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An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural
orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme
[Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster
than our previous one and removes the bottleneck related to the calculation of the (T) contribution.
First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which
requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy
eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup
factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed
in the local case. These developments can also be integrated into canonical as well as alternative
fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated
by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can
always be performed if the preceding CCSD iterations are feasible, and the new scheme enables
the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for
realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter
of days on a single processor. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984322]

I. INTRODUCTION

Vast knowledge is available about which effects are
needed to be taken into account for accurate modeling of
molecular systems, on the basis of which our models are con-
stantly improved aiming at better accuracy and lower computa-
tional cost. Density functional theory (DFT) is a cost-efficient
and frequently applied compromise, but there is a great need
for alternative methods with which chemical accuracy can be
systematically approached. These methods are not only useful
for the accurate calculation of molecular properties but also
enable benchmark calculations to assess the performance of
DFT or other reduced cost models on realistic sizable chemi-
cal problems. Wave function based approaches, especially the
coupled cluster (CC) hierarchy of methods,1 combine many
desirable features for that purpose, such as proven convergence
to the exact energy, size-extensivity, and extensions to molec-
ular properties and excited states;2,3 however, the steep scaling
and large atomic orbital (AO) basis set requirement of these
models limits their use to systems with a few dozen atoms.
The CC model with single and double (CCSD) excitations
extended with perturbative triples [CCSD(T)]4 correction,
considered as one of the most cost-effective and yet highly
accurate members of the CC hierarchy,5 still scales as O(N7)
with N characterizing the system size, and hence in its canon-
ical formulation using at least triple-ζ quality AO basis sets
CCSD(T) can only be applied to small systems with up to
20–30 atoms.

a)Electronic mail: nagyrpeter@mail.bme.hu
b)Electronic mail: kallay@mail.bme.hu

This limit can only slightly be increased by utilizing
highly optimized canonical CCSD and CCSD(T) implemen-
tations, exploiting, e.g., parallelization6–14 or graphical pro-
cessing units,14–17 or by relying on small AO basis sets and
estimating the effects of the basis set incompleteness with
more cost-effective methods.18–23 Compression of the single
particle basis utilizing orbital transformation techniques, such
as optimized virtual orbitals24,25 or natural orbitals (NOs)26,27

obtained from correlated wave functions, is also a powerful
cost reduction approach, which is frequently employed in both
canonical28–33 and local34–37 CC calculations.

The O(N7) scaling of CCSD(T) can, in principle, be
brought down to O(N6) by the factorization of the energy
denominator using either Cholesky-decomposition38,39 or
Laplace transform (LT),40,41 the latter also playing the central
role in the developments presented here. Scaling reduction
ideas on the basis of denominator factorization, introduced
first by Almlöf and Häser,42–44 have also been successfully
employed in multiple areas of quantum chemistry. Reduced
or even asymptotically linear scaling second-order Møller–
Plesset (MP2) implementations were reported by Ayala and
Scuseria45,46 and later by Ochsenfeld and co-workers47–49 uti-
lizing the distance decay of various contributions within the
AO basis. Kobayashi and Nakai50 implemented the LT based
MP2 energy expression of Surján,51 which is expressed in
terms of the Hartree–Fock (HF) density matrix. LT plays a
pivotal role in reduced scaling scaled-opposite-spin MP2,52,53

second-order CC (CC2),54 periodic MP2,55 and random phase
approximation56 implementations.

The orbital invariant property of the denominator-free
Laplace transformed perturbation energy expressions can be
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exploited in not only the AO but in localized molecular orbital
(LMO) basis as well, which is a key idea in the present and
many previous local correlation schemes.36,57–65 The short-
range character of the electron correlation was first exploited
in the pioneering work of Pulay66–69 via the use of LMOs
and local approximations. For each occupied LMO pair, a
domain of spatially close projected atomic orbitals (PAOs) was
assembled, which identified the most important excitations
required for correlating the corresponding electrons. At the
same time, Förner and co-workers70 developed a CC doubles
method using local orbitals and limited excitations occurring
only within a subunit of the entire system. On the basis of
these foundations, two groups of local correlation methods
were developed. Fragmentation approaches decompose the
system into parts of manageable size and obtain the correlation
energy as the sum of fragment (and interfragment interaction)
contributions. Methods in the second class, also referred to
as direct methods, avoid fragmentation and introduce local
approximations into the equations corresponding to the entire
system.

Building on the ideas of Pulay, Werner, Schütz, and
co-workers contributed significantly to the development of
the direct type of local correlation methods71–79 by intro-
ducing local density fitting,80–85 explicit correlation,83,86–88

and extensions to CC methods up to CCSD(T)74,75,82 and
beyond,89 as well as to molecular properties84,85,90–92 and
excited states.78,79,93 However, the large size of the domains
composed of PAOs soon became a limiting factor, which
was lifted via the introduction of MP2 NOs to compress
the virtual subspace. Leading the way in this respect, Neese
and co-workers utilized the benefits of pair natural orbitals
(PNOs),35,94–96 which were later taken over also by the
Werner37,88,97,98 and Hättig36,99–101 groups. The success of the
PNO based methods motivated the development of other MP2
NO based correlation orbitals, such as the orbital specific vir-
tual (OSV) orbitals102–105 of Manby and co-workers or the
local NOs (LNOs) proposed by us.34,106

The fragmentation-based class of approaches also col-
lects a wide variety of methods, many of which have been
developed up to the CC level.70,107–113 CCSD(T) implemen-
tations are available for the incremental method proposed
by Stoll114,115 and significantly extended by Friedrich,109,116

the divide-and-conquer (DC) method of Li and Li117 and
Kobayashi and Nakai,110,118 the divide-expand-consolidate
(DEC) approach of Jørgensen, Kristensen, Kjærgaard, and
their co-workers,112,119,120 and the cluster-in-molecule (CIM)
approach developed by Li, Piecuch, Gordon, and their
co-workers.113,121,122 Fragmentation-based strategies offer a
straightforward route towards not only linear scaling com-
putation time or efficient parallelism but also asymptoti-
cally constant memory and, if needed at all, disk require-
ment. Additionally, highly optimized canonical algorithms
and implementations can be taken advantage of with
minor modifications. On the other hand, sufficient accuracy
can only be achieved with large, overlapping fragments.
The resulting redundancy poses a challenge for such CC
implementations.

In our previous studies, we decreased the redundancy
of the fragment construction using an ansatz that combines

the merits of the CIM and the incremental schemes.63,64

The prefactor of our fragment CC calculations has also been
drastically reduced by transforming the fragment MOs to
the LNO basis.34 The combination of these improvements
led to an efficient and accurate local CCSD(T) implementa-
tion,123 in which, however, the calculation of the fragment
(T) energies took about 60%–70% of the total computation
time due to the remaining overlap of the domains used in
the fragment CC calculation. A similar overlap issue has
been resolved in our local MP2 approaches,63,64 where the
redundancy in the MP2 amplitude evaluation step has been
completely removed by switching to a Laplace transformed
energy formula. We generalize this idea in the present con-
tribution and eliminate the redundancy in the triples ampli-
tude evaluation by introducing a Laplace transformed (T)
[LT (T)] fragment energy expression. In other words, the
use of Laplace transformed (T) energy expression allows us
to evaluate each triples amplitude of the entire molecule at
most once, even if the corresponding orbital domains are
overlapping.

This paper is organized as follows. Sections II A and II B
introduce the theory of the canonical (T) correction with a
slightly improved algorithm that might be useful on its own
right for specific applications. Sections II C and II D summa-
rize our latest fragment construction scheme and the previous
(T) fragment energy calculation, while we discuss the new
LT (T) energy expression and algorithm in Secs. II E and
II G. Results of benchmark calculations for numerical accu-
racy and efficiency of the LT approximation are collected in
Sec. III.

II. THEORY

In this paper, we will suppose a closed-shell refer-
ence determinant composed of spatial orbitals. In the fol-
lowing theoretical considerations, several different orbital
sets will appear, for which the indexing notations are col-
lected in Table I. First, we will consider the (T) cor-
rection of the conventional CCSD(T) energy computed
in a canonical HF basis. Then we will focus on the
(T) term of our local LNO-CCSD(T) ansatz34 which
was previously obtained using a local subset of quasi-
canonicalized MP2 natural orbitals (LNOs). Indices i, j, k, . . .
(a, b, c, . . .) will refer to the occupied (virtual) (quasi-)
canonical orbitals for both the canonical and local approaches,
and no (nv) will denote the dimension of the corresponding
occupied (virtual) subspace.

TABLE I. Summary of index notations. See Sec. II for the definition of
various orbital sets.

i, j, k, l, . . . (Quasi-)canonical occupied orbitals
a, b, c, d, . . . (Quasi-)canonical virtual orbitals
P, Q, . . . (Natural) auxiliary functions for the DF approximation
i′, j′, k′, . . . Localized occupied molecular orbitals (LMOs)
I , J , K , . . . Semi-canonical Gram–Schmidt–Löwdin (scGSL) basis
ī, . . . , ā, . . . Orbital multiplied with the corresponding Laplace factor
ĩ, . . . , ã, . . . Orbital divided by the corresponding Laplace factor
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A. Canonical (T) correlation energy

The closed shell (T) correction can be written in the
canonical orbital basis as4,124

E(T) =
1
3

∑
ijk

∑
abc

(4Wabc
ijk + Wbca

ijk + W cab
ijk )(Vabc

ijk − V cba
ijk )/Dabc

ijk ,

(1)
where Dabc

ijk = f ii + f jj + f kk � f aa � f bb � f cc is the usual energy
denominator with fii, . . . as the diagonal elements of the Fock
matrix, and intermediates Wabc

ijk and Vabc
ijk are defined as

Wabc
ijk = Pabc

ijk
*
,

∑
d

(bd |ai) tcd
kj −

∑
l

(ck |jl) tab
il

+
-

(2)

and

Vabc
ijk = Wabc

ijk + (bj |ck)ta
i + (ai|ck)tb

j + (ai|bj)tc
k . (3)

Here Pabc
ijk permutes the indices of the above tensors as

Pabc
ijk

(
abc
ijk

)
=

(
abc
ijk

)
+

(
acb
ikj

)
+

(
cab
kij

)
+

(
cba
kji

)
+

(
bca
jki

)
+

(
bac
jik

)
.

(4)

Additionally, (pq|rs) denotes a two-electron integral using the
Mulliken notation for arbitrary orbitals p, q, . . ., and ta

i and tab
ij

are the cluster amplitudes for single and double excitations,
respectively.

The sixfold permutational symmetry of the W and V ten-
sors can be utilized in two alternative ways.124–126 In the
“ijkabc” algorithm,125,126 the outermost loops run over the
occupied indices (see, e.g., in Algorithm 1), and the W and
V tensors are evaluated only for a single permutation of
each occupied index triplet, say ijk. The corresponding energy
expression with the appropriate index restrictions reads as

E(T) = 2
∑

i≥j≥k

∑
a≥b≥c

[(
Y ijk

abc − 2Z ijk
abc

) (
W ijk

abc + W ijk
bca + W ijk

cab

)
+

[(
Z ijk

abc − 2Y ijk
abc

) (
W ijk

acb + W ijk
bac + W ijk

cba

)
+ 3X ijk

abc

] /
×

[
Dijk

abc

(
1 + δij + δik

)
(1 + δab + δbc)

]
, (5)

with

X ijk
abc = W ijk

abcV ijk
abc + W ijk

bcaV ijk
bca + W ijk

cabV ijk
cab + W ijk

acbV ijk
acb

+ W ijk
bacV ijk

bac + W ijk
cbaV ijk

cba, (6)

Y ijk
abc = V ijk

abc + V ijk
bca + V ijk

cab, (7)

Z ijk
abc = V ijk

acb + V ijk
bac + V ijk

cba. (8)

Alternatively, in the “abcijk” algorithm,124,126 the W and V
tensors are constructed for all occupied index triplets and only
a single permutation of each virtual index triplet, say abc. More
details are given in Appendix A.

B. Canonical (T) algorithm

Tremendous effort has been devoted to the development
of better algorithms for the evaluation of the canonical (T)
correction. The majority of these studies aim for systems
with increasingly larger number of orbitals and focus on effi-
cient parallelization of the conventional algorithms.7–12,16,17

A markedly different situation is relevant, however, for the
case of the present LNO-CCSD(T) scheme. Namely, we need
to evaluate the (T) expressions with a relatively small num-
ber of orbitals (no = 20 � 40 and nv = 100 � 200 on an
average) many times, for each orbital domain of the entire
system. Additionally, for such domain calculations, the usual
assumptions—that is, nv � no, and that the double preci-
sion general matrix-matrix multiplication (dgemm) operations
required in Eq. (2) are by far the most time consuming—are not
fulfilled.

Therefore we optimized our existing (T) implementa-
tion34,127 for the above MO basis sizes relying on the “ijkabc”
algorithms available in the literature.10,16,31,124 A common
characteristic of these implementations is that the two types
of terms of Eq. (2) are accumulated into a three-index array
for a given index triplet ijk at a time via efficient matrix
multiplications, e.g., as

Algorithm 1. “1permutation-ijkabc” algorithm.

if (1permutation) Rbaij = Tabij

for k = 1, no

if (2permutation) Rk
bai = T k

abi
for j ≥ k

for i ≥ j

wabc = T ik
a,d Ij

d,bc + Ij
ab,d T ik

d,c + T ij
a,d (Ik

bc,d )†

vcab = (Ik
d,ca)† T ij

d,b + T kj
c,d Ii

d,ab + Ii
ca,d T kj

d,b + T i
ca,l(I

jk
b,l)
† + Rk

ca,l (Iji
b,l)
†

wabc ← vcab

if (1permutation) wabc ← Ri
ab,l (Ikj

c,l)
† + Iik

a,l (Rj
bc,l)

†

if (2permutation) vcba = Ijk
c,l(T

i
ba,l)

† + T j
cb,l(I

ik
a,l)
† ; wabc ← vcba

wabc ← T j
ab,l (Iki

c,l)
† + Iij

a,l (T k
bc,l)

†

vabc = wabc + Ijk
bc T i

a + Iik
ac T j

b + Iij
ab T k

c

Calculate energy contribution according to Eq. (5)
end for

end for
end for
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wbac ← Ii
ba,d (T kj

c,d)† + (Ijk
b,l)
† (T i

ac,l)
†, (9)

where just as in the following expressions using array nota-
tions, summation over repeated indices is assumed. Array I
stores the integral list according to the Dirac notation, i.e.,
Ii

ba,d = 〈ba|di〉, and the CCSD doubles amplitudes are kept in

array T, e.g., T kj
c,d = tcd

kj . Superscripts used for the array quan-
tities denote fixed indices for a given ijk triplet and transpose
operations interchange (hyper-)index couples separated by a
comma, e.g., (T i

ac,l)
† = T i

l,ac. The remaining five permutations
are evaluated analogously, e.g., as

wcab ← (Ik
d,ca)† (T ji

b,d)† + Ikj
c,l (T i

ab,l)
†. (10)

Before each of these five additional contributions can be accu-
mulated into w, its index order has to be permuted according
to the corresponding term of Pabc

ijk , e.g., array w having bac
index order after the evaluation of Eq. (9) is rearranged to have
cab index order before the wcab contribution of Eq. (10) can be
added to it in a vectorized way. Alternatively, the contributions
from each five permutations can be collected into a separate
array, say v , and then v can be added to w with an appropriate
index order using the daxpy (double precision ax + y) opera-
tion, e.g., for the above terms in Eqs. (9) and (10): wbac ← vcab.
We will refer to this solution as the “5permutation” algorithm.
(Here we restrict our discussion to Refs. 31, 124, 10, and 16
because we were not able find detailed enough documenta-
tion for the rest of the presently available (T) implementa-
tions. For this reason, probably, realizations in other program
packages that are not designed for multi-node parallelism7,126

should not differ significantly from the above “5permutation”
algorithm.)

We analyzed the wall times measured on a 6-core proces-
sor (3.5 GHz Intel Xeon E5-1650) required for each step of
our “5permutation-ijkabc” code using OpenMP parallel Basic
Linear Algebra Subprogram (BLAS) routines and recognized
that the relatively inefficient permutations/daxpy operations
take time comparable to the more demanding dgemm calls, in
spite of the fact that f = 6

5 (nv + no) times, and more opera-
tions are needed for the latter. Since vector level operations,
such as daxpy, cannot utilize the faster, lower level memory
cache as efficiently as dgemm, they often exhibit more than
an order of magnitude smaller floating point operations rate.10

Moreover, due to this memory access bottleneck, these vector
level operations can hardly be accelerated by using multiple
cores of the same processor, while the dgemm operation scales
almost perfectly with the number of cores (given that the matrix
sizes are sufficiently large). As a consequence of these two
factors, the dgemm operations are by a factor of 100 to 200
more efficient, which, taking into account the f ≈ 100 − 200
operation count ratio of the dgemm and permutation/daxpy
calls characteristic for our average case, explains our
measurements.

In order to optimize our implementation for these mod-
erate numbers of orbitals and improve the efficiency of the
OpenMP parallelization, we designed an alternative algo-
rithm that requires only one permutation/daxpy call for each
ijk index triplet. To this end, the permutational symmetry
of the Coulomb integrals (e.g., 〈ba|di〉= 〈da|bi〉) and of the
doubles amplitudes (tab

ij = tba
ji ) are exploited. The resulting,

“1permutation-ijkabc” algorithm is presented in Algorithm 1,
while the corresponding “1permutation-abcijk” algorithm is
shown in Appendix A. Note that the “1permutation-ijkabc”
approach requires the storage of an additional array (R) of
size of the doubles amplitude matrix, which does not pose any
problem for such moderate number of orbitals. Nevertheless,
if necessary, the memory requirement can be kept at the level
of the original “5permutation” case at the cost of an additional
permutation/daxpy call (see the “2permutation” alternative in
Algorithm 1).

We measure around 20%–25% improvement in wall times
(using either 1 or 6 cores) when switching to the “1permuta-
tion” algorithm (for no = 20 � 50 and nv ≈ 5no). Even larger
speedup is expected with more OpenMP threads, but the rel-
ative gain is probably smaller for a larger number of orbitals.
Therefore the new algorithm could be most suitable for simi-
lar, fragmentation-based methods, such as the alternative CIM
implementations,113,121 the DEC scheme,112 the DC,110 or
the incremental method.109 Moreover, canonical CCSD(T)
computations with compressed virtual subspace and smaller
nv/no ratios or calculations carried out using many OpenMP
threads could also benefit from the cost reduction offered by
Algorithm 1.

Additional optimization was performed on our previ-
ous preliminary OpenMP parallel implementation, namely,
the parallelization of the energy expression and the W and
V tensor evaluation [see Eqs. (2)–(5)] was improved. These
optimizations together with the algorithmic improvements
described above result in a speedup factor of about 3 on 6 cores
if the new “1permutation” code is compared to our previous
“5permutation” one.

C. Construction of the orbital domains

In our presently applied fragmentation sch-
eme,34,63,64,106,123 which is motivated by the CIM ap-
proach113,121,128 and the incremental method,115,116 the
correlation energy expression is given as the sum of con-
tributions from individual localized occupied orbitals (frag-
ment energies) and the interaction energy thereof. The (T)
correlation energy term of the LNO-CCSD(T) energy reads
as34

E(T) =
∑

k′
δE(T)

k′ , (11)

where the contribution of an occupied LMO k ′ and δE(T)
k′ is

evaluated in LMO-specific orbital domains (local interaction
subspaces, LISs, denoted as Pk′). In order to arrive at a LIS,
first, extended domains (EDs), Ek′ , are constructed for each
LMO, k ′. The procedure is discussed in detail in Ref. 64. In
brief, each LMO is selected as the central LMO of its ED
and becomes the first occupied MO of its ED with index 1.
Then a list of strong pair LMOs are determined based on
approximate MP2 pair correlation energies, and each LMO
that forms a strong pair with LMO k ′ is also added to Ek′ . The
virtual and auxiliary basis sets of the EDs are constituted of
those PAOs and auxiliary functions that are required to com-
pute accurate MP2 amplitudes in the EDs. Next, using these
MP2 amplitudes, the occupied-occupied and virtual-virtual
blocks of MP2 fragment density matrices are constructed and
diagonalized, yielding a set of occupied and virtual LNOs in
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each ED.34,63 To save computational resources, only LNOs
having occupation numbers above a certain threshold are
included in the LISs and carried forward to the CC calcu-
lation. Finally, the LNOs kept are quasi-canonicalized, and
the integral lists are transformed to this quasi-canonical LNO
basis. The conventional auxiliary basis of the ED is also com-
pressed to a much smaller, LIS-specific fitting set that consists
of the so-called natural auxiliary functions (NAFs).129 The
NAF basis is obtained from a partial singular value decom-
position of the three-center density fitting integrals of the
LIS.63,64,129

With the necessary integral lists transformed to the LNO
and NAF bases at hand, CCSD fragment energies and ampli-
tudes are obtained in each LIS using a conventional CCSD
implementation.34

D. (T) fragment energy expression

The (T) fragment energy of contribution of LMO k ′ is
expressed with the quasi-canonical LNOs of Pk′ as34

δE(T)
k′ =

1
3

∑
ij∈Pk′

∑
abc∈Pk′

(4wabc
ijk′ + wbca

ijk′ + wcab
ijk′ )(v

abc
ijk′ − v

cba
ijk′ ).

(12)

To arrive at the above form, first, the energy denominators are
absorbed into the W and V tensors as

wabc
ijk = Wabc

ijk /
√

Dabc
ijk (13)

and

vabc
ijk = Vabc

ijk /
√

Dabc
ijk , (14)

and then the resulting formally orbital invariant expression
allows the required transformation of one of the occupied
indices to LMO k ′ as

wabc
ijk′ =

∑
l∈Pk′

wabc
ijl Ulk′ . (15)

Matrix U transforms the domain specific quasi-canonical MOs
of LIS Pk′ to the LMO basis.

Note that the full sixfold permutational symmetry of W
and V is reduced to a twofold symmetry due to the partial index
transformation. It was shown in our previous work34 that the
full sixfold symmetry of Wabc

ijk and Vabc
ijk and the remaining

twofold symmetry of wabc
ijk′ and vabc

ijk′ can still be utilized in a
slightly modified “abcijk”-type algorithm. In brief, an energy
expression analogous to Eqs. (5) and (A1) was derived [see
Eq. (34) of Ref. 34] utilizing the above symmetries, which
depends on all independent types of the above partially trans-
formed tensors, that is, on wabc

i′jk , wabc
ij′k , wabc

ijk′ , v
abc
i′jk , vabc

ij′k , and vabc
ijk′ .

For the construction of the required partially transformed ten-
sors, it was necessary to evaluate all the different elements
of W and V in the quasi-canonical basis and then to per-
form their transformation according to Eq. (15). This scheme
brings down the number of required tensor elements to 6n2

on3
v;

however, the scaling of the number of operations for the con-
struction of W and V remains n3

on4
v, as for the canonical (T)

expression.

It is obvious from the above argument and from Eqs. (2)
and (12) that a much better n2

on4
v scaling algorithm could be

designed if we were able to construct W and V directly with
their first occupied index in the LMO basis. The simplest
solution for that would be to work directly in the occupied
LMO basis and to employ the popular T0 semi-canonical
approximation,35,74,75,82,95,105 where the canonical expressions
[such as Eq. (2)] are applied in a non-canonical basis as
well assuming the Fock-matrix to be diagonal. This option
will be further investigated in Sec. III. As an alternative to
the semi-canonical T0 approximation, Sec. II E introduces
a more accurate approach utilizing the LT of the energy
denominator.

E. Laplace transformed (T) energy expression

The (T) energy expression can be rewritten in an orbital
invariant form via numerical LT of the energy denomina-
tor36,40–42

1

Dabc
ijk

=

∫ ∞
0

e−Dabc
ijk s ds ≈

nq∑
q=1

ωq e−Dabc
ijk sq , (16)

where ωq’s are the corresponding quadrature weights for the

nq number of quadrature points sq.130 Since the above e−Dabc
ijk sq

factors factorize completely, the square-root of the individ-
ual Laplace factors (e.g., 12

√
ωq efiisq/2) can be conveniently

absorbed into the corresponding elements of the W and V
tensors as

W āb̄c̄
īj̄k̄,q
= Pāb̄c̄

īj̄k̄
*
,

∑
d

(b̄d |āī)q tc̄d
k̄j̄,q
−

∑
l

(c̄k̄ |j̄l)q tāb̄
īl,q

+
-

, (17)

with the transformed integrals, e.g.,

(b̄d |āī)q =
4
√
ωq (bd |ai) e(faa+fbb−fii)sq/2 (18)

and amplitudes, e.g.,

tc̄d
k̄j̄,q
= 4
√
ωq tcd

kj e(fcc−fjj−fkk )sq/2. (19)

The modified tensor V as well as the remaining (c̄k̄ |j̄l)q and
(āī|b̄j̄)q types of integrals and the tā

ī,q
amplitudes is defined

analogously. Finally, the substitution of Eqs. (16)–(19) into
Eq. (1) yields the LT (T) energy expression

E(T) ≈
1
3

∑
q

∑
īj̄k̄

∑
āb̄c̄

(4W āb̄c̄
īj̄k̄,q

+ W b̄c̄ā
īj̄k̄,q

+ W c̄āb̄
īj̄k̄,q

)(V āb̄c̄
īj̄k̄,q
− V c̄b̄ā

īj̄k̄,q
).

(20)

F. Laplace transformed (T) fragment energy

Utilizing the orbital invariant property of the Laplace
transformed energy expression of Eq. (20), the corresponding
(T) fragment energies are straightforwardly defined as

δE(T)
k′ =

1
3

∑
q

∑
īj̄∈Pk′

∑
āb̄c̄∈Pk′

(4W āb̄c̄
īj̄k̄′,q

+ W b̄c̄ā
īj̄k̄′,q

+ W c̄āb̄
īj̄k̄′,q

)

× (V āb̄c̄
īj̄k̄′,q
− V c̄b̄ā

īj̄k̄′,q
). (21)

The advantage of the Laplace transformed expression com-
pared to the previous one of Eq. (12) is that it is not necessary
any more to construct all the n3

on3
v elements of W and V in
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the quasi-canonical basis. Instead, after the transformed inte-
grals and amplitudes [for instance, in Eqs. (18) and (19)] are
computed in the quasi-canonical basis, one of their occupied
indices can be transformed to the local basis, yielding, e.g.,
(b̄d |āī′)q or tāb̄

ī′ l̄,q
type of intermediates. Consequently, it is now

possible to evaluate W āb̄c̄
īj̄k̄′,q

and V āb̄c̄
īj̄k̄′,q

tensors only for the single

k ′ central LMO index, which reduces the number of operations
for Eq. (17) to be proportional to n2

on4
v + n3

on3
v.

The permutational symmetry can again be exploited. For
that purpose it is beneficial to use the same basis set for
all three occupied indices of W and V, which restores their
sixfold symmetry. (The quasi-canonical virtual LNO basis
will be kept unchanged.) In our case, there is a large degree
of freedom in the choice of this new, LIS-specific occupied
basis. The only requirements are that the central LMO of
each domain has to be the first function and the new orbital
set has to span the same subspace as the original occupied
LNOs.

A possible solution is to construct localized MOs for each
LIS. With this choice, both the Laplace transformed and the
semi-canonical T0 approximations can be employed and com-
pared in the localized basis. Since in each domain, the original
LMOs are mixed together to form LNOs, and some of the
LNOs with negligible occupation numbers are dropped, we
cannot simply transform back to the original LMO basis of
the complete system from the much smaller LNO bases of
the LISs. Therefore, LIS-specific localized basis sets are con-
structed by, first, selecting the central LMO as the first function
of the new basis, then forming an orthonormal no � 1 dimen-
sional orbital set, which is orthogonal to the central LMO. For
that we project out the central LMO from all the LNOs of
the LIS via a Gram–Schmidt step and then perform Löwdin
orthogonalization on the resulting functions. This procedure
yields an orthonormal set—which we refer to as the non-
canonical Gram–Schmidt–Löwdin (ncGSL) basis—that spans
the same space as the no dimensional occupied LNO basis.
The LNO to ncGSL transformation matrix can be written in a
closed form131,132

U ′′kl = δl1uk + (1 − δl1)

[
(1 − δk1)

(
δkl −

ukul

1 + u1

)
− δk1ul

]
,

(22)

with u storing the expansion coefficients of the central LMO
on the occupied LNO basis as defined in Eq. (15), i.e., ul

= U l1. Finally, the functions of the ncGSL basis are local-
ized (except for the fixed central MO), which leads to the
LMO basis of the LIS. For the sake of simplicity, the same
primed indices will be employed for the LIS-specific local-
ized MOs and the original LMOs of the complete system.
The semi-canonical approximation introduced in this LIS-
specific LMO basis will be labelled as T0 because of the
close relation to the T0 approximation applied in the LMO
basis of the entire system in the case of direct local correlation
methods.35,74,75,82,95,105

Alternatively, one may attempt to minimize the error of
the T0 approximation by choosing to keep only the central
MO in the local basis and transforming the remaining no � 1
orbitals to a quasi-canonical basis. This second set, referred
to as the semi-canonical GSL (scGSL) basis, is obtained from
the ncGSL one by keeping the central LMO fixed and diago-
nalizing the Fock-matrix in the remaining no � 1 dimensional
subspace. Quantities in the scGSL basis will be indexed with
capital letters (e.g., I , J , . . .). For instance, the elements of
the LNO to scGSL transformation matrix are denoted as U ′jI ,
with U′ being the product of U′′ and the ncGSL to scGSL
transformation matrices. Finally, note that in this scGSL basis,
the off-diagonal elements in the first row and column of the
Fock-matrix (FI 1 and F1J ) are still nonzero. These remaining
nonzero elements can also be neglected to arrive at an approx-
imation that is analogous to the T0 one and will be labeled as
T0′.

In our previous approach, an expression with all possible
summation restrictions was derived for the efficient evalu-
ation of the δE(T)

k′ contributions [see Eq. (34) of Ref. 34].
In that derivation, the use of a modified “abcijk” algorithm
had to be assumed because of, for instance, memory restric-
tions. However, the present Laplace transformed scheme can
be combined with the more advantageous “ijkabc” algo-
rithm. (Additional arguments for “ijkabc” will be given in
Sec. II G.) Therefore, assuming the use of the “ijkabc” algo-
rithm, the derivation of Ref. 34 was repeated leading to anal-
ogous summation restrictions. The resulting Laplace trans-
formed fragment energy expression in the scGSL basis reads
as133

δE(T)
k′ =

∑
q

{ ∑
Ī>J̄ ∈Pk′

∑
ā≥b̄≥c̄ ∈Pk′

1
1 + δāb̄ + δb̄c̄

[
W āb̄c̄

Ī J̄K̄ ,q
(2V āb̄c̄

Ī J̄K̄ ,q
− V āc̄b̄

Ī J̄K̄ ,q
− V c̄b̄ā

Ī J̄K̄ ,q
) + W b̄c̄ā

Ī J̄K̄ ,q
(2V b̄c̄ā

Ī J̄K̄ ,q
− V āc̄b̄

Ī J̄K̄ ,q
− V b̄āc̄

Ī J̄K̄ ,q
)

+ W c̄āb̄
Ī J̄K̄ ,q

(2V c̄āb̄
Ī J̄K̄ ,q

− V b̄āc̄
Ī J̄K̄ ,q

− V c̄b̄ā
Ī J̄K̄ ,q

) + W āc̄b̄
Ī J̄K̄ ,q

(2V āc̄b̄
Ī J̄K̄ ,q

− V b̄c̄ā
Ī J̄K̄ ,q

− V āb̄c̄
Ī J̄K̄ ,q

) + W b̄āc̄
Ī J̄K̄ ,q

(2V b̄āc̄
Ī J̄K̄ ,q

− V c̄āb̄
Ī J̄K̄ ,q

− V b̄c̄ā
Ī J̄K̄ ,q

)

+ W c̄b̄ā
Ī J̄K̄ ,q

(2V c̄b̄ā
Ī J̄K̄ ,q

− V āb̄c̄
Ī J̄K̄ ,q

− V c̄āb̄
Ī J̄K̄ ,q

) +
2
3

(W āb̄c̄
Ī J̄K̄ ,q

+ W b̄c̄ā
Ī J̄K̄ ,q

+ W c̄āb̄
Ī J̄K̄ ,q

−W āc̄b̄
Ī J̄K̄ ,q

−W b̄āc̄
Ī J̄K̄ ,q

−W c̄b̄ā
Ī J̄K̄ ,q

)

× (V āb̄c̄
Ī J̄K̄ ,q

+ V b̄c̄ā
Ī J̄K̄ ,q

+ V c̄āb̄
Ī J̄K̄ ,q

− V āc̄b̄
Ī J̄K̄ ,q

− V b̄āc̄
Ī J̄K̄ ,q

− V c̄b̄ā
Ī J̄K̄ ,q

)
]

+
∑

J̄ ∈Pk′

∑
ā≥b̄≥c̄ ∈Pk′

1
1 + δāb̄ + δb̄c̄

[
W āb̄c̄

J̄ J̄K̄ ,q
(3V āb̄c̄

J̄ J̄K̄ ,q
− Y āb̄c̄

J̄K̄ ,q
)

+ W āc̄b̄
J̄ J̄K̄ ,q

(3V āc̄b̄
J̄ J̄K̄ ,q

− Y āb̄c̄
J̄K̄ ,q

) + W b̄c̄ā
J̄ J̄K̄ ,q

(3V b̄c̄ā
J̄ J̄K̄ ,q

− Y āb̄c̄
J̄K̄ ,q

)
]}

, (23)
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with
Y āb̄c̄

J̄K̄ ,q
= V āb̄c̄

J̄ J̄K̄ ,q
+ V āc̄b̄

J̄ J̄K̄ ,q
+ V b̄c̄ā

J̄ J̄K̄ ,q
. (24)

It is again highlighted that the above expression is evaluated
only for k ′ = K = 1, i.e., only with the central LMO as the third
occupied index of W and V . Note that Eq. (23) yields δE(T)

K
because summation of K̄-dependent terms over the quadrature
points results in the corresponding unbarred quantities divided
by the energy denominator, and δE(T)

K = δE(T)
k′ .

G. Laplace transformed local (T) algorithm

The above “1permutation-ijkabc” algorithm cannot be
applied right away for the evaluation of W āb̄c̄

Ī J̄K̄ ,q
and V āb̄c̄

Ī J̄K̄ ,q
,

which are required for the LT (T) fragment energy of Eq. (23)
because the integrals and amplitudes are not symmetric any
more due to the asymmetric arrangement of the Laplace factors
[see Eqs. (18) and (19)]. The symmetry of either the ampli-
tudes or the integrals can be restored by multiplying each term
of Eq. (17) with 1 in the form of 1

12√ωq
e−fdd sq/2 12

√
ωq efdd sq/2

since, for instance,

(b̄d |āī)q tc̄d
k̄j̄,q
=

[
(b̄d |āī)q

12
√
ωq efdd sq/2

] [
tc̄d
k̄j̄,q

1
12
√
ωq

e−fdd sq/2
]

= (b̄d̄ |āī)q tc̄d̃
k̄j̄,q

, (25)

where we introduce tilded indices when the inverse of the
Laplace factors is absorbed into the integrals or amplitudes.
Most of the beneficial properties of the “1permutation-ijkabc”
algorithm can then be exploited again if the symmetric (b̄d̄ |āī)q

integrals are combined with amplitudes tc̄d̃
k̄j̄,q

in the first type

of terms, and “fully barred” amplitudes tb̄ā
l̄ī,q

are multiplied

with the non-symmetric (c̄k̄ |l̃j̄)q integrals in the second kind
of terms (see later in Algorithm 2).

After the CCSD iteration is finished, the amplitudes and
integrals are available only in the quasi-canonical LNO basis.
In order to minimize the overhead of the Laplace trans-
formed ansatz, orbital transformations and multiplications
with Laplace factors are carried out in a single step utilizing
the density fitting form of the Coulomb integrals, e.g.,

(bd |ai) =
∑

P

JP
bdJ

P
ai, (26)

where index P refers to (natural) auxiliary functions. First,
virtual indices are simply multiplied with the corresponding
Laplace factors, while the occupied orbitals are transformed
to the scGSL (or LMO) basis with

U ′
j̄J ,q
= 12
√
ωq e−fjjsq/2 U ′jJ (27)

yielding
JP

āJ̄ ,q
=

∑
j

JP
aj U ′

j̄J ,q
12
√
ωq efaasq/2. (28)

Integrals JP
ĨJ̄ ,q

and JP
āb̄,q

and the amplitudes tā
Ī

and tāb̃
Ī J̄

are
obtained via analogous transformations. Finally, the necessary
four-center integrals are assembled as

IĪ J̄
āL̃
= 〈āL̃ |Ī J̄〉q =

∑
P

JP
āĪ ,q

JP
L̃J̄ ,q

, (29)

IĪ J̄
āb̄
= 〈āb̄|Ī J̄〉q =

∑
P

JP
āĪ ,q

JP
b̄J̄ ,q

, (30)

IĪ
āb̄,d̄
= 〈āb̄|d̄Ī〉q =

∑
P

JP
ād̄,q

JP
b̄Ī ,q

. (31)

Note that the quadrature index of the transformed amplitudes
and integrals stored in arrays T and I is omitted in order to
simplify the notation.

Using the above defined intermediates, the Laplace trans-
formed version of the “1permutation-ijkabc” algorithm for
the local (T) energy is given in Algorithm 2. The additional
memory requirement for array R can again be spared using
the analogue of the “2permutation” algorithm. Algorithm 2
also offers a highly efficient way for the direct construction of
〈āb̄|d̄Ī〉q integrals for a given I if the full list does not fit into
the main memory (see Appendix B for details).

We note that, in principle, an “abcijk” algorithm could also
be designed for the Laplace transformed scheme. While the
above Laplace transformed “ijkabc” algorithm extensively uti-
lizes the optimized dgemm operations, its “abcijk” alternative
is much less suitable for high performance algorithmization.
For example, the construction of the wĪ J̄K̄ ,q, wĪ K̄ J̄ ,q, and wK̄ Ī J̄ ,q

Algorithm 2. Laplace transformed local “1permutation-ijkabc” algorithm.

for q = 1, nq

Perform transformation and assembly steps of Eqs. (27)–(31)
K = 1; Rb̄āĪ J̄ = Tāb̄Ī J̄

for J = 1,no

for I ≥ J

wāb̄c̄,q = T Ī K̄
ā,d̃

IJ̄
d̄,b̄c̄

+ IJ̄
āb̄,d̄

(T K̄ Ī
c̄,d̃

)† + T Ī J̄
ā,d̃

(IK̄
b̄c̄,d̄

)†

vc̄āb̄,q = (IK̄
d̄,c̄ā

)† (T J̄ Ī
b̄,d̃

)† + T K̄ J̄
c̄,d̃

IĪ
d̄,āb̄

+ IĪ
c̄ā,d̄

(T J̄K̄
b̄,d̃

)† + T Ī
c̄ā,L̄

(IJ̄K̄
b̄,L̃

)† + RK̄
c̄ā,L̄

(IJ̄ Ī
b̄,L̃

)†

wāb̄c̄,q ← vc̄āb̄,q

wāb̄c̄,q ← RĪ
āb̄,L̄

(IK̄ J̄
c̄,L̃

)† + IĪ K̄
ā,L̃

(RJ̄
b̄c̄,L̄

)† + T J̄
āb̄,L̄

(IK̄ Ī
c̄,L̃

)† + IĪ J̄
ā,L̃

(T K̄
b̄c̄,L̄

)†

vāb̄c̄,q = wāb̄c̄,q + IJ̄K̄
b̄c̄

T Ī
ā + IĪ K̄

āc̄ T J̄
b̄

+ IĪ J̄
āb̄

T K̄
c̄

Calculate energy contribution according to Eq. (23)
end for

end for
end for
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intermediates would require the multiplication of much
smaller matrices of various size and dimensions (e.g.,
IK̄ c̄b̄

d T ā
d,J̄ Ī

or T K̄ c̄b̄
L Iā

L,Ī J̄
), which is highly challenging to

implement efficiently. For this reason, the Laplace transformed
“abcijk” algorithm for the fragment energies is not considered
further.

We note that we investigated a couple of additional opti-
mization ideas with potential for further computation time
reduction. However, these approaches were not implemented
in the present study because, according to our estimation,
they would lead to marginal, if any, speedup compared to the
above algorithm in the context of our LNO-CCSD(T) scheme.
Appendix C provides a brief summary of our efforts in this
direction.

III. BENCHMARK CALCULATIONS
A. Computational details

The LT (T) approach proposed in this paper has been
implemented in the mrcc suite of quantum chemical programs
as part of the latest version of our LNO-CCSD(T) method and
will be available in the next release of the package.127

The accuracy of the LT (T) expression is assessed on cor-
relation energies and reaction energies evaluated for the test
set of Neese, Wennmohs, and Hansen (NWH). The NWH set
is assembled from 23 reactions also including molecules of
36 atoms.134 Furthermore, correlation energies and reaction
energies of medium-sized and larger systems of up to 146
atoms were also investigated, including the androstendion and
AuAmin reactions of Ref. 37 (see Fig. 1), the angiotensin
molecule taken from Ref. 47, and the crambin protein of
Ref. 96. For the performance analysis of the LT (T) approx-
imation, the maximum absolute error (MAX) and the mean
absolute error (MAE) measures were applied.

In the calculations presented here, Dunning’s (augmented)
correlation-consistent polarized valence X-tuple-ζ basis sets
[(aug-)cc-pVXZ, X = T or Q],135–137 as well as the def2-
TZVP triple-ζ valence basis set of Weigend and Ahlrichs,138

were used. The cc-pVTZ basis was applied to the atoms of

the reactants and products of the androstendion and AuAmin
reactions, except for the gold atom, for which the augmented
correlation consistent valence triple-ζ pseudopotential (aug-
cc-pVTZ-PP) basis set of Peterson139 was employed together
with the corresponding effective core potential for the inner
60 electrons of the atom.140 For all the AO basis sets, the cor-
responding auxiliary bases of Weigend and co-workers were
applied.141–143

The core electrons were kept frozen in all the correla-
tion calculations. The Boys localization144 was used for the
construction of occupied LMOs.

Quadrature points, sq, and the corresponding weights,ωq,
of Eq. (16) are determined according to the minimax algorithm
of Ref. 130, but other similarly accurate schemes can also be
chosen.145,146 The number of quadrature points and the corre-
sponding {ωq} and {sq} sets are selected so that the Chebyshev
norm of the error function,

nq∑
q=1

ωq e−xsq −
1
x

, (32)

be below a threshold, TLT, for x ∈ [3(fno+1,no+1 − fno,no ),
3(fno+nv,no+nv − f1,1)]. A second criterion is set for the mini-
mum of nq in the form of nq > | log(TLT)|, which, according to
our numerical experience, helps to balance the accuracy of the
LT in different LISs of the same system. For instance, in the
case of TLT = 10�2, nq = 3 is set for the majority of LISs by the
TLT threshold alone, and the minimum criterion prevents the
use of nq = 2 in the remaining ones. Although the maximum
of nq is not limited, we find that the minimum of nq is usually
sufficient to fulfill the first error criterion. Consequently, the
actual number of quadrature points equals the minimum in the
LISs of the systems that we looked at so far. The numerical
values of TLT will be given in atomic units throughout this
paper.

Thresholds applied at the construction of the domains and
LISs in this study are listed here only in brief, while the nota-
tions and the function of these thresholds are explained in detail
in Refs. 34, 63, and 64. Extended domains are determined
according to the tight threshold set introduced for our LMP2

FIG. 1. AuAmin (top) and androsten-
dion (bottom) reactions taken from
Ref. 37. Mes denotes the mesityl group.
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method,64 e.g., TEDo = 0.9999 and εw = 10−5 E h. The occu-
pied and virtual LNOs and NAF bases of the LISs are defined
using εo = 2 × 10−5, εv = 10−6, and εNAF = 0.01 a.u., respec-
tively. These thresholds are applied also in the latest ver-
sion of our LNO-CCSD(T) method and will be extensively
benchmarked in a forthcoming publication.

The reported computation times are wall-clock times
determined on a machine with 128 GB of main memory and
a 6-core 3.5 GHz Intel Xeon E5-1650 processor.

B. Accuracy of correlation energies

In the following, we investigate the accuracy of the
Laplace transformed and the semi-canonical triples correc-
tions (T0 and T0′) in the context of the present LNO-CCSD(T)
approach on correlation and reaction energies of medium-sized
and large systems and with basis sets including cc-pVTZ,
aug-cc-pVTZ, and cc-pVQZ. Reference values were obtained
using our previous local CCSD(T) code,34,123 with which we
compute CCSD(T) energies for the same LISs defined by
the same truncation thresholds, but without relying on the
LT approximation. To avoid confusion, the reference scheme
without the LT approach will be referred to as previous LNO-
CCSD(T), and the LNO-CCSD(T) acronym will be reserved
to the present Laplace transformed version.

First, the correlation energy error introduced by the
Laplace transformed form is collected in Table II as the func-
tion of the number of the grid points on the example of the
angiotensin molecule. Rapid convergence is observed up to
µEh accuracy with 6 grid points, while the relative error in E(T)

and ECCSD(T) being only 0.067% and 0.0029%, respectively,
with nq = 3 is already sufficiently small for our purposes. If one
aims to recover more than 99.99% of the canonical correlation
energy, nq = 4 is recommended, providing an order of mag-
nitude smaller error due to the LT approximation. Although
the computational effort is 3 times less in the cases of nq = 1,
T0, or T0′ compared to nq = 3, the introduction of an error of
0.1%–0.3% into ECCSD(T) originating solely from the approx-
imation of the (T) term cannot be afforded. The T0′version is
only slightly better than the T0, and both of them are markedly

TABLE II. Accuracy of the LT (T) correlation energy for angiotensin with
the cc-pVTZ basis set. The reference values were obtained with our previous
LNO-CCSD(T) code34,123 using the same truncation thresholds and LISs. The
third and fourth columns show the absolute and relative error of the LT (T) cor-
relation energy contribution, respectively, introduced by the LT approximation
as the function of the number of quadrature points. The relative magnitude of
this error compared to the reference total LNO-CCSD(T) correlation energy
(obtained with the previous implementation) is collected in the last column.
See Sec. III B for further details.

TLT nq E(T) error (mEh) E(T) error (%) ECCSD(T) error (%)

10�5 6 1.1 × 10�3
�1.7 × 10�4

�7.5 × 10�6

10�4 5 2.3 × 10�3
�3.6 × 10�4

�1.5 × 10�5

10�3 4 �3.3 × 10�2 5.3 × 10�3 2.3 × 10�4

10�2 3 0.42 �6.7 × 10�2
�2.9 × 10�3

10�1 2 �1.18 0.19 8.0 × 10�3

. . . 1 43.3 �6.9 �0.30

T0′ . . . 13.6 �2.2 �0.09
T0 . . . 16.1 �2.6 �0.11

TABLE III. Accuracy of the LT (T) correlation energy for the androstendion
precursor and the AuAmin molecules with the cc-pVTZ (aug-cc-pVTZ-PP
for the gold atom) basis set. See the caption of Table II for the definition of
the quantities in the columns.

TLT nq E(T) error (mEh) E(T) error (%) ECCSD(T) error (%)

Androstendion precursor
10�5 6 3.1 × 10�3

�1.4 × 10�3
�5.7 × 10�5

10�2 3 6.8 × 10�2
�3.0 × 10�2

�1.2 × 10�3

T0′ . . . 4.5 �2.0 �0.08

AuAmin
10�5 6 �4.5 × 10�3 1.1 × 10�3 5.1 × 10−5

10�2 3 0.38 �9.1 × 10�2
�4.2 × 10�3

T0′ . . . 12.2 �2.9 �0.14

outperformed by LT with a crude quadrature containing 2 grid
points.

The same error measures are given in Table III for the
largest species of the androstendion and the AuAmin reactions
indicating that about 0.03%–0.1% and 0.001%–0.004% rela-
tive errors can be expected in E(T) and ECCSD(T), respectively,
for large molecules and triple-ζ quality basis sets. Again,
µEh accuracy is obtained with nq = 6, and large errors of
up to about 0.1% of ECCSD(T) are found with T0′ for both
systems.

Relative errors for the 47 molecules of the NWH test set
collected in Table IV show similar accuracy on an average in
the case of the cc-pVTZ basis set and TLT = 10�2. The maxi-
mum deviation of 0.0099% relative to ECCSD(T), though being
about 3 times larger than the average, is still acceptable but
indicates that somewhat larger errors could appear for these
smaller molecules. This can be understood if we look at the
signed relative error in the (T) energy contribution of individ-
ual LISs. In the case of molecules exhibiting the largest relative
error in the NWH set, the sign of the LT approximation error
is negative for almost all the LISs, while for larger systems
containing more occupied MOs, and hence more LISs, rel-
ative deviations of the opposite sign appear as well leading
to the cancellation of errors. Compared to nq = 3, an order
of magnitude improvement is observed with nq = 4, which is
recommended in combination with tighter thresholds for the
domain and LNO approximations. It is also satisfactory that

TABLE IV. Accuracy of the LT (T) correlation energy for the NWH test set.
See the caption of Table II for the definition of the quantities in the columns.

E(T) error (%) ECCSD(T) error (%)

Basis set TLT MAE MAX MAE MAX

cc-pVTZ 10�3 5.8 × 10�3 2.0 × 10�2 2.6 × 10�4 1.1 × 10�3

10�2 6.1 × 10�2 0.18 2.7 × 10�3 9.9 × 10�3

T0′ 2.0 3.7 0.087 0.21

aug-cc-pVTZ 10�3 5.1 × 10�3 2.1 × 10�2 2.6 × 10�4 1.4 × 10�3

10�2 5.2 × 10�2 0.16 2.4 × 10�3 9.3 × 10�3

T0′ 2.1 3.7 0.090 0.21

cc-pVQZ 10�3 2.7 × 10�3 8.7 × 10�3 1.1 × 10�4 4.7 × 10�4

10�2 2.1 × 10�2 6.6 × 10�2 9.1 × 10�4 3.4 × 10�3

T0′ 2.0 3.6 0.085 0.20
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TABLE V. Absolute errors (in kJ/mol) in the (T) contribution to the reaction
energies (∆E(T)) for the androstendion and the AuAmin reactions.

TLT 10−3 10�2 T0′

Androstendion 0.0013 0.16 0.17
AuAmin 0.0008 0.15 0.28

the LT approximation performs slightly better with the aug-cc-
pVTZ basis and more than twice as well with cc-pVQZ than
with cc-pVTZ for both nq = 3 and nq = 4. Finally, we note
again that the work required for 3 (4) quadrature points cannot
be saved since the relative error of the correlation energy eval-
uated with the T0′ approach compared to ECCSD(T) is nearly
0.1% on an average for all the three basis sets.

C. Accuracy of reaction energies

Absolute errors in the (T) contribution to reaction ener-
gies (∆E(T)) originating solely from the LT (T) approxima-
tion are given in Table V for the two reactions containing
medium-sized/large molecules. Considering the sizable reac-
tion energies of about 35 kJ/mol and 198 kJ/mol [at the LNO-
CCSD(T)/cc-pVTZ level] for the androstendion and AuAmin
reactions, respectively, the LT approximation with 3 grid points
introduces negligible errors of about 0.15 kJ/mol into the stud-
ied energy differences. For the androstendion reaction, this
result is expected from the accurately recovered correlation
energies as well, e.g., only 0.068 mEh = 0.18 kJ/mol error
(see Table III) was observed in the (T) term for the androsten-
dion precursor, which is comparable to the 0.16 kJ/mol error
in the reaction energy. An error compensation of roughly 5
times as large is found in the case of the AuAmin reaction
with nq = 3, which still does not compare to the surpris-
ingly big fortunate error compensation occurring in the case
of T0′.

The good performance of T0′ in the above cases can be
misleading. Closer inspection (see Table VI) of the same errors
in ∆E(T) for the 23 reactions of the NWH test set reveals
that the T0′ errors are, in average, about 5–20 times larger
than the LT errors with 3 grid points depending on the basis
set and can even reach 2 kJ/mol. On the other hand, the
average (maximum) LT approximation errors with the LNO-
CCSD(T) scheme and TLT = 10�2 being 0.02–0.07 kJ/mol

TABLE VI. Mean absolute and maximum errors (in kJ/mol) in the (T) con-
tribution to the reaction energies (∆E(T)) for the NWH test set compared to
our previous LNO-CCSD(T) results used as reference.

Basis set TLT MAE MAX

cc-pVTZ 10�3 0.0073 0.040
10�2 0.073 0.40
T0′ 0.39 1.9

aug-cc-pVTZ 10�3 0.0070 0.030
10�2 0.054 0.34
T0′ 0.41 2.0

cc-pVQZ 10�3 0.0040 0.025
10�2 0.020 0.058
T0′ 0.40 1.9

(0.06–0.4 kJ/mol) for the three basis sets are small and com-
pare very favorably to T0′. Again, an order of magnitude,
better performance is achieved if one more quadrature point is
added (nq = 4), which is beneficial if one wishes to recover
the canonical CCSD(T) reaction energy with sub-kJ/mol
accuracy.

D. Comparison with previous studies

Although LT (T) energies are evaluated here in the spe-
cial context of our LNO-CC method using a compressed
LNO basis, it is also worthwhile to make comparisons with
closely related previous studies. For instance, Scuseria and co-
workers40,41 also found nq = 3 sufficient when assessing the
accuracy of their canonical, factorized, Laplace transformed
(T) implementation; however, at that time their investigations
had to be restricted to small molecules and double-ζ or triple-
ζ quality basis sets. Related studies of Koch et al. performed
with Cholesky-decomposed denominators arrived at similar
conclusions regarding the accuracy of the triples correction
with 3–4 Cholesky-vectors.38,39 Most recently, Schmitz and
Hättig reported that, in the context of their Laplace trans-
formed PNO-CCSD(T) scheme, 3–4 grid points are sufficient
to reach converged results.36 The authors studied 11 reactions
containing organic molecules of small and medium size and
showed that the use of 3–4 grid points introduces at most
0.1 kJ/mol error for the test reactions with triple-ζ basis sets,
which agrees with our maximum errors being in the range
of 0.04–0.4 kJ/mol for similar number of grid points (cf.,
Table VI).

Additionally, Schmitz and Hättig concluded that on an
average, the semi-canonical T0 approximation leads to an addi-
tional error of 5% in the (T) correlation energy contribution
on top of the PNO-truncation and other errors, and the (T0)
correlation energy errors computed with PNO-CCSD ampli-
tudes are about 3 times larger than the corresponding Laplace
transformed (T) errors. In the case of energy differences, the
authors found discrepancies up to 3.6 kJ/mol between the
Laplace transformed PNO-CCSD(T) and the PNO-CCSD(T0)
reaction energies, which is even higher than the 2 kJ/mol
observed by us. Since the T0 approximation was the lead-
ing error source in their PNO-CCSD(T0) scheme in most
of the cases, its replacement with the LT (T) form was sug-
gested in the context of direct PNO-based local correlation
methods. In related studies, Werner and Schütz74,75 com-
pared the semi-canonical T0 approximation with the exact
iteratively solved (T) counterpart, while Riplinger et al.95

assessed their DLPNO-CCSD(T) method against both canon-
ical CCSD(T) and CCSD(T0). Regarding the accuracy of
the T0 approximation, both groups arrived at similar conclu-
sions as Schmitz and Hättig, which are also in line with our
findings.

E. Timings

The major part of our LT (T) implementation uti-
lizes OpenMP-parallelized BLAS subroutines. OpenMP
parallelization was also implemented for the remaining time-
consuming parts, e.g., for the LT (T) energy expression of
Eq. (23). A speedup of about a factor of 5 is measured in the
wall times when switching from one to six cores.
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TABLE VII. Wall-clock times in minutes for LT (T) computations of large
molecules (using the default TLT = 10�2, hence nq = 3 in all LISs) compared
to our previous LNO-CCSD(T) approach.

AuAmin angiotensin crambin

No. of atoms 92 146 644
Basis set cc-pVTZ cc-pVTZ def2-TZVP
No. of basis functions 2102 3244 12 075
(T) of previous LNO-CCSD(T) 2381 965 5 736
LT (T) of present LNO-CCSD(T) 217 104 582
Speedup 11.0 9.3 9.9

The efficiency of our LT (T) approach is illustrated on
three large, three-dimensional test systems in Table VII. Wall
times measured for the evaluation of the LT (T) correction are
compared to those required for the (T) calculation with our
previous LNO-CCSD(T) code. Consistent and large speedup
values of 9–11 are measured showing the superior performance
of the present LT (T) implementation. This order of magnitude
gain in wall time is the cumulative result of the two separate
developments presented here. First, due to the O(N6) scaling
LT (T) algorithm, no/3nq times fewer operations are required
in each LIS. This is already about a factor of 3 considering
an average LIS with no = 25–30. The additional benefit is that
even higher speedup factors are obtained for the largest LISs.
This makes highly accurate calculations with tighter LNO trun-
cation thresholds much more affordable and helps to balance
the computation time needed for LISs of different size, the
latter being very advantageous from the perspective of a par-
allel implementation. The second factor of 3 comes from the
introduction of the “1permutation-ijkabc” algorithm and fur-
ther optimization of the OpenMP parallel efficiency as it is
discussed in Sec. II B.

The advancement of an order of magnitude in the effi-
ciency of the (T) part also has a significant effect on the
total wall time of the LNO-CCSD(T) calculation. Previously
the (T) part of the calculation took about 60%–70% of the
total LNO-CCSD(T) correlation energy calculation, which
was even higher with tighter LNO truncation thresholds. Now
the cost of the (T) calculation was brought down to the magni-
tude of the integral transformation and CCSD iterations, which
ensures that the (T) correction can be evaluated if the preced-
ing CCSD calculation is feasible. For instance, this allowed
us to perform a LNO-CCSD(T) calculation on the crambin
protein containing 644 atoms and 12 075 basis functions in
a matter of days on a single CPU with 6 cores. Moreover,
the full LT (T) calculation was carried out in the memory
without resorting to any disk I/O. The low-memory algo-
rithm discussed in Appendix B requires less than 5 times
as much memory as the size of the CCSD amplitude array,
which equals to about 2.5 GB for the largest LIS in the cram-
bin calculation. In the actual run, the entire 〈āb̄|c̄Ī〉q list was
also stored since this required only additional memory of
2.7 GB.

IV. CONCLUSIONS AND OUTLOOK

We presented an improved alternative to evaluate
the perturbative triples correction in our linear-scaling

LNO-CCSD(T) method utilizing the orbital invariant prop-
erty of a Laplace transformed (T) fragment energy expression.
While the accuracy of the LNO-CCSD(T) correlation ener-
gies and energy differences is affected negligibly by using
3–4 quadrature points in the numerical Laplace transform,
compared to the previous implementation, an order of mag-
nitude speedup is measured originating from two separate
sources. On average, about a factor of 3–4 fewer operations
are required for the new redundancy-free LT (T) formula,
while the significant optimization of the underlying canoni-
cal (T) algorithm and implementation used for the computa-
tion of the triples amplitude related quantities results in an
additional three-times speedup. These developments can, in
principle, be integrated into canonical and other fragmenta-
tion based CCSD(T) approaches with minor modifications,
and the LT idea can also be generalized to design efficient
perturbative quadruples, etc., corrections. The option to save
the costs of the summation over the 3–4 quadrature points
using semi-canonical T0-type approximations was also exam-
ined. In accordance with previous studies, we found that the
accuracy of the T0 approximation in its present form is not
sufficient for our goals, but it might be useful to perform
quick exploratory computations in combination with loose
truncation settings.

The algorithm presented here brings closer the compu-
tational expenses of the smaller- and larger-domain calcula-
tions and can be executed in memory without relying on disk
I/O. Both properties fit perfectly into our line of development
working towards an LNO-CCSD(T) implementation that runs
similarly efficiently on single workstations and large com-
puter clusters. In order to fully exploit the efficiency of the
new (T) approach, development is in progress on the integral
transformation and CCSD iteration steps, which are currently
the rate-determining operations. Already at the present stage
LNO-CCSD(T) calculations with at least triple-ζ quality basis
sets can be performed on systems with a few hundred atoms
and more than 10 000 orbitals within days on a single pro-
cessor, illustrating the large potential of the LNO-CCSD(T)
method in molecular modeling.

It is important to highlight that the fragmentation and
domain construction strategy of the LNO-CCSD(T) method
are completely automatic and free from heuristic truncations.
Furthermore, pre-defined threshold sets allow us to perform
simple single point LNO-CCSD(T) calculations in a “black
box” manner. The latter aspect will be elaborated on in our
forthcoming publication.
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APPENDIX A: “abcijk” ALGORITHM

The sixfold permutational symmetry of the W and V
tensors can also be exploited if they are evaluated only for
a given virtual index triplet. The energy expression with the
corresponding summation restrictions reads as124,125
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Algorithm 3. “1permutation-abcijk” algorithm.

Rijba = T ijab

for c = 1, nv

for b ≥ c
for a ≥ b

wijk = Iab
i,d (T c

jk,d )† + Tb
ij,d (Ica

k,d )† + Iac
i,d (Rb

jk,d )† + Ra
ij,d (Icb

k,d )
†

vkij = Ta
ki,d (Ibc

j,d )† + Rc
ki,d (Iba

j,d )†

wijk ← Tac
i,l Ib

l,jk + Ib
ij,l Tac

l,k + Tab
i,l (Ic

jk,l)
†

vkij ← (Ic
l,ki)
† Tab

l,j + Ia
ki,l T cb

l,j + T cb
k,l I

a
l,ij

wijk ← vkij

vijk = wijk + Vbc
jk Ta

i + Vac
ik Tb

j + Vab
ij T c

k

Calculate energy contribution according to Eq. (A1)
end for

end for
end for

E(T) = 2
∑

a≥b≥c

∑
i≥j≥k

[(
Yabc

ijk − 2Zabc
ijk

) (
Wabc

ijk + Wabc
kij + Wabc

jki

)
+

[(
Zabc

ijk − 2Yabc
ijk

) (
Wabc

ikj + Wabc
jik + Wabc

kji

)
+ 3Xabc

ijk

] /
×

[
Dabc

ijk

(
1 + δij + δjk

)
(1 + δab + δbc)

]
, (A1)

where the X, Y , and Z intermediates are defined analogously
to their counterparts in Eqs. (6)–(8), that is, the index order
of each term of Eqs. (6)–(8) is permuted so that all terms will
have abc virtual index order instead of the original ijk occupied
index order suitable for the “ijkabc” scheme.

The main advantage of the “abcijk” algorithm over
“ijkabc” is its much smaller memory requirement: only two
intermediate arrays of the size of n3

o and a small subset of
the 〈ab|ci〉 integrals are needed at a given point. Due to the
relevance of the conventional “abcijk” algorithm for highly
memory demanding cases, its “1permutation” variant is pre-
sented in Algorithm 3. An even more memory economic
“2permutation-abcijk” variant can also be designed exactly the
same way as it is shown for the “2permutation-ijkabc” case in
Algorithm 1.

APPENDIX B: LOW-MEMORY LAPLACE
TRANSFORMED “ijkabc” ALGORITHM

For the largest domains with no ≈ 60−80 and nv

≈ 300−400, appearing in calculations performed with very
tight truncation settings, the size of the entire 〈āb̄|c̄Ī〉q list
is about 10–40 GB, which might be problematic using com-
puters equipped with less memory. For such cases, a low-
memory variant of the Laplace transformed “ijkabc” algorithm
is designed, where only a block of 〈āb̄|c̄Ī〉q integrals is stored
at a time for all the virtual indices and for nB number of
occupied indices. The low-memory algorithm is shown in
Algorithm 4.

Similarly to the case in Algorithm 2, for each IJK index
triplet, the 〈āb̄|c̄L̄〉q integrals are needed for L = I, J, and
K = 1 at the same time. Therefore, first, the 〈āb̄|c̄K̄〉q list is
assembled only for K = 1 and kept in memory throughout all
the steps for the given quadrature point, q. Then the remaining
memory space is filled with a block of 〈āb̄|c̄J̄〉q integrals so
that they will be available in the innermost loop for the actual
J index and for I < J + nB. So far the computational cost is
not increased compared to Algorithm 2, each 〈āb̄|c̄L̄〉q inte-
gral is assembled only once. The last missing quantities are
those 〈āb̄|c̄Ī〉q integrals, which are not available in the case
of I ≥ J + nB. Instead of performing the redundant assembly
of the missing 〈āb̄|c̄Ī〉q integrals in the innermost loop, their
contribution is rearranged as

IĪ
c̄ā,d̄

(T J̄K̄
b̄,d̃

)† + T K̄ J̄
c̄,d̃

IĪ
d̄,āb̄
= JP

āĪ

[
T J̄K̄

b̄,d̃
(JP

c̄,d̄
)† + JP

b̄,d̄
(T K̄ J̄

c̄,d̃
)†

]

= JP
āĪ

AJ̄K̄
b̄c̄,P

. (B1)

We recognize that intermediate AJ̄K̄
b̄c̄,P

does not depend on I

and can be constructed outside the loop for I with a negligible
cost proportional to 2nqnon3

v(3nv), assuming that the number
of auxiliary functions is around 3nv. The contraction of AJ̄K̄

b̄c̄,P

with JP
āĪ

scales as nqn2
on3

v(3nv)/2, which should be compared
to the cost of the corresponding terms in Algorithm 2, that is,
nqn2

on4
v. Consequently, in the worst case scenario, when nB = 1,

the low-memory algorithm only requires by about 14% more

Algorithm 4. Low-memory Laplace transformed “ijkabc” algorithm.

for q = 1, nq

Perform transformation and assembly steps of Eqs. (27)–(30), but not Eq. (31)

IK̄
āb̄,c̄
= JP

āc̄ J
P
b̄K̄

, only for K = 1

for J = 1, no

if (new block begins) IL̄
āb̄,c̄
= JP

āc̄ J
P
b̄L̄

for J ≤ L < J + n B

if (J + nB − 1 < no) AJ̄K̄
b̄c̄,P
= T J̄K̄

b̄,d̃
(JP

c̄,d̄
)† + JP

b̄,d̄
(T K̄ J̄

c̄,d̃
)
†

for I ≥ J

if (I < J + nB) vcab ← T K̄ J̄
c̄,d̃

IĪ
d̄,āb̄

+ IĪ
c̄ā,d̄

(T J̄K̄
b̄,d̃

)†

else wabc ← JP
āĪ

AJ̄K̄
b̄c̄,P

The remaining 10 terms, which do not include the above two terms [c.f., Eq. (B1)] are
evaluated as shown in Algorithm 2

end for
end for

end for
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operations. The upside is that the full local (T) computation
can be performed without resorting to disk I/O (even for these
large domains), which is especially advantageous if a local
hard disk is not available for each node as in many of today’s
computer clusters.

APPENDIX C: FURTHER ALGORITHMIC
CONSIDERATIONS

Additional optimization paths with operation number
reduction potential are considered in this section that are not
exploited presently but might be beneficial in the context of
alternative fragmentation based methods.

In the first approach, the factorization of the orbital
energy denominators via Laplace transform40,41 or Cholesky
decomposition38,39 can be exploited to evaluate the (T)
energy in an nqnon5

v scaling algorithm without ever con-
structing any T3 amplitude or W and V elements explicitly.
Although these alternative algorithms offer a n2

o/(nqnv) fac-
tor of speedup over the conventional “ijkabc” scheme, their
much larger prefactor and the usually unfavorable no/nv ratio
prevented their wide-spread application so far. Moreover, if
these alternative factorizations were applied in the domain
calculations, the nqnon5

v scaling would remain, which com-
pares much less favorably to the nqn2

on4
v scaling “ijkabc”

approach.
Another idea for the operation count reduction of the

canonical (T) algorithm was put forward by Noga and co-
workers.11,147 The authors recasted Eq. (2) by merging the
sum of the two types of terms into a supermatrix, and, by
the clever rearrangement of the terms, they were able to
evaluate the sum of the six permutations in a cost propor-
tional to n2

on3
v(no + nv)(3no + 6), which is by approximately

a factor of 1.8 smaller than the conventional 6n3
on3

v(no + nv)
value. The application of the idea of Noga et al. for our LT
(T) fragment calculation is, unfortunately, much less favor-
able. Taking into account only the most demanding steps,

the formal speedup would be
(

5
6 + 4

no

)−1
without consid-

ering numerous additional complications arising from the
introduction of the LT into this elaborate term rearranging
scheme.

We also attempted to reduce the operation count further
via screening by looking at the magnitude of the correlation
energy contribution of individual occupied index triplets, e.g.,
δE(T)

IJk′,q, where δE(T)
k′ =

∑
q
∑

I>J δE(T)
IJk′,q [c.f., Eq. (23)]. We

found that the δE(T)
IJk′,q/δE(T)

k′ ratio hardly ever goes below
0.0001. This is in accord with our LIS construction strat-
egy because only those LMOs are correlated at the CC level,
which form strong pairs with the central LMO. Therefore at
least two of the three pairs in the index triplet, namely, I–k ′

and J–k ′, are strong pairs, which is very similar to the index
triplet pre-selection procedure used in other local CCSD(T)
methods.82,95,105 Even if a good formula was available for the
low-cost estimation of the δE(T)

IJk′,q values, such large contri-
butions could not be simply dropped. A markedly different
situation was found by Schmitz and Hättig in the context of
their PNO-CCSD(T) scheme.36 Since there is no pre-selection
on the basis of strong pair lists in their method, occupied index

triplets with marginal contributions are still present and can be
screened. For that purpose they constructed a couple of empir-
ical expressions estimating the correlation energy contribution
of an index triplet, but we did not attempted to implement those
in the present empirical parameter free approach.
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76G. Hetzer, M. Schütz, H. Stoll, and H.-J. Werner, J. Chem. Phys. 113, 9443

(2000).
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131P. R. Nagy, P. R. Surján, and Á. Szabados, Theor. Chem. Acc. 132, 1109

(2012).
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