ZÁRÓJELENTÉS

A beszámoló szigorúan vett szakmai részletei előtt talán nem felesleges egy szubjektív "önértékelést" előrebocsátani. A munka (OTKA támogatást is élvező) előzmények után indult, és a mostani jelentés írásakor már azt is tudom, hogy (OTKA támogatást ugyancsak elnyert) folyatása is elkezdődhetett. A mostani összegzés készítése során ennek tudatában is arra a következtetésre jutottam, hogy valószínűleg teljes szakmai pályafutásom legtermékenyebb periódusa volt ez a mostani. Ezt, a folyamatos intenzív munka mellett, több (nem nagy valószínűségű, mondhatni szerencsés) történés tette lehetővé. A teljesség igénye nélkül felsorolok néhányat: a külföldi partnerek szinte maradéktalanul elvégezték a rájuk eső munkát; a magyar résztvevőket sem akadályozta a munkájukban lényegesen külső körülmény (pl. elbocsátás, betegség, kényszernyugdíj stb.); a svéd és magyar Ph.D. hallgatók éppen ebben a periódusban védtek, így a közleményeket is mindenképpen meg kellett írjuk; jómagam is eljutottam az MTA doktori eljárás befejezéséhez; többségében igen jó diploma-munkás hallgatók dolgoztak velem az elmúlt időszakban. Ezek a körülmények aztán (saját várakozásaimat is alaposan felül múlva) 14 referált cikk (44,1 összesített impakt faktor) mellett 1 MTA doktori és 2 hazai Ph.D. dolgozatot, 3 diplomamunkát, 1 TDK dolgozatot, két felkért, összefoglaló jellegű konferencia-előadást eredményeztek.

A munkaterv minden lényeges pontjában születtek jó helyen publikálható eredmények. Persze voltak sikertelen próbálkozásaink is, ezek egy részét "leírtuk", másokat talán újra érdemes lesz elővenni az új OTKA-pályázatunk keretében. Az új tudományos eredményeket a munkaterv szerinti bontásban foglaltam össze. Beszerkesztettem a vonatkozó közleményeket, aláhúzással jelöltem a szerzők között az OTKA-ban résztvevő kutatókat, doktoranduszokat, hallgatókat.

A. Fém-fém kötéses vegyületek

A Tl-komplexek mint **kiindulási anyagok jellemzése** során **meghatároztuk a** Tl(CN)₄⁻ három különböző kationnal alkotott (Tl⁺, Na⁺, K⁺) és az általunk először előállított **Tl(CN)₃·H₂O (1) komplexek szerkezetét** (egykristály) röntgen diffrakciós módszerrel. Érdekes redoxi sajátságokat mutattunk ki a Tl^{III} – CN⁻ rendszer éteres oldatában és a Tl₂O₃–CN⁻ vizes szuszpenziójában. A Tl^{III} és cianid között lejátszódó redoxireakció sztöchiometriája olyan, hogy a tallium végül csak Tl^I (50 atom%, a redukció terméke) és Tl(CN)₄⁻ (50 atom%, a komplexképződés terméke) formában van jelen. A redoxreakciók termékeként a Tl^I[Tl^{III}(CN)₄] (2) és az új Tl^I₂C₂O₄ (5) vegyületeket kristályos alakban előállítottuk és szerkezetüket röntgen diffrakciós módszerrel **meghatároztuk.**

Azt találtuk, hogy a Tl(CN)₃ vizes oldatának (CN⁻/Tl^{III} = 3) éteres extrakcióját követően a termék minőségét alapvetően megszabja a szerves fázis víztartalma. A Tl(CN)₃·H₂O komplexet (1) a *vízzel telített* szerves fázisból nyertük egykristályként. A kristályban a tallium(III)ion térszerkezete trigonális–bipiramisos. Az ötös koordinációt a tallium körül a három cianid ligandum egy síkban elhelyezkedő szénatomjai és erre a síkra merőleges, a talliumhoz szorosan kötött vízmolekula oxigénatomja, valamint egy szomszédos tallium cianid ligandumjának nitrogénatomja által alkotott, O–Tl–N egység

alkotja. A cianid ligandumok tehát a tallium(III)ionokat egy végtelen "cikk-cakk" lánccá kötik össze.

Ugyanakkor, fázist szárítással ha az éteres vízmentesítettük, az oldat talliumkoncentrációja is csökkent és szilárd, $Tl^{II}[Tl^{III}(CN)_4]$ (2) összetételű, ionos vegyület kristályosodott ki. A megfelelő M[Tl(CN)₄] (M = K, Na) komplexek könnyen előállíthatók vizes oldataikból. A Tl^I[Tl^{III}(CN)₄] (2) és K[Tl(CN)₄] (3) összetételű anvagoknak –a két ellenion hasonló méretéből adódóan– azonos, scheelit-típusú A tallium(III)ionokhoz kapcsolódó szénatomok közel tetraéderes szerkezete van. elrendeződést mutatnak, míg a tallium(I)- illetve káliumionok körül a nitrogénatomok egy kocka csúcsainak megfelelően helyezkednek el.

Ezzel ellentétben a **Na**[**Tl**(**CN**)₄]·**3H**₂**O** (**4**) kristályban a Na⁺ -ionok koordinációja oktaéderes, amit a hozzá kötődő három cianid ligandum nitrogénatomjai és három vízmolekula oxigén atomjai alkotnak *fac*–[NaN₃O₃] izomer formájában. Annak ellenére, hogy a Na[Tl(CN)₄]·3H₂O (**4**) különböző kristályrendszerben kristályosodik, mint a Tl^I[Tl^{III}(CN)₄] (**2**) és K[Tl(CN)₄] (**3**) komplexek, a **Tl(CN)₄⁻ egység** természetesen ebben a kristályban is tetraéderes térszerkezetű.

1. közlemény

<u>P. Nagy</u>, A. Fischer, J. Glaser, A. Ilyukhin, M. Maliarik and <u>I. Tóth</u>: Solubility, complex formation and redox reactions in the Tl_2O_3 -HCN/CN⁻-H₂O, Tl^{III} -CN⁻-(C₂H₅)₂O/H₂O systems. Crystal Structures of the Cyano Compounds: $Tl(CN)_3 \times H_2O$, Na[Tl(CN)₄]×3H₂O, K[Tl(CN)₄], Tl^I[Tl^{III}(CN)₄]; and Tl^I₂C₂O₄ Inorganic Chemistry, 2005, 44, 2347-2357.

Kinetikai vizsgálatok során, a szerkezeti és egyensúlyi vizsgálatok folytatásaként fotometriás követéssel **vizsgáltuk a** $[(CN)_5PtTl(CN)_3]^3$, $[(CN)_5Pt-Tl(CN)_7]$, $[(CN)_5Pt-Tl(CN)_5]^3$ és $[(CN)_5Pt-Tl(edta)]^4$ Pt-Tl kötést tartalmazó komplexek képződésének **kinetikai sajátságait.** A komplexek valódi reverzíbilis egyensúlyi reakciókban képződnek.

Megállapítottuk, hogy a $Tl(CN)_n^{(3-n)}$ és $Pt(CN)_4^{2-}$ reaktánsokból a fém-fém kötést tartalmazó komplexek nagyon hasonló mechanizmus szerint képződnek. A reakciókban közös, hogy *i*) létrejön a platina és a tallium közt a fém-fém kötés és *ii*) axiálisan még egy CN^- ligandum koordinálódik a platina centrumhoz. Ezen lépések sorrendje csak a $[(CN)_5Pt-Tl-Pt(CN)_5]^{3-}$ komplex esetében dönthető el egyértelműen. Nagy valószínűséggel azonban ez a sorrend érvényes a többi kétmagvú cianokomplex képződésekor is, azaz a fém-fém kötés létrejötte az első lépés. Ez egy egyelektronos elektronátadási lépés, amely egyúttal csökkenti a platina centrumon az elektronsűrűséget, és ezáltal növeli a nukleofil ágens támadásának valószínűségét. Az egyes reakciók ugyanakkor a platina centrumhoz kötődő axiális cianid ligandum forrását képező nukleofil ágens minőségében jelentősen különböznek egymástól.

A lúgos és enyhén savas pH tartományban a CN^- -ionok katalizálják a $[(CN)_5PtTl(CN)_3]^{3-}$ komplex képződését. Ugyanakkor a HCN hozzájárulása elhanyagolható, még akkor is, ha feleslegben van a CN^- -ionokhoz képest. Ez a lényeges

különbség a protonált és deprotonált részecske kinetikai viselkedésében alátámasztja azon javaslatunkat, miszerint *ii*) nukleofil addíciós lépés.

A [(CN)₅Pt–Tl(CN)]⁻ képződése során pH ~ 2 körül a CN⁻-koncentráció nagyon kicsi, így tapasztalatunk szerint ekkor a Tl(CN)₂⁺ részecske a nukleofil ágens. Annak ellenére, hogy a HCN-koncentráció összemérhető a Tl(CN)₂⁺ komplex koncentrációjával, a hidrogén-cianidnak ebben az esetben sincs kinetikai szerepe. Első közelítésben meglepő, hogy a Tl(CN)₂⁺ "erősebb nukleofil" mint a HCN, de magyarázatul szolgálhat erre a negatív töltésű [(CN)₄Pt…Tl(CN)₂]⁻ köztitermék és a pozitív töltésű Tl(CN)₂⁺ közt fellépő vonzóerő (ami a semleges HCN esetében hiányzik).

A hárommagvú $[(CN)_5Pt-Tl-Pt(CN)_5]^{3-}$ komplex képződése azonban bizonyíték arra, hogy a HCN is lehet a platinához kötődő axiális cianid forrása. Ebben az esetben azért válik mérhetővé a szerepe, mert a másik két részecske $(CN^- \text{ és }Tl(CN)_2^+)$ koncentrációja egyaránt elhanyagolhatóan kicsi.

2-3. közlemény

P. Nagy, I. Tóth, I. Fábián, M. Maliarik and J. Glaser:

Kinetics and Mechanism of Formation of Platinum–Thallium Bond: The Binuclear $[(CN)_5Pt-Tl(CN)_3]^{3-}$ and the Trinuclear $[(CN)_5Pt-Tl-Pt(CN)_5]^{3-}$ complexes

Inorganic Chemistry, **2004**, 43, 5216-5221.

P. Nagy, I. Tóth, I. Fábián, M. Maliarik and J. Glaser:

Kinetics and Mechanism of Formation of Platinum–Thallium Bond: the [(CN)₅Pt–Tl(CN)]^{3–} complex *Inorganic Chemistry*, **2003**, *42*, 6907-6914.

A szintén fém–fém kötést tartalmazó $[(CN)_5Pt-Tl(edta)]^{4-}$ komplex két különböző úton is előállítható: *a*) a $[(CN)_5Pt-Tl]_{(s)}$ szilárd vegyület 1 ekvivalens edta ligandumban való oldásával; *b*) $Pt(CN)_4^{2-}$ és $Tl(edta)(CN)^{2-}$ reakciójával.

Megállapítottuk, hogy a bomlási reakciót a CN^- -ionok katalizálják, az edta viszont inhibitorként viselkedik. A bomlási reakció a $[(CN)_5Pt-Tl(CN)_3]^{3-}$ köztiterméken keresztül játszódik le, és annak $Pt(CN)_4^{2-}$ és $Tl(CN)_4^-$ részecskékre való szétesésével folytatódik. A befejező lépésben a $Tl(CN)_4^-$ -nak az edta⁴⁻ ionnal való reakciója adja a reakció termékét, a $Tl(edta)(CN)^{2-}$ komplexet.

[(CN)₅Pt–Tl(edta)]⁴⁻ komplex képződésére Α két különböző **reakcióut**at azonosítottunk. A bomlási reakciónál szemléltetett "közvetett" reakcióút dominál, amikor edta felesleg nélkül a Tl(CN)₄ koncentrációja nem elhanyagolható a $Tl(edta)(CN)^{2-}$ reaktáns oldatában. Amikor azonban a $[Tl(CN)_4]/[Tl(edta)(CN)^{2-}] \leq$ 10⁻⁴ (amit az edta / cianid aránnyal lehet szabályozni), akkor egy másik, "közvetlen" reakcióút válik meghatározóvá. A "közvetlen" reakcióút első lépésében egy $[(CN)_4Pt\cdots Tl(CN)(edta)]^{4-}$ köztitermék keletkezik a $Tl(edta)(CN)^{2-}$ és $Pt(CN)_4^{2-}$ reakciójával, amit egy cianid kilépése követ a tallium centrumról. A harmadik, sebességmeghatározó lépésben az axiális CN⁻ koordinációja történik a platinához. A cianid távozása a talliumról és az axiális cianid koordinációja a platinához ebben az esetben ellenkező sorrendben zajlik, mint az előzőekben ismertetett cianokomplexek esetében, amit a koordinációs szférában lévő edta ligand nagyobb térkitöltése magyarázhat.

4. közlemény <u>P. Nagy, R. Jószai, I. Fábián, I. Tóth</u> and J. Glaser:

The Decomposition and Formation of the Platinum–Thallium Bond in the [(CN)₅Pt–Tl(edta)]^{4–} complex. Kinetics and Mechanism *Journal of Molecular Liquids*, **2005**, 118, 195-207.

Új fém-fém kötéses vegyületek előállítása és jellemzése során a (CN)₅Pt-Tl(APK) vegyületek oldatbeli szerkezetét multinukleáris NMR spektroszkópiával jellemeztük, meghatároztuk a rájuk vonatkozó NMR paramétereket. A [(CN)₅Pt-Tl_(s)]⁰ komplex jól oldódik 1 ekvivalens APK ligandum vizes oldatában, de a fém-fém kötés megmarad a mimda és nta ligandumok esetében. A (CN)₅Pt-Tl(edta)⁴⁻ rendszerben viszont az edta⁴ lassú egyensúlyi reakcióban részben felszakítja a vegyületben lévő fém-fém Ugyanakkor a Pt–Tl kötés a $[Pt(CN)_4]^{2-}$ és Tl(edta)CN²⁻ bomlástermékek kötést. oldataiból kiindulva is kialakul, így a (CN)₅Pt–Tl(edta)^{4–} egy valós egyensúlyi folyamat intermedierének tekinthető. Megadtuk e folyamat egyensúlyi állandóját, a képződés és Meghatároztuk a (CN)5Pt-Tl(nta)3- szilárd bomlás kinetikáját, mechanizmusát. szerkezetét egykristály röntgendiffrakciós méréssel. A szilárd anyagban mindkét fémcentrum envhén torzult oktaéderes, a Pt-hoz öt cianid ion a C-atomokon át és a Tlatom kötődik, a talliumhoz a Pt-atom, az nta ligandum három karboxilát csoportja egyegy O-atomon át, a N-atom és egy vízmolekula is koordinálódik. A szerkezet vizes oldatban fluxionális, kiátlagolódik. Az MTA Kémiai Kutató Intézetében végzett elméleti számolások szerint a (CN)₅Pt–Tl(edta)^{4–} komplexben az edta egyik imda-csoportjának csak egy karboxilát csoportja koordinálódik. A komplex oldatban fluxionális, így az NMR spektrumok szimmetrikus szerkezetet jeleznek.

Szilárd fázisú, M(I)₂M(II)Hg(CN)₆·2H₂O (1-3) (M(I)= Na vagy K, M(II)=Ni, Pd, Pt) adduktumokat állítottunk elő Hg(CN)₂ és a síknégyzetes $[M(CN)_4]^{2-}$ d⁸ átmeneti fémek ciano komplexei közötti reakcióban, meghatároztuk szerkezetüket egykristály röntgen diffrakciós mérésekkel. A K2PtHg(CN)6·2H2O (1) kristályban az "egydimenziós" elektromos vezetőkre jellemző módon egymástól 5,607 Å távolságra végtelen (-Pt-Hg-)_n "egyatomos drótok" vannak, a fémcentrumok között nincsenek cianid hidak. Α tökéletesen lineáris polimer láncban a Pt-Hg távolság viszonylag rövid, 3,460 Å. A lumineszcencia élettartamok elemzése alapján az a következtetés vonható le, hogy a Hg(CN)₂ egység elektronbefogóként hat, és ez a szerkezeti elem a felelős az (1) adduktumban mind a hosszabb, mind a rövidebb lecsengési idejű gerjesztett állapot élettartamának a K₂[Pt(CN)₄]·3H₂O anyaghoz viszonyított csökkenéséért. lumineszcencia kioltás (quenching) nagy valószínűséggel elektrontranszfer mechanizmus A $Na_2PdHg(CN)_6 \cdot 2H_2O$ (2) és $K_2NiHg(CN)_6 \cdot 2H_2O$ (3) szerint valósulhat meg. adduktumok szerkezete eltérő az (1) vegyületétől. A szilárd szerkezetek kettős sók képződését bizonyítják, a fémcentrumok közötti távolság nagy ($d_{\text{Hg-Pd}}$ = 4,92 Å; $d_{\text{Hg-Ni}}$ = 4,61 Å), és köztük nincs kölcsönhatás. Meghatároztuk a fémionok elektronkötési energiáit az adduktumokban XPS mérésekkel, az eredmények kizárják a fémcentrumok közötti elektron-transzfer folyamatok jelenlétét. A Hg(CN)₂ komplex és a síknégyzetes $[M(CN)_4]^{2-}$ d⁸ átmeneti fémek ciano komplexei közötti kölcsönhatások következtében vizes oldatban nem alakul ki fém-fém kötés, ellentétben az izolektronos [Pt(CN)4]²⁻ - $Tl^{III}(CN)_n^{+3-n}$ rendszerben tapasztaltakkal, ahol jellemző az erős, "csupasz" Pt–Tl fémfém kötés kialakulása.

5. közlemény

<u>R. Jószai,</u> I. Beszeda, A. C. Bényei, A. Fischer, M. Kovács, M. Maliarik, <u>P. Nagy</u>, A. Shchukarev and <u>I. Tóth:</u>

Metal-Metal Bond or Isolated Metal Centers? Interaction of Hg(CN)₂ with Square Planar Transition Metal Cyanides

Inorganic Chemistry, 2005, 44, 9643-9651.

B. Aluminium komplexek

Geokémiai és bio-szervetlen kémia fontosságú Al^{3+} -ligandum (F⁻, oxalát, citrát, glifozát, edta) rendszerekben multinukleáris NMR és kvantumkémiai módszerrel (DFT) jellemeztük a komplexek egyensúlyi és szerkezeti viszonyait, az inter- és intra-molekuláris cserefolyamatokat.

Az alumínium – oxalát rendszerben ¹³C NMR segítségével azonosítottuk a törzskomplexeket. Megállapítottuk, hogy szobahőmérsékleten nincs cserefolyamat sem a törzskomplexek, sem pedig ligandumcsere a komplexek és a szabad oxalát között. Az $AIOx_2^-$ komplexnek két azonos intenzitású jelét detektáltuk, ez a *cisz* és *transz* izomerekhez rendelhető. Vizsgáltuk az izomerizáció hőmérséklet függését, megállapítva, hogy az AI^{3+} belső koordinációs szférájában történik az átrendeződés. Az $AIOx_3^{3-}$ részecske és a szabad oxalát közötti csere csak magasabb hőmérsékleten észlelhető. A mágnesezettség átviteli kísérletek eredményeiből számolt aktiválási paraméterek D, vagy I_d mechanizmusra utalnak.

Åz alumínium – fluorid – oxalát rendszerben négy vegyes ligandumú részecskét találtunk potenciometriásan (AlFOx, AlF_2Ox^- , $AlFOx_2^{2-}$, $AlF_2Ox_2^{3-}$) és kiszámoltuk a stabilitási állandókat. Összemérhető c_F és c_{Al} koncentrációviszonyok mellett a vegyes komplexek képződése meghatározó fontosságú. A komplexeket ¹³C és ¹⁹F NMR segítségével is azonosítottuk. Széles NMR jeleik és azok különös viselkedése a hőmérséklet növelésével bonyolult inter – és intra – molekuláris cserefolyamatok jelenlétére utal. Megállapítható, hogy akár a fluorid, akár az oxalát törzskomplexekhez viszonyítjuk, a vegyes ligandumú komplexekben a ligandumok labilisabbak.

6. közlemény

A. Bodor, I. Tóth, I. Bányai, L. Zékány, S. Sjöberg

Studies of Equilibrium, Stucture and Dynamics in the Aqueous Al³⁺ – Oxalate–Fluoride System by Potentiomety, ¹³ C and ¹⁹F NMR Spectroscopy

Geochimica et Cosmochimica Acta, 2003, 67, 2793-2803

Az alumínium – citrát rendszerben megjelenő egymagvú és hárommagvú komplexeket egyaránt azonosítottuk ¹H és ¹³C NMR mérésekkel. Az $Al(Cit)_2^{3-}$ és a hárommagvú $Al_3(OH)_4(H_{-1}Cit)_3^{7-}$ (*Sy*) részecskék szerkezete oldatban viszonylag szimmetrikus, amint azt a jelszegény NMR spektrumok is alátámasztják. Elvégeztük a hárommagvú $Al_3(OH)(H_{-1}Cit)_3^{4-}$, (*As*), komplex esetén az igencsak jelgazdag ¹H és ¹³C NMR spektrumok teljes hozzárendelését. A csatolási állandók értékeiből megadtuk a három különböző citrát ligandum térbeli elrendeződését. Eredményeinket összevetve az

irodalomban közölt szilárd szerkezettel arra a következtetésre jutottunk, hogy vizes oldatban az *As* komplex megőrizte nem szimmetrikus szerkezetét, és a ligandumok elrendezése igen hasonló a szilárd szerkezethez.

Tanulmányoztuk a már szerkezetileg is jellemzett három alumínium – citrát részecske kinetikai viselkedését. Az *As* komplex inert, nem vesz részt sem inter –, sem intra – molekuláris cserefolyamatokban. Megállapítottuk, hogy az $Al(Cit)_2^{3-}$ és *Sy* részecskék egyaránt fluxionálisak, ez utóbbi esetében kiszámítottuk az intra – molekuláris csere aktiválási paramétereit. Mindkét komplex cserekapcsolatban van a szabad citráttal. Az $Al(Cit)_2^{3-}$ esetén az aktiválási entrópia nagy negatív értéke asszociatív jellegű (I_a) mechanizmusra utal. A *Sy* komplex esetében a ligandumcsere dinamikáját leíró egyenlet: $w = k_1[Sy] + k_2[Sy][OH^-]$. Az első tag valószínűleg a víz koncentrációját is tartalmazza. Erre utal az aktiválási entrópia nagy negatív értéke. Az OH⁻ kinetikai szerepe magyarázható az egyik Al^{3+} – hoz való átmeneti koordinálódásával, ami a komplexet labilissá teszi. A komplexek labilitási sorrendje $Al(Cit)_2^{3-} > Sy >> As$. A kinetikai sajátság változása jól értelmezhető a nem hídhelyzetű protonált háromfogú, illetve a deprotonált háromfogú citrát koordinációval a két első, valamint a négyfogú, hídhelyzetű ligandum jelenlétével a harmadik komplex esetében.

Cserefolyamat	ΔH^* (kJ mol ⁻¹)	ΔS^*	k ₂₉₈	Mechanizmus
		$(J mol^{-1} K^{-1})$	(s^{-1})	
$AlOx_2^{2-}$ / intra	67 ± 5	-6 ± 6	$5 \pm 0,5$	Kötés felhasadás
$AlOx_3^{3-} / Ox$	164 ± 17	225 ± 51	$6, 6 \cdot 10^{-5}$	D/I _d
$Al(Cit)_2^{3-}/Cit$	43 ± 1	-90 ± 29	$1,0 \pm 0,1$	Ia
As / Cit	-	-	<0,03	-
As / intra	-	-	<0,03	-
Sy / intra	70 ± 5	34 ± 15	230	Kötés felhasadás
Sy / Cit	65 ± 7	-78 ± 21	0,08±0,01	Ia

Az általunk vizsgált reakciók kinetikai adatait az alábbi táblázatban foglaltuk össze.

7-8. közlemény

A. Bodor, I. Bányai, L. Zékány, I. Tóth:

Slow dynamics of aluminium-citrate complexes studied by ¹H- and ¹³C-NMR Spectroscopy Coordination Chemistry Reviews, **2002**, 228, 163–173

A. Bodor, I. Bányai, I. Tóth:

¹H- and ¹³C-NMR as tools to study aluminium coordination chemistry—aqueous Al(III)-citrate complexes

Coordination Chemistry Reviews, 2002, 228, 175–186

Az edbhp ligandum stabilis komplexet képez Al(III)-al vizes oldatban a 4–8 pHtartományban ($c_{Al} = c_{EDBHP} \ge 0,1 \text{ mmol/dm}^3$). A pH-potenciometria, ¹H és ²⁷Al NMR, ESI MS és egykristály röntgendiffrakciós vizsgálatok jól leírják a komplex egyensúlyi viszonyait és szerkezetét. A pH potenciometriás és ESI MS mérések szerint a semleges töltésű hidroxid-hidas Al₂(OH)₂L₂ dimer (log $\beta_{22-2}=14,16\pm0,03$) a meghatározó részecske vizes oldatban. A ligandum jó alumínium megkötő a 4-8 pH-tartományban. A szilárd fázisú Al₂(OH)₂(edbhp)₂·2H₂O dimer komplex torzult oktaéderes szerkezetű és két hídhelyzetű hidroxid csoporttal kötődik egymáshoz a két fémcentrum. Mindkét ligandum terminálisan koordinálódik a fémcentrumokhoz két karboxilát csoport és két N- donoratom révén, három öttagú kelátgyűrűt alkotva. A ligandumok alkoholos hidroxil csoportjai nem deprotonálódnak és nem is koordinálódnak. A komplex összetétele és szerkezete minden bizonnyal hasonló oldatban is.

9. közlemény

R. Jószai, I. Kerekes, I. Satoshi, S. Kiyoshi, L. Zékány and I. Tóth:

Equilibrium and Structure of the Al(III)–Ethylenediamine-N,N'–bis 3-hydroxy–2–propionate (EDBHP) Complex. A Multi-method Study by Potentiometry, NMR, ESI MS and X-ray Diffraction. Dalton Transactions, **2006**, 3221-3227

Megállapítottuk, hogy **az Al- és Ga(edta)**⁻ **komplexek oldatban is megtartják a szilárd fázisban ismert oktaéderes szerkezetüket**, ennek megfelelően az axiális és ekvatoriális karboxilát csoportok nem ekvivalensek, kémiai csere van közöttük, ami ¹H és ¹³C NMRrel követhető. Értelmeztük a molekula fluxionális átrendeződéseit, azaz az acetát-karok ekvatoriális/axiális *közvetett cseréjét* és az *etilénváz átfordulását*. Azt találtuk, hogy etilénváz mozgása gyorsabb, mint az acetát-karoké. Az aktiválási paraméterek rendre: $\Delta H^{\#} = 33,1 \pm 2,8 \text{ kJ mol}^{-1}, \Delta S^{\#} = -110 \pm 10 \text{ J mol}^{-1} \text{ K}^{-1}$, log $k_{298} = 1,30 \pm 0,48$, illetve $\Delta H^{\#} = 60 \pm 4 \text{ kJ mol}^{-1}, \Delta S^{\#} = -25 \pm 21 \text{ J mol}^{-1} \text{ K}^{-1}$, log $k_{298} = 0,9\pm 0,3$. A DFT számolások leírják az intramolekuláris csere főbb lépéseit és intermedierjeit, rávilágítanak a protonok és a vízmolekulák fontos szerepére a cserefolyamatban. A kvantumkémiai számolások alátámasztják az ún. közvetett (indirekt) csere meghatározó szerepét.

Az In(edta)⁻- és a Tl(edta)⁻-komplex szilárd szerkezete különbözik, az előbbiben trigonális hasáb, a Tl^ITl^{III}(edta)·2H₂O kristályban az általunk meghatározott módon, erősen torzult oktaéderes térszerkezet szerint helyezkednek el az edta donoratomjai. Oldatban azonban ez a különbség nem tapasztalható, a ¹H és ¹³C NMR spektrumok hasonlóak, a karboxilát csoportok mindkét esetben ekvivalensek, nem tapasztalható fluxionalitás az adott NMR időskálákon.

Az NMR spektrumok pH-val való változása egyértelműen tükrözi a M(edta)(OH)^{2–} vegyeskomplexek kialakulását (M = Ga, In és Tl), meghatároztuk a p*K* értékeket D₂O oldószerben, ezek rendre $6,08 \pm 0,06, 9,17 \pm 0,07$ és $6,63 \pm 0,05$.

10. közlemény

R. Jószai, M. Purgel, I. Pápai, H. Wakita and I. Tóth:

Multinuclear NMR and DFT Studies of the Structure and Fluxionality for M(III)-ethylenediaminetetraacetate Complexes (M(edta), M = Al, Ga and In) in Solution. J. of Molecular Liquids, **2007**,131-132, 72-80

Megállapítottuk, hogy a glifozát (N-foszfonometil-glicin) oldatban többféle stabilis komplexet képez Al^{3+} ionnal. Méréseink bizonyítják, hogy dimer komplexek is képződnek, szemben korábbi vizsgálatok eredményeivel. (A dimer szerkezete nem ismert, de irodalmi analógiák alapján vélelmezhető, hogy itt is $Al_2(OH)_2L_2$ típusú a komplex.) Kis pH értékeknél (1<pH<2.5) és 1:1 fém-ligandum aránynál a monomer, míg nagyobb pH-nál a dimer a kedvezményezett. Ligandumfelesleg szükséges az AlL_2 komplexek képződéséhez. A komplexek (de)protonálódási folyamatokban vesznek részt.

A magasabb pH tartományok vizsgálata nem lehetséges az $Al(OH)_3(s)$ csapadék képződése miatt, amitől a ligandum nagyobb (négyszeres) feleslege sem védi meg az Al^{3+} iont, noha metastabilis oldatok képződhetnek.

Adszorpciós kísérleteink megmutatták, hogy a glifozát könnyen kötődik a bayerit felszínéhez. Kis pH értékeknél az adszorpció mértéke elérheti a 75 – 100 % -ot. Ez igen magas érték, de egyezésben áll az elméleti megfontolásokkal, a kristály szerkezetével, konkrétabban az ásvány nagy felületével, nagyszámú felületi reaktív csoport jelenlétével. A pH növekedésével a felület egyre nagyobb negatív töltést nyer, ami taszítja a glifozát molekulákat, így csökken az adszorpció is.

C. Mo(VI) -peroxid –(ligandum) rendszerek

Leírtuk néhány a Mo(VI)-H⁺-H₂O₂-ligandum rendszerben képződő - izopoliperoxo anion egyensúlyi és szerkezeti viszonyait, értelmeztük a Mo(VI) katalitikus hatását a környezetbarát peroxiddal való oxidáció során.

Igazoltuk oxo-peroxo-molibdátok képződését vizes oldatokban. Meghatároztuk a komplexek, $[HMoO_2(O_2)_2]^-$, $[H_2MoO_2(O_2)_2]$, $[Mo_2O_3(O_2)_4]^{2-}$, $[HMo_2O_3(O_2)_4]^-$ és $[Mo_2O_2(O_2)_4(\mu-O_2H)_2]^{2-}$, valamint $[MoO(O_2)_2(SO_4)]^{2-}$ és $[HMoO(O_2)_2(SO_4)]^-$, illetve $[MoO(O_2)_2C1]^-$ stabilitási állandóit pH-potenciometria és ¹⁷O NMR együttes alkalmazásával, és cserefolyamatokat detektáltunk jelalak analizis és 2D EXSY módszerrel.

11-13. közlemény

F. Taube, I. Andersson, S. Angus-Dunne, A. Bodor, I. Tóth and L. Pettersson:

Equilibria and Dynamics of some Aqueous Peroxomolybdophosphate Catalysts: A Potentiometric and ³¹P NMR Spectroscopic Study

Dalton Transactions, 2003, 2512-2518.

L. Pettersson, I. Andersson, F. Taube, <u>I. Tóth</u>, M. Hashimoto and O. W. Howarth:

¹⁷O NMR Study of Aqueous Peroxoisopolymolybdates Equilibria at Lower Peroxide/Mo Ratios *Dalton Transactions*, **2003**, 146–152.

F. Taube, I. Andersson, I. Tóth, A. Bodor, O. W. Howarth, and L. Pettersson:

Equilibria and Dynamics of Some Aqueous Peroxomolybdate Catalysts: A ¹⁷O-NMR Spectroscopic study

Journal of the Chemical Society Dalton Transactions, 2002, 4451–4456.

A **Mo(VI)-hidroxámsav** alrendszer vizsgálata során megállapítottuk, hogy az acetohidroxámsav kivételesen erősen köti a Mo-t, a ligandum NH-csoportjának deprotonálódása magyarázza azt, hogy a komplex lúgos közegben is stabilis. Az eddigi vizsgálatok azt mutatják, hogy a komplex képes peroxid megkötésére is.

14. közlemény

E. Farkas. H. Csóka and I. Tóth:

New insights into the solution equilibrium of molybdenum(VI)- hydroxamate systems: ¹H and ¹⁷O NMR spectroscopic study of Mo(VI)-desferrioxamine B and Mo(VI)-monohydroxamic acid systems *Dalton Transactions*, **2003**, 1645-1652.

Debrecen, 2007. február 22.