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In order to mimic copper-containing enzymes, Cu(II)-histidine complexes were grafted onto 
chloropropylated polystyrene resin. The Cu(II)-histidine complexes and the mobile polymer were thought 
to resemble the active centre and the proteomic skeleton of the enzymes, respectively. The resulting 
heterogenised complexes were expected to be nearly so active, selective and more durable catalysts that 
are easier to recycle than their homogeneous counterparts. The intended area of use is oxidation and 
dismutation reactions. Control for the syntheses was exerted by protecting either the N-terminal or the C-
terminal of the covalently grafted L-histidine molecules. However, since the resin was reported to be 
amino group selective, covalent grafting was performed with the unprotected amino acid as well. During 
the preparative work generally applied methods of synthetic organic chemistry (alkylation or 
esterification) were used. The whole procedure was performed in isopropanol to allow appropriate 
swelling of the host polymer. After deprotecting the immobilised amino acids the complexes were 
prepared and the emerging structures (just as the full synthetic procedure) were studied by Photoacoustic 
Infrared Spectroscopy. The photoacoustic spectra revealed that the grafting was successful in each case 
and the complexes were formed too. However, real control over the preparation could only be proven 
when the protected amino acids were applied. On the basis of the spectra and chemical reasoning 
structural features of the immobilised complexes could be described. 

1 Introduction 

Enzymes are perhaps the most active but definitely the 
most selective catalysts known today. Since the vast 
majority of chemical industry is based on catalytic 
reactions, learning about the activity and selectivity 
influencing factors in catalytic systems are of utmost 
importance. The accumulated knowledge may lead 
researchers to invent novel, more efficient catalysts. 
For this invention a promising way is trying to mimic 
the active sites of enzymes if they are known. Quite 
often, especially in enzymes facilitating oxygen transfer, 
the active sites contain copper ion surrounded by amino 
acids of the proteomic skeleton [1]. The most frequently 
occurring amino acid is L-histidine. These two 
observations make copper-histidine complexes good 
approximation of the active site of oxygen-transfer 
enzymes. 
However, the complex itself maybe a good catalyst but 
recovery is difficult if it is possible at all. Upon 
anchoring the complex by various methods (adsorption-
hydrogen bonding [2], ion exchange [3], covalent 
grafting [4]) onto rigid supports (montmorillonite [2, 3], 
silica gel [2, 4], mesoporous materials like e.g., MCM-

41 [3]) is a solution to this problem – a solid catalyst is 
always easier to handle than a homogeneous one. 
Resemblance to an enzyme, however, may be further 
enhanced by replacing the rigid support with a more 
flexible one, since the proteomic skeleton is mobile and 
so are the amino acids serving as ligands to the metal 
ion cofactor. Swellable resins may such mobile 
supports. Choosing a chlorofunctionalised polystyrene 
resin allows covalent grafting of amino acids. Then, 
complex formation can be performed. If control on the 
synthesis of amino acid-copper complexes can be 
exerted one obtains a catalyst closely mimicking the 
structure of the enzymes, hopefully, with similar 
activity and selectivity in oxygen transfer reactions. 
Results of the synthesis of such an enzyme mimic and 
its structural characterisation is reported in this 
contribution. 

2 Experimental 

2.1 Materials 
The central ion for the complexes was Cu2+ and the 
ligands (products of Aldrich Co.) were either L-histidine 

1459



Forum Acusticum 2005 Budapest  Berkesi, Szabó, Korbély, Hernadi, Pálinkó 
 

(H-His-OH), tert-butoxycarbonyl-L-histidine (BOC-
His-OH) or L-histidine methyl ester (H-His-OMe) 
(Figure 1). The source of Cu2+ ions was the aqueous 
solution of Cu(NO3)2 B product of Reanal. The amino 
acids were used as received. 

Figure 1: The molecules to be immobilised 

The host material was a chlorinated polystyrene resin 
[poly(styrene-co-vinylbenzyl chloride-co-divinyl-ben-
zene with 3.8-4.2 mmol/g chlorine content] from 
Aldrich, abbreviated as PS-PheCH2Cl in the followings 
(Figure 2). 

Figure 2: The chlorinated polystyrene resin host 
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The first step 
appropriately prot
polystyrene. General recipe is as follows: certain 
amount of functionalised resin was suspended in 
isopropanol and excess protected amino acid solution 
was added. Coupling with the ester or the BOC-amino 
acid was achieved by refluxing the mixture under basic 
conditions during constant stirring. After three hours the 
solid material was filtered washed several times and 
dried. The resulting material was divided into two parts. 
The first one was left unchanged, the other one was 
either treated with sulfuric acid, in order to hydrolyse 
the ester bond or was refluxed under vigorous stirring at 
moderate temperature (338 K) for two hours in a 1:1 
mixture of CH2Cl2 and CF3COOH in order to remove 
the BOC protecting group. Then, the samples (four 
different substances) were soaked in Cu(NO3)2 solution 
under stirring overnight. After filtering solution of the 
appropriate amino acid derivatives were added in 
excess. The suspension was refluxed for an hour and 
stirred for 4-5 more hours at room temperature. Finally, 
the solid material was filtered rinsed with isopropanol 5-
6 times, dried and stored in a vacuum desiccator. 
Since the resin was reported to be amine-selective, 
anchoring of histidine and then complexation
performed with the unprotected amino acid as well. 

2.3 Characterisation by Photoacous

CH

CH CH2 CH CH2 CH2Cl

CH2 CH CH2 CH

CH2Cl
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Substances obtai

Digilab Division FTS-65A/896 FT-IR spectrometer 
equipped with an MTEC 200 photoacoustic detector. 
The 4000 cm-1 – 400 cm-1 range was investigated. The 
resolution was 4 cm-1. For a spectrum 256 
interferograms were collected. Samples were loaded 
into a sample holder with 3 mm diameter. 
Measurements were performed under He atmosphere. 
The spectra were evaluated by the Win-IR package. 
One advantage of using photoacoustic detector for 
recording the spectra is that the solid material has no
be pressed into a tablet or pellet, thus, heat evolving 
during pressurisation does not destroy our modified 
resin substances. The other one is the information from 
the interior of the sample unavailable to other IR 
methods. 
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3 Results and Discussion 

3.1 Anchoring the amino acids to the 

First as basis of comparison let us show the PAS IR 
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Figure 3: The PAS IR spectrum of H-His-OH 

 
 

 
 
 
 
 
 
 
 

Figure 4: The PAS IR spectrum of PS-PheCH2Cl 
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The sharp band at 3330 cm-1 in the difference spectrum 
in Figure 7 clearly reveals that the unprotected histidine 

tected amino acids 

ection (b) and the difference 
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example, the full spectrum of the covalently grafted 

lex e 9. 
xes 

 

. 

up from 
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substance) the difference spectra only slightly alter. The 

ed

NH2

is anchored through its amino group, thus, the resin is 
amino selective, indeed. 

The BOC-protected and the ester-pro
were forced to be anchored via the carboxylic group and 
the amino group, respectively. The PAS IR spectrum of 
the latter, after deprotection, is depicted in Figure 8. 
Again, the spectra of the resin (a), the covalently grafted 
amino acid after deprot
spectrum are displayed. The difference spectrum reveals 
that the amino acid is attached to the resin, indeed. 

3.2 The covalently grafted complexes 
Since the PAS IR spectra of immobilised complexes 
prepared from three different starting compounds 
resemble each other closely, first, as a represent

comp derived from H-His-OMe is shown in Figur
Then, the PAS IR spectra of the anchored comple
derived from either the unprotected amino acid (H-His-
OH) or the BOC-protected one (BOC-His-OH) are 
analysed in more detail. 

 

 

 

 

 

 

Figure 9: The PAS IR spectrum of the covalently
anchored complex derived from H-His-OMe 
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It is, however, only due to the method of synthesis. The 
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while the hydrolysis of the ester protecting group 
required acidic conditions. 
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3 Summary 

Immobilised Cu(II)-L-histidine complexes were 
 the amino acid ligands 

lystyrene. Control on the 
syntheses was exerted by applying protected amino 
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prepared by covalently grafting
onto chlorine-functionalised po

acids, although, the resin displayed amine selectivity. 
Irrespective of the anchoring group the complexes 
assumed tetrahedral geometry. One ring nitrogen of all 
four histidine molecules was coordinated to the central 
ion. These immobilised complexes are promising 
catalysts in oxygen transfer reactions. Their activities, 
hopefully, are going to approach that of the Cu-
containing oxygen transfer enzymes, since both the 
active site as well as the flexible proteomic skeleton 
were mimicked. 
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