a starting point to develop a normative statis-

tical framework for decision confidence. Our goal was to make general predictions that

do not depend on the structure of the noise or a specific algorithm for estimating confi-

dence. We analytically proved several interrelations between statistical decision confi-

dence and observable decision measures, such as evidence discriminability, choice and

accuracy. These interrelationships specify necessary signatures of decision confidence

in terms of externally quantifiable variables that can be empirically tested. Our results

lay the foundations for a mathematically rigorous treatment of decision confidence that

can lead to a common framework for understanding confidence across different research

domains, from human and animal behavior to neural representations.

1 Introduction

Previous theoretical studies have offered a number of different approaches to under-

stand the statistical and algorithmic issues involved in computing and deploying deci-

sion confidence. For instance, a signal detection theory framework is often employed

for probing decisions under uncertainty, and can provide a strong basis for understand-

ing decision confidence as well (Fleming and Dolan, 2010; Kepecs et al., 2008; Ma,
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2010; Maniscalco and Lau, 2012; Ratcliff and Starns, 2009). Sequential sampling mod-

els have been used to understand how decisions are reached based on noisy evidence

across time (Bogacz et al., 2006). These can be readily extended with a computation

of confidence. Perhaps the most intuitive extension is within the race model frame-

work, where the difference between decision variables for the winning and losing races

provides an estimate of confidence (Vickers, 1979; Kepecs et al., 2008; Moreno-Bote,

2010; Pleskac and Busemeyer, 2010; Zylberberg et al., 2012; Drugowitsch et al., 2014;

Schustek and Moreno-Bote, 2014). Mechanistically, neural network models based on

attractor dynamics have also been used to study how confidence can be computed by

neural circuits (Insabato et al., 2010; Rolls et al., 2010; Wei and Wang, 2015).

Such computational models have also helped to interpret experimental studies on

the neural basis of decision confidence. Confidence is an internal variable to a decision-

maker and hence it remains unclear what is the appropriate way to identify a confidence

computation, or how confidence in non-human animals can be quantified without verbal

reports of their subjective feelings. To resolve this quandary, previous studies employed

quantitative models that could provide a formal prediction for what a representation of

the internal variable of “confidence” would look like in terms of observable and quantifi-

able parameters. For instance, the orbitofrontal cortex of rats, a region implicated in the

prediction of outcomes, was found to carry neural signals related to confidence (Kepecs

et al., 2008). This was established by identifying unique signatures of confidence com-

mon to signal detection theory and the race model of decision-making. Similarly, signal

detection theory predictions have been used to understand correlates of decision confi-

dence in the dorsal pulvinar (Komura et al., 2013) and sequential sampling models in
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the parietal cortex (Kiani and Shadlen, 2009). Without such computational foundations,

it would not be possible to identify and rigorously study representations of confidence in

neurons. Beyond a description of how confidence could be computed, signal detection

theory has also been used as a starting point for evaluating the metacognitive sensitivity

of human confidence reports (Ferrell and McGoey, 1980; Higham and Arnold, 2007;

Higham et al., 2009; Kunimoto et al., 2001; Lachman et al., 1979; Nelson, 1984) and

implicit behavioral reports of confidence in rats (Lak et al., 2014).

Here we approached the well-studied topic of decision confidence from a mathe-

matical statistics perspective. The starting point of our framework is a normative defi-

nition of confidence that relates confidence to evidence through conditional probability

(Kahneman and Tversky, 1972). We had two main goals. First, compared to prior

studies, we attempted to make as few assumptions as possible about the structure of

noise, the decision rule and the specific algorithm used for estimating confidence. Sec-

ond, we approached the question of confidence from a psychophysical perspective so

it may be useful for psychological and neural studies that often manipulate evidence

discriminability by varying the uncertainty of stimulus in a graded manner.

We began from first principles in statistics by positing that confidence is a prob-

ability estimate describing a belief (Cox, 2006). Thus confidence can be related to the

available evidence supporting the same belief through a conditional probability. As

such, Bayes’ rule provides a way to understand confidence in terms of quantifiable evi-

dence (Ferrell and McGoey, 1980; Griffin and Tversky, 1992). Formally, decision con-

fidence can be defined as a probability estimate that the chosen hypothesis is correct,
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given the available internal evidence – referred to as the percept. The difficulty with this

definition of decision confidence is that it depends on a variable internal to the decision

maker. Therefore, it is unclear how useful it is to make general predictions without

strong assumptions about perception, how the internal percept is generated from the

external evidence. Here we show that it is possible to analytically derive several novel

predictions that interrelate confidence with choice correctness and evidence discrim-

inability with few or no assumptions about the percept distribution or about the transfer

functions between stimulus, percept and choice.

2 Results

From a statistical perspective, a decision process can be viewed as a hypothesis test that

evaluates the outcome of a choice against a null hypothesis representing its collective

alternatives. Statistical decision confidence can then be defined as a Bayesian posterior

probability, which quantifies the degree of belief in the correctness of the chosen hy-

pothesis. In this view, both choice and confidence depend on the quality and amount

of evidence informing the particular choice. Therefore we mathematically formalized

evidence discriminability and used ideas from psychophysics to measure the quality of

evidence presented to a decision maker.

Based on these definitions, we derived four general properties of statistical deci-

sion confidence. First, confidence predicts accuracy: the level of confidence predicts

the expected fraction of correct choices – as often intuitively posited. Second, confi-
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dence increases with the discriminability of presented evidence for correct choices, but

counterintuitively, for incorrect choices, confidence decreases with increasing evidence-

discriminability. Third, when presented with a zero-discriminability choice (i.e. an

equal amount of evidence supporting each hypothesis, implying chance decision accu-

racy), the mean decision confidence is precisely 0.75. Fourth, while evidence discrim-

inability itself predicts accuracy (a property referred to as the psychometric function),

confidence provides further information improving the prediction of accuracy for any

given level of discriminability.

2.1 Defining statistical decision confidence

To provide the most general statistical model of a decision process, we define all rel-

evant components (stimulus, percept, choice, confidence) as random variables and the

functions that link them (perception, decision) as probabilistic functions. This way the

theory presented below applies to both stochastic and deterministic decision rules po-

tentially involving multidimensional stimuli and multiple choices. Decisions are based

on an internal variable (decision variable or percept, D̂), which is the decision maker’s

estimate of a corresponding external variable (stimulus or evidence, D).

Definition 1. Let us denote the external variable D and realizations of this random vari-

able d (referred to as evidence). Let us denote the corresponding internal variable D̂ and

realizations of this random variable d̂ (referred to as percept; often referred to elsewhere

as the decision variable). We define another random variable called the choice, denoted
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Figure 1: A framework for statistical decision confidence. A stochastic framework

of perceptual decision making can be formalized by introducing a small set of random

variables. Random variables are denoted by capital letters, and their realizations in

lower case.

by θ (realizations denoted by ϑ). The choice is a probabilistic function of the percept:

ϑ = θ(d̂).

The choice can be evaluated in terms of a hypothesis testing problem:

null-hypothesis (H0 ): the choice ϑ = θ(d̂) is incorrect;

alternative hypothesis (H1 ) : the choice ϑ = θ(d̂) is correct.

Thus, the choice is designated correct if the alternative hypothesis is true and incorrect

otherwise. The evaluation can equivalently be defined as a binary random variable (out-

come, Π) that is a probabilistic function of choice. Next, confidence (c) can be defined

as the probability of the alternative hypothesis being true (i.e. Π(θ) = 1) provided the

percept and the choice.

Definition 2. Define confidence as

c = P (H1|d̂, ϑ). (1)
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Equivalently,

c = P (Π(θ) = 1|d̂, ϑ). (2)

As previously, the random variable will be denoted by C and its realizations by c. Note

that for deterministic choice models, d̂ determines ϑ, so c = P (H1|d̂). We can now

define a function that determines confidence from percept and choice.

Definition 3. Define the belief function ξ : R(D̂)×R(θ)→ [0, 1] as

ξ(d̂, ϑ) = P (H1|d̂, ϑ) = P (Π(θ) = 1|d̂, ϑ). (3)

where R(D̂) denotes percept space and R(θ) denotes the range of all possible choices

(i.e., the choice space).

2.2 Choice accuracy equals statistical decision confidence

Intuitively, confidence, being defined as an estimate of choice correctness, should pre-

dict the expected outcome. We provide a formal treatment of the relationship between

confidence and accuracy below.

Definition 4. Accuracy is the expected proportion of correct choices:

A = E[Π(θ)]. (4)

We seek to determine the following function: f : [0, 1]→ [0, 1], f : c 7→ Ac, where Ac

is the accuracy for choices with a given confidence. Our claim is that this function is

the identity.
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Theorem 1. Accuracy equals confidence:

Ac = c. (5)

Proof. For every given value of confidence, there is a set of percept-choice pairs leading

to the same confidence value: let us denote the image of c by the inverse belief function

ξ−1 as {(d̂i, ϑi)}i∈I , the set of percept-choice pairs mapping onto c. Let us first assume

that I is a countable set. Accuracy for confidence c is determined by the probability of

a correct choice if C = c over the probability of encountering the confidence level of c

(that is, P (C = c)):

Ac =

∑
i∈I P (H1, d̂i, ϑi)∑
i∈I P (d̂i, ϑi)

.

From the definition of joint probability,

Ac =

∑
i∈I P (H1, d̂i, ϑi)∑
i∈I P (d̂i, ϑi)

=

∑
i∈I P (H1|d̂i, ϑi) · P (d̂i, ϑi)∑

i∈I P (d̂i, ϑi)
.

As we know that ∀i ∈ I : P (H1|d̂i, ϑi) = c,

Ac =

∑
i∈I P (H1|d̂i, ϑi) · P (d̂i, ϑi)∑

i∈I P (d̂i, ϑi)
=

∑
i∈I c · P (d̂i, ϑi)∑
i∈I P (d̂i, ϑi)

=
c ·
∑

i∈I P (d̂i, ϑi)∑
i∈I P (d̂i, ϑi)

= c.

However, I is not necessarily a countable set. We can re-write the equations in

continuous form to apply to any set as follows.

Ac =

∫
Π=1

∫∫
(D̂,θ)∈ξ−1(c)

fΠ,D̂,θ(π, d̂, ϑ)dϑdd̂dπ∫∫
(D̂,θ)∈ξ−1(c)

fD̂,θ(d̂, ϑ)dϑdd̂

Here Π is a random variable that is 1 if the choice is correct and 0 otherwise (outcome,

see above).

Ac =

∫
Π=1

∫∫
(D̂,θ)∈ξ−1(c)

fΠ,D̂,θ(π, d̂, ϑ)dϑdd̂dπ∫∫
(D̂,θ)∈ξ−1(c)

fD̂,θ(d̂, ϑ)dϑdd̂
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=

∫
Π=1

∫∫
(D̂,θ)∈ξ−1(c)

fΠ(π|D̂ = d̂, θ = ϑ) · fD̂,θ(d̂, ϑ)dπdϑdd̂∫∫
(D̂,θ)∈ξ−1(c)

fD̂,θ(d̂, ϑ)dϑdd̂

=

∫
Π=1

∫∫
(D̂,θ)∈ξ−1(c)

c · fD̂,θ(d̂, ϑ)dπdϑdd̂∫∫
(D̂,θ)∈ξ−1(c)

fD̂,θ(d̂, ϑ)dϑdd̂

=
c ·
∫∫

(D̂,θ)∈ξ−1(c)
fD̂,θ(d̂, ϑ)dϑdd̂∫∫

(D̂,θ)∈ξ−1(c)
fD̂,θ(d̂, ϑ)dϑdd̂

= c.

Note that these considerations about confidence do not depend on a particular

theory of perception, that is, the function mapping from the external variable (stimulus)

onto the internal percept: D 7→ D̂. Furthermore, the derivation also does not depend

on a particular theory of decision, that is, the function between the percept and the

choice: D̂ 7→ θ. This includes both deterministic and stochastic decision models, the

latter referring to models where a percept does not uniquely determine a choice. In

case of deterministic decision models, the percept unequivocally determines the choice,

thus in the equations we could drop the choice from the inverse picture of confidence,

taking only the percept into account: {d̂i}i∈I instead of {(d̂i, ϑi)}i∈I . However, as this

simplified version would not include stochastic decision models, we chose to adhere to

the general formalization.

Another notable aspect of this derivation is that there is no need for a relation to

be defined on the percept space. However, if the choice is fixed (or determined by the

percept, as in deterministic decision models), confidence defines a natural relation on

percepts by ξ. More precisely, the order relation on confidence values can be pulled

back to the percept space by taking ξ−1(c) and restricting it to a particular choice.
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Therefore, we can define the relative terms “low-confidence” percept and “high-

confidence percept” based on the relation of confidence values the percepts map onto

by the belief function; we will use this concept while proving Theorem 2. Please note

that this relation always refers to fixed choices.

2.3 Confidence increases with increasing evidence discriminability

for correct choices and decreases for incorrect choices

Psychophysical studies require that decision performance is measured at varying levels

of decision difficulty. This necessitates the quantification of the decision difficulty axis,

along which the proportion of correct choices can then be measured. Such interrela-

tions, termed psychometric functions, provide a good handle on behavioral performance

allowing the detection of subtle changes in behavior. However, there is no single way

of grading choice difficulty, resulting in a broad variety of such measures, complicating

the theoretical treatment of psychometric functions. Therefore we define evidence dis-

criminability by its property of measuring difficulty as a class of functions in order to

provide a general treatment of the interrelations of choice difficulty and confidence.

Definition 5. Define evidence discriminability as a (deterministic) function of the evi-

dence distribution:

∆ = ∆(P (D)) (6)

The evidence discriminability function has to fulfill the following property:

∆(P1(D)) > ∆(P2(D)) ⇐⇒ P (H1|P1(D)) > P (H1|P2(D))
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⇐⇒ P (Π(θ) = 1|P1(D)) > P (Π(θ) = 1|P2(D))

⇐⇒ E(Π(θ)|P1(D)) > E(Π(θ)|P2(D)), (7)

that is, higher discriminability should be equivalent to greater expected outcome (higher

probability of correct choices). Any monotonically increasing function of expected

outcome satisfies this criterion and can serve as evidence discriminability.

Having defined evidence discriminability, we can now examine how confidence

changes with evidence discriminability separately for correct and incorrect choices. We

show below that while confidence increases with increasing evidence discriminability

for correct choices, it counterintuitively decreases for incorrect choices.

Theorem 2. Let us assume that

• belief independence: the belief function (ξ) is independent of evidence discrim-

inability;

• percept monotonicity: for any given confidence c, the relative frequency of per-

cepts mapping to c by ξ changes monotonically with evidence discriminability

for any fixed choice.

Under these assumptions, confidence increases for correct choices and decreases for

incorrect choices with increasing evidence discriminability.

Proof. We begin with the somewhat counterintuitive claim regarding the incorrect choices.

Let us first examine the two assumptions in more detail.

The first assumption postulates that the function from percept-choice pairs to con-
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fidence does not change with evidence discriminability. Thus, whenever we calculate

expected value of confidence over a percept distribution, only the percept distributions

will depend on evidence discriminability.

For incorrect choices, the second assumption means that with increasing evidence

discriminability, the relative frequency of low-confidence percepts increases while the

relative frequency of high-confidence percepts decreases in the percept distribution.

Note that low-confidence and high-confidence percepts are defined here through the

relation imposed by ξ on the percepts (see our remark at the end of the previous section).

As a trivial consequence of this definition, confidence changes monotonically along

low- and high-confidence percepts.

Let us consider two different levels of evidence discriminability (∆1 < ∆2), with

corresponding distributions of percept restricted to incorrect choices P (∆1, low evi-

dence discriminability, i.e. ‘difficult choice’) and Q (∆2, high evidence discriminabil-

ity, i.e. ‘easy choice’). It is sufficient to show that the expected value of confidence is

larger for ∆1 than for ∆2:

1∫
0

c · p(c)dc >
1∫

0

c · q(c)dc

where p and q denotes the probability density functions corresponding to P and Q,

respectively. Note that p(c) can be thought of as the probability of the picture of c by

ξ−1 restricted to incorrect choices in the percept space.

Equivalently,
1∫

0

c · [p(c)− q(c)]dc > 0
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Let I0 ⊂ [0, 1] denote the interval where p < q, and I1 ⊂ [0, 1] the complementary

interval where p ≥ q. The existence of these intervals is the consequence of the mono-

tonicity assumption. Thus, there is a critical confidence value (denoted here by ccrit)

for which I0 = [0, ccrit] and I1 = [ccrit, 1]. We then re-write confidence as c = ccrit− c′

if c < ccrit and c = ccrit + c′ if c > ccrit; thus, c′ > 0 for both cases. Applying these

notations,

1∫
0

c · [p(c)− q(c)]dc =

ccrit∫
0

c · [p(c)− q(c)]dc+

1∫
ccrit

c · [p(c)− q(c)]dc

=

0∫
ccrit

(ccirt − c′) · [p(ccrit − c′)− q(ccrit − c′)]dc′+

1−ccrit∫
0

(ccrit + c′) · [p(ccrit + c′)− q(ccrit + c′)]dc′

=ccrit ·
( 0∫
ccrit

[p(ccrit − c′)− q(ccrit − c′)]dc′+

1−ccrit∫
0

[p(ccrit + c′)− q(ccrit + c′)]dc′
)

+

1−ccrit∫
0

c′ · [p(ccrit + c′)− q(ccrit + c′)]dc′−

0∫
ccrit

c′ · [p(ccrit − c′)− q(ccrit − c′)]dc′

=ccrit ·
( ccrit∫

0

[p(c)− q(c)]dc+

1∫
ccrit

[p(c)− q(c)]dc
)

+

1∫
ccrit

(c− ccrit) · [p(c)− q(c)]dc−
ccrit∫
0

(ccrit − c) · [p(c)− q(c)]dc

=ccrit ·
( 1∫

0

[p(c)− q(c)]dc
)

+
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1∫
ccrit

(c− ccrit) · [p(c)− q(c)]dc+

ccrit∫
0

(ccrit − c) · [q(c)− p(c)]dc

> 0

In the last step, the first term is 0, since
1∫

0

[p(c)− q(c)]dc =

1∫
0

p(c)dc−
1∫

0

q(c)dc = 1− 1 = 0

The second term is positive, since c−ccrit is positive on c ∈ [ccrit, 1] and the probability

density functions are evaluated on I1, where p ≥ q. Finally, the third term is also posi-

tive, because ccrit−c is positive on c ∈ [0, ccrit] and the probability density functions are

evaluated on I0, where q > p. As a consequence, the sum is positive, which completes

the proof for incorrect choices.

For correct choices, high-confidence percepts are increasingly more likely with

increasing evidence discriminability, thus present an opposite pattern compared to in-

correct choices. Therefore, a symmetric derivation proves the increase of confidence

with increasing evidence discriminability for correct choices.

The assumption that ξ is independent of evidence discriminability is necessary for

this derivation. In this framework, confidence is defined through the true distributions

of correct and incorrect choices, kept fixed; therefore this assumption is met. How-

ever, if confidence values are updated based on distributions reflecting varying values

of evidence discriminability, then the belief function will differ according to evidence

discriminability, thus the above proof does not apply. Furthermore, the expected value

of confidence cannot decrease with increasing evidence discriminability for incorrect

choices: for the lowest levels of discriminability, when the outcome is at chance level,
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confidence will fall to its lowest possible value, reflecting equal probabilities of the null

and alternative hypothesis regardless of the percept. This represents situations in which

the decision-maker is provided with information about evidence discriminability, e.g.

by grouping decisions of similar discriminabilities (like in a block experimental design),

providing an opportunity to learn about evidence discriminability and update the distri-

butions underlying confidence accordingly. Thus, the above theorem only applies when

updating confidence based on knowledge of evidence discriminability is prevented, e.g.

by randomizing the order of choices with different discriminability levels in an inter-

leaved design.

2.4 Confidence predicts outcome beyond evidence discriminability

Psychometric functions reveal accuracy for any given level of evidence discriminability.

While confidence also changes with evidence discriminability, it is not obvious whether

it carries additional information allowing better prediction of outcome for a given level

of evidence discriminability. Below we show that it does.

Theorem 3. For any given evidence discriminability, accuracy for low confidence choices

is not larger than that of high confidence choices (splitting the confidence distribution at

any particular value). A strict inequality holds in all cases when accuracy is dependent

on the percept.

Proof. Let us take the set of low-confidence percept-choice pairs corresponding to the

low confidence choices by ξ−1, and similarly, the set of high-confidence percept-choice

16



pairs corresponding to the high confidence choices. By the definition of confidence

(Definition 2 in Section 2.1), low-confidence percept-choice pairs cannot have higher

accuracy than the high-confidence percept-choice pairs. If all percepts are associated

with the same accuracy (either when the percept does not carry information about the

hypotheses of choice, or when the percept determines the correct choice with a prob-

ability of one), the two accuracies are equal. Otherwise, the two accuracies should

necessarily differ, in which case the strict inequality holds.

Thus, even for the same level of difficulty, the internal noise (e.g. imperfect per-

ception) can result in different percepts, some being “easier” and others “harder”. While

the decision maker has access to the this internal variable, the experimenter does not.

However, the confidence report contains at least part of the relevant information, pro-

viding additional information to the experimenter, which improves the experimenter’s

estimate of accuracy.

2.5 The average confidence in neutral evidence

Next, we examine the average confidence at neutral evidence, i.e. evidence carrying no

information about the correct choice, for one-dimensional variables.

Theorem 4. Assuming

• the percept is determined by a symmetric distribution centered on the evidence

(‘symmetric noise model’),

• the evidence is distributed uniformly over the evidence space, and
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• the choice is deterministic,

the average confidence for neutral evidence is precisely 0.75.

Proof. We first prove the following lemma.

Lemma 5. Integrating the product of the probability density function and the distribu-

tion function of any probability distribution symmetric to zero over the positive half-line

results in 3/8:
∞∫

0

f(t)F (t)dt =
3

8
. (8)

Proof. ∀K −∞ < K <∞,

K∫
t=−∞

f(t)F (t)dt =

K∫
t=−∞

f(t)

t∫
x=−∞

f(x)dxdt

=

K∫
t=−∞

t∫
x=−∞

f(t)f(x)dxdt

=
1

2
2

K∫
t=−∞

t∫
x=−∞

f(t)f(x)dxdt

=
1

2

[ K∫
t=−∞

t∫
x=−∞

f(t)f(x)dxdt+

K∫
t=−∞

t∫
x=−∞

f(t)f(x)dxdt

]

=
1

2

[ K∫
t=−∞

t∫
x=−∞

f(t)f(x)dxdt+

K∫
x=−∞

K∫
t=x

f(x)f(t)dtdx

]

=
1

2

[ K∫
t=−∞

t∫
x=−∞

f(t)f(x)dxdt+

K∫
t=−∞

K∫
x=t

f(t)f(x)dxdt

]

=
1

2

[ K∫
t=−∞

f(t)

t∫
x=−∞

f(x)dxdt+

K∫
t=−∞

f(t)

K∫
x=t

f(x)dxdt

]

=
1

2

[ K∫
t=−∞

f(t)
[ t∫
x=−∞

f(x)dx+

K∫
x=t

f(x)dx
]
dt

]
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=
1

2

[ K∫
t=−∞

f(t)

K∫
x=−∞

f(x)dxdt

]

=
1

2

[ K∫
t=−∞

f(t)dt

K∫
x=−∞

f(x)dx

]

=
1

2

[ K∫
t=−∞

f(t)dt

]2

using that

{−∞ < t < K,−∞ < x < t} ⇐⇒ {−∞ < x < K, x < t < K}

for changing the integral boundaries and then swapping x and t in the second integral

term. Applying the above equation, we can write

∞∫
0

f(t)F (t)dt =

∞∫
−∞

f(t)F (t)dt−
0∫

−∞

f(t)F (t)dt

=
1

2

[ ∞∫
−∞

f(t)dt

]2

− 1

2

[ 0∫
−∞

f(t)dt

]2

=
1

2
12 − 1

2

[
1

2

]2

=
3

8

Proof of the theorem: Confidence for neutral evidence is determined by the percept cor-

responding to neutral evidence and the probability of being correct provided the percept

and the choice. Thus, the average confidence for neutral evidence can be calculated by

integrating over the distribution of percepts provided neutral evidence (indicated here

by d = 0):

c0 =

∞∫
−∞

P (d̂|d = 0)ξ(d̂, ϑ)dd̂
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Since we assumed deterministic choice (third assumption), confidence is determined by

the percept; therefore we can drop ϑ from the equation:

c0 =

∞∫
−∞

P (d̂|d = 0)ξ(d̂)dd̂

Based on our first assumption, the percept is determined by a symmetric distribution

around the evidence. Denote the density function of this symmetric (‘noise’) distribu-

tion f and its distribution function F . Since the percept distribution is symmetric,

c0 =

∞∫
−∞

P (d̂|d = 0)ξ(d̂)dd̂ = 2

∞∫
0

P (d̂|d = 0)ξ(d̂)dd̂

As a consequence of the second assumption of uniform evidence distribution, ξ(d̂) =

F (d̂) for d̂ > 0:

ξ(d̂) = P (d > 0|D̂ = d̂) =
P (d > 0, D̂ = d̂)

fD̂(d̂)
=

∫
d>0

P (D̂ = d̂|D = d)fD(d)dd

fD̂(d̂)
= F (d̂),

using the theorem of total probability. In the last step, we use that fD and fD̂ are

constant because of the uniformity assumption. (Note that we restrict the support of

P (D̂) to that of P (D).) Thus,

c0 = 2

∞∫
0

P (d̂|d = 0)ξ(d̂)dd̂ = 2

∞∫
0

f(d̂)F (d̂)dd̂

By applying the lemma,

c0 = 2

∞∫
0

f(d̂)F (d̂)dd̂ = 2
3

8
=

3

4
.

Note that one of the critical assumptions we made is that the evidence is dis-

tributed uniformly over the evidence space. While real-life scenarios will often have
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non-uniform evidence distributions, this uniformity property holds approximately true

for many psychophysics experiments using interleaved evidence strengths. Therefore

Theorem 4 provides a quantitatively testable prediction about confidence reports in psy-

chophysics experiments. More generally, this proof points to apparent overconfidence

in percepts with neutral evidence in situations when the difficulty of the decisions can-

not be determined. The degree of overconfidence will depend on the actual integrals

involved.

2.6 Monte Carlo simulations illustrating the signatures of decision

confidence

To illustrate our theory we created a Monte Carlo simulation of the normative definition

of confidence. For the simulation, we assumed that Gaussian noise (µ = 0, σ = 0.18)

corrupts the external evidence, to generate an internal percept. We used a deterministic

decision rule based on the sign of the percept. Thus, outcomes were correct if the sign

of the evidence and percept matched. Using these definitions to determine percept and

outcome for each trial, we generated a large number of trials, each producing a choice

and a percept. We then discretized the percepts of all trials into 200 bins, and deter-

mined the fraction of correct decisions in each bin. Confidence for each trial was then

assigned by matching the trial’s percept to the corresponding confidence value, equal

to the fraction of correct trials for that trial’s percept bin. This enabled us to explore

predicted interrelationships between confidence, evidence discriminability and choice.

Figure 2A shows that confidence predicts the mean choice accuracy (Theorem 1). Fig-
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ure 2B demonstrates that mean confidence for a given level of evidence discriminability

increases for correct and decreases for incorrect choices (Theorem 2), and that the mean

confidence for neutral evidence is 0.75 (Theorem 4). Figure 2C illustrates that for each

given level of evidence discriminability, accuracy for high confidence choices is greater

than for low confidence choices (Theorem 3). Note that while accuracy across simula-

tion trials with low confidence falls to chance (Figure 2A), on the converse, the average

confidence for neutral evidence is at mid-range (Figure 2B). This seemingly contra-

dictory result is a consequence of grouping decisions in different ways. In Figure 2A,

accuracy is conditioned on a group of choices with a given confidence level. While in

Figure 2B, individual percepts corresponding to neutral evidence will often be far away

from neutral so as to lead to an apparent “overconfidence”. Nevertheless, the neutral

evidence group of choices as a whole, by definition, will lead to chance level accuracy.

Taken together these plots illustrate four signatures of decision confidence in terms of

externally quantifiable variables that can be experimentally examined.
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Figure 2: The normative model of confidence predicts specific interrelationships

between evidence, outcome and confidence. (A-C) Monte Carlo simulations of the

normative model (10 billion trials). Bins with fewer than 100 simulation data points

were omitted. (A) Confidence equals accuracy. (B) Average confidence increases with

evidence discriminability from 0.75 for correct choices and decreases for errors. (C)

Conditioning on high or low confidence (split at c = 0.8) segregates psychometric

performance.

2.7 Relating P-values to confidence

Above we derived properties of statistical confidence based on the definition of deci-

sion confidence as a Bayesian posterior probability. We next sought to demonstrate the

generality of these predictions by determining whether they apply to confidence val-

ues produced by other statistical approaches. Therefore, we constructed a simulation

to test the properties of p-values produced by a common statistical test for evaluating

a choice between two hypotheses. First, we examined the one-sided, two-sample Stu-

dents t-test (Figure 3A-C). Samples of 20 measurements were drawn from two Gaussian

distributions on each simulation trial, where the simulated task was to identify which

underlying distribution had a larger mean. To create graded discriminability, we varied
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the distance between the means from -0.5 to 0.5 with uniform probability. A simula-

tion trial was designated as “correct” if the mean of the 20 samples drawn from the

distribution with the higher mean was higher than the mean of the 20 samples drawn

from the distribution with the lower mean. We computed the p-value for each trial us-

ing a one sided two-sample t-test to provide a measure of statistical confidence (1− p)

in the chosen response. Thus each simulation trial yielded an outcome (correct or er-

ror) and a measure of statistical confidence. Second, we also performed simulations

of a bootstrap test (Efron and Tibshirani, 1993), which does not depend on a Gaussian

assumption about the underlying distributions (Figure 3D-F). Exponential sample dis-

tributions were used. Offsets for the population means were uniform, ranging between

0 and 1, and the bootstrap sample size was 1000. As shown in Figure 3, the p-values

derived from a t-test and a two-sample bootstrap test for difference between means re-

veal the same pattern of interrelationships we derived from the Bayesian confidence

definition. Thus, the predictions we derived for statistical decision confidence are valid

across different statistical approaches: Bayesian, frequentist and bootstrap statistics.
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Figure 3: Two statistical tests reproduce patterns predicted by the normative

model. (A-C) A simulation of 10 million trials evaluated the one-sided, two sample

Students t-test p-value with respect to accuracy and evidence discriminability. Since

p indicates uncertainty, axes show 1 − p to indicate confidence. (A) 1 − p is posi-

tively correlated with accuracy. (B) 1 − p is monotonically increasing with evidence

discriminability for correct trials and decreasing for error trials. (C) P-values contain

information about outcome even at fixed evidence discriminability. (D-F) A simula-

tion of the p-value in a one-sided bootstrap test for an ordinal relationship between two

means, using exponential distributions.

3 Discussion

We presented a normative statistical framework that enables the comparison of statis-

tical decision confidence with confidence measures in other domains. Unlike signal
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detection theory and other algorithmic frameworks that simulate confidence judgments

based on assumptions about the underlying evidence distributions, we show that a strict

analytical treatment is possible in a distribution-free manner.

We analytically derived a set of properties of confidence defined as the Bayesian

posterior probability of a chosen hypothesis being correct. First, confidence predicts

accuracy: the level of confidence predicts the expected fraction of correct choices. This

property corresponds most directly to the intuitive notion of confidence as a graded fore-

cast about accuracy. Second, mean confidence for a given level of external evidence is

larger for correct than incorrect choices and in fact varies with an opposite sign with

evidence discriminability for correct vs. incorrect choices. Specifically, mean confi-

dence levels increase with the ease of discriminability for correct choices, but counter-

intuitively, confidence decreases with increasing evidence-discriminability for incorrect

choices. This surprising dissociation is a consequence of the differences in the distribu-

tions of conditional percepts between correct and incorrect choices. Third, and perhaps

most surprisingly, when presented with equal amount of evidence supporting each hy-

pothesis, in other words an indiscriminable choice that will lead to chance accuracy,

the mean decision confidence is much greater than chance – precisely 0.75. Fourth,

while the psychometric function defines the average choice accuracy for a given level

of external evidence, knowledge of confidence provides further information improving

the prediction of accuracy for any given level of discriminability.

These four properties are signatures of confidence in terms of observable vari-

ables, and thus useful for interpreting both behavioral and physiological experiments
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on decision confidence. Behaviorally, our framework makes it clear that even statis-

tically optimal confidence reports can appear to show systematic miscalibration. This

mismatch between confidence reports and accuracy is most dramatically illustrated by

the 0.75 mean confidence for neutral evidence that produces chance accuracy behav-

iorally (0.5). As our framework makes it clear this apparent miscalibration does not

imply imperfect prediction of accuracy – rather it is a straightforward consequence of

conditioning confidence reports on external variables of the task (e.g,. stimulus dif-

ficulty) that are not available to the decision maker (Drugowitsch et al., 2014). This

property of statistical confidence carries important implications for the interpretation

of studies demonstrating overconfidence in low discriminability and under-confidence

in high discriminability conditions – a controversial phenomenon termed the “hard-

easy effect” (Drugowitsch et al., 2014; Ferrell, 1995; Harvey, 1997; Juslin et al., 2000;

Merkle, 2009; Moore and Healy, 2008). More generally one has to be careful when

analyzing behavior or neural activity by conditioning on external variables not avail-

able to the decision maker. When internal representations are examined as a function of

external variables a computational theory is needed to understand how observables con-

ditioned on the external variables are linked to the internal representations. Therefore,

rather than revealing miscalibration, conditioning on external variables can be used to

test signatures of decision confidence we derived (Figure 2) and will be valuable in

interpreting putative confidence-related neural activity as well (Kepecs et al., 2008; Ko-

mura et al., 2013; Kiani and Shadlen, 2009).

The framework we presented can be interpreted as a prescriptive model, describ-

ing how the computation of confidence ought to be performed. In this sense it is useful
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for describing what a neural representation of confidence or its behavioral report should

look like. Beyond this, we expect that our mathematical framework will serve as a

departure point for quantitatively studying the contribution of confidence to different

behaviors, and identifying confidence variables in other domains.
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