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The clay mineralogical and chemical compositions of Upper Carboniferous siliciclastic rocks from
the western flank of the Villany Mountains (Téseny Sandstone Formation) have been investigated to
determine paleoweathering conditions, as well as to appraise the influence of the post-depositional
processes upon source rock signature. The clay-mineral assemblage of the samples consists
predominantly of illitexmuscovite, suggesting a potassium metasomatism in the Téseny clastics.
Therefore the use of the Chemical Index of Alteration (CIA), which provides a consistent quantitative
framework for examining weathering, leads to erroneous conclusions without correction for K-
metasomatism. When considered in Al,0,-CaO*+Na,0-K,0 (A-CN-K) compositional space,
orthogneiss and igneous rock clasts selected from the Téseny conglomerate reflect two different
weathering trends; one (including orthogneiss, quartz diorite, and andesite samples) shows an ideal
trend observed for granodioritic rocks, and the other (including aplite, rhyodacite, and rhyolite
samples) follows a trend from a slightly more K-feldspar-rich fresh rock composition than that of
average granite. Intermediate to intense chemical weathering of the source areas is indicated by
premetasomatized CIA values of 77-84 for the samples from borehole Siklésbodony-1, suggesting that
these rocks have gained about 6-7% K,O (in A-CN-K space) during metasomatism.
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Introduction

The search for a better understanding of the main factors controlling the
chemical weathering rates of silicate minerals and rocks at the surface of the
Earth is a major geologic concern (Nesbitt et al. 1980; Nesbitt and Young 1984,
1989; Gaillardet et al. 1999). There are different ways to characterize both the
modern and past weathering conditions and to address the control of weathering
rates. Clay mineralogy is widely considered to be a powerful tool for interpreting
weathering conditions and paleoclimate in the source area (Weaver 1989). On the
other hand, the effect of variable degrees of subaerial weathering in source areas
can be important in influencing alkali and alkaline earth element abundances in
siliciclastic sediments (Nesbitt et al. 1980; Nesbitt and Young 1982; Gaillardet et al.
1999). Molecular proportions of CaO, Na,O, K,O, and Al,O, from modern clastic
silicate detritus reflect the degree of chemical weathering in their source; thus,
the elemental compositions of ancient siliciclastic rocks may be used in a similar
way to make inferences about past weathering conditions (Nesbitt and Young
1984, 1989).

A common approach to quantify the degree of continental weathering is to use
the Chemical Index of Alteration (CIA) (Nesbitt and Young 1982). The CIA is
calculated by the following formula: CIA = [Al,O4/(Al,0;+Ca0*+Na,0+K,0)]
> 100 (molar proportions). CaO* represents Ca in silicate-bearing minerals only.
This index measures the degree of weathering of feldspars, relative to
unweathered protoliths (e.g. igneous rocks). Plagioclase, K-feldspar, other alkali-
and alkaline earth Al-silicates and volcanic glass weather to clay minerals, the
feldspars commonly to kaolinite and illite, the mafic minerals and glass
commonly to smectites as well as to kaolinite and illite (Nesbitt et al. 1980; Nesbitt
and Young 1984, 1989; Weaver 1989). CIA values for unweathered plagioclase and
K-feldspars are approximately equal to 50, as are values of unweathered upper
crustal rocks. The CIA value of illite and kaolinite are 75 and 100, respectively.
Higher CIA values represent higher degrees of source area weathering (Nesbitt
et al. 1980; Nesbitt and Young 1982, 1984, 1989).

Thermodynamic principles and kinetic data allow a prediction of the paths
followed by rainwater-derived solutions during reactions with crustal rocks
(Nesbitt and Young 1984). The Al,0,-CaO*+Na,0-K,0 (A-CN-K) system is
useful for evaluating fresh rock compositions and examining their weathering
trends because the upper crust is dominated by plagioclase- and K-feldspar-rich
rocks and their weathering products, the clay minerals (Nesbitt and Young 1984,
1989). Thermodynamic and mass balance considerations suggest that the results
of the weathering of both volcanic and plutonic rocks are similar (Nesbitt and
Young 1984). The bulk compositions of igneous rocks follow simple trends that
are largely unaffected by climatic conditions under which weathering proceeds
(Fig. 1). The initial weathering trends are subparallel to the (CaO*+Na,0)-Al,O4
boundary, primarily because removal rates of Na and Ca from plagioclase or
volcanic material (glass) generally are greater than the removal rate of K from K-
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feldspar or glass. With more advanced weathering, compositions trend from
illite-muscovite toward the A apex, along the A-K join (Nesbitt and Young 1984,
1989). Within the compositional space represented by the A-CN-K diagram, the
vertical dimension (percent Al,O,, molar) corresponds to the values of the CIA
(Nesbitt and Young 1989).

The geochemistry of the Upper Carboniferous continental sedimentary rocks
in Hungary and the related information about weathering has not received much
attention in the literature. Recently, Varga et al. (2001, 2002, 2003, 2004, 2007) and
Varga and Szakmany (2004) reported the mineralogical, petrographic, and
chemical composition of these rocks. In this study we include data from clay
mineralogical and bulk-rock geochemical analyses of sandstone, sandy siltstone,
and conglomerate samples collected from the Upper Carboniferous Téseny
Sandstone Formation (Slavonia-Drava Unit, Tisza Mega-unit, Hungary) to
describe paleoweathering conditions. Based on the A—-CN-K relationship we
specifically discuss the degree of chemical weathering and the influence of the
post-depositional processes such as K-metasomatism upon rock signature. It is
beyond the scope of this manuscript to discuss the provenance and tectonic
setting of Téseny rocks. This is addressed in detail in previous separate papers
(Varga et al. 2001, 2003, 2004, 2007; Varga and Szakmany 2004).
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Materials and methods
Geologic setting and lithology

At the end of the Variscan cycle the polymetamorphic complexes of the
Slavonia—Drava Unit (Tisza Mega-unit, Hungary) belonged to the southern part
of the Moldanubian Zone (Variscan Orogenic Belt) forming the European margin
of the Paleotethys Gulf (Haas et al. 1999). Variscan post-orogenic sedimentation
produced a Late Carboniferous, non-metamorphic (locally anchimetamorphic)
molasse-type overstep sequence, which was draped over the eroded surface of
the crystalline basement (Hetényi and Ravasz-Baranyai 1976; Fulop 1994;
Szederkényi 2001). The coal-bearing Upper Carboniferous continental succession
(Téseny Sandstone Formation), which is interpreted as fluvial system deposits,
occurs in subsurface in southern Transdanubia on the western flank of the
Villany Mountains and west of it (Fig. 2). This formation is composed of con-
glomerate, sandstone, and siltstone; in addition, shale and coal seams also occur
(JAmbor 1969; Hetényi and Ravasz-Baranyai 1976; Varga et al. 2003). These rocks
contain a Namurian—-Westphalian flora composed of the Pecopteris, Sphenopteris,
Neuropteris, Alethopteris, Sphenophyllum, Annularia, Calamites assemblage and
Westphalian palynomorphs (Hetényi and Ravasz-Baranyai 1976).

Petrographically, the Téseny sandstone and sandy siltstone samples are
composed of variable amounts of quartz grains, feldspar, mica, chlorite, clay, Fe
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Simplified geologic map of the Villany area (southern Transdanubia, Hungary) showing the localities
where samples were collected for this study (after Varga et al. 2007)
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oxides and lithic grains and clasts such as quartz-rich metamorphic (e.g. schist,
orthogneiss, metagranitoid, mylonite and quartzite), acidic-intermediate volcanic
(e.g. andesite, dacite, rhyodacite and rhyolite) and intraformational siliciclastic
rocks. No carbonate rock fragments were observed. The poorly to moderately
sorted polymict Téseny conglomerate samples are characterized by metamorphic
(orthogneiss, quartz-muscovite-albite schist, phyllite, mylonite, metagranitoid,
metaquartzite), sedimentary (mudrock, sandstone, chert), and acidic-inter-
mediate volcanic (rhyolite, dacite, trachyandesite, andesite) rock clasts (Hetényi
and Ravasz-Baranyai 1976; Varga et al. 2003, 2007).

Previous source-area interpretations identified three main sources of Téseny
Sandstone Formation: (1) a recycled Variscan orogenic area, (2) an uplifted
plutonic (granite-gneiss) basement, and (3) an old (probably Variscan) magmatic
arc (Hetényi and Ravasz-Baranyai 1976; Varga et al. 2001, 2003, 2007; Varga and
Szakmany 2004). Unfortunately, there is no evidence for volcanites older than
Early Permian in this area; therefore the origin of acidic-intermediate volcanic
source components is obscure (Varga et al. 2003). Metamorphic source com-
ponents might have been derived from local sources in southern Transdanubia,
but a detailed description of metamorphic terrains, including whole-rock
chemistry, has yet to be carried out (Hetényi and Ravasz-Baranyai 1976; Varga et
al. 2007).

Sampling and analytical methods

In the study area, three cored exploration boreholes (Bogddmindszent Bm-1,
Dibsviszl6 Dv-3, and Sikldsbodony Sh-1) penetrating Téseny clastics were chosen
for detailed observations (Figs 2 and 3). The Upper Carboniferous sequence of

Western flank of the Villiny Mountains (Slavonia—Drava Unit)
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Fig. 3

Schematic lithologic logs of the boreholes, showing the stratigraphic relationships of the cores studied
and the position of the investigated section within the hole. Modified after Varga et al. (2007). DD =
date of drilling; TD = total depth below the surface
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borehole Bm-1 is composed mainly of coarse and fine-pebble conglomerate,
sandstone, siltstone and claystone (Fig. 4). The Téseny rocks of borehole Dv-3 are
composed primarily of coarse-pebble conglomerate alternating with sandstone
(Fig. 4). The studied succession from borehole Sb-1 is dominated by fine-pebble
conglomerate, sandstone, siltstone, and claystone (Hetényi and Ravasz-Baranyai
1976; Varga et al. 2001, 2003, 2007) (Fig. 4). Greater amounts of K-feldspar and
volcanic rock fragments are noted in boreholes Bm-1 and Dv-3 (Hetényi and
Ravasz-Baranyai 1976; Varga et al. 2001, 2003, 2007; Varga and Szakméany 2004). In
borehole Sb-1, plagioclase-rich metamorphic lithic fragments are the main com-
ponents; K-feldspar and volcanic material appear in low proportions (Hetényi
and Ravasz-Baranyai 1976; Varga et al. 2001, 2003, 2004, 2007).

A total of twenty-eight sandstone and sandy siltstone core samples were used
for clay mineralogical and geochemical studies. Additionally, fourteen
representative samples of pebble-sized orthogneiss and igneous rock clasts
extracted from the associated Téseny conglomerate beds from the boreholes
mentioned above were collected for the present study (Fig. 4).

The semiquantitative mineralogical analysis of the clay-sized fraction (<2 pm)
of the sedimentary rock samples was performed at the Department of Earth and
Environmental Sciences of the University of Pannonia (Meszprém, Hungary) by
X-ray powder diffraction (XRD), using a Philips PW 1710 diffractometer, Cu-Ka
radiation, and diffracted-beam graphite single crystal monochromator. A
complete description of the analytical procedures used for XRD analysis is
reported in Varga et al. (2007).

Major element abundances of the sedimentary rock samples and extracted
clasts were determined at the same institution by X-ray fluorescence (XRF)
analysis, using a Philips PW 2404 X-ray spectrometer equipped with a 4-kwW Rh
anode tube. Duplex, scintillation, and proportional counters were used as
detectors, while the analyzing crystals were LiF (200), PE 002-C and PX1.
Analytical precision for major elements is *1.5% (Hartyani et al. 2000).
Additionally, we have included the geochemical results of six sandstone and
sandy siltstone samples collected from borehole Sb-1 to supplement our data set
(Varga et al. 2004). Their elemental composition was determined at the
Department of Geochemistry, University of TUbingen (Germany), using an X-ray
fluorescence spectrometer type Bruker AXS S4 Pioneer with a rhodium X-ray
source (Varga et al. 2007).

In this study there was no objective way to distinguish carbonate CaO from
silicate CaO, so total CaO is used to calculate the CIA values (Tables 1 and 2). This
is justified on the basis that none of the samples appeared calcareous, and all
samples contained less than 1.00 wt% CaO, in good agreement with the results of
other geochemical studies (Cox et al. 1995; Hassan et al. 1999; Lee 2002).

Fig. 4 —
Generalized lithological columns of the studied Téseny sections, showing the position of the
investigated samples (modified after FUl6p 1994)
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Results and discussion
Clay mineralogy

The clay-mineral assemblage of the Téseny siliciclastic rock samples includes
illite (xmuscovite), kaolinite, and occasionally minor proportions of chlorite with
Fe(Il)-rich interlayer, rare berthierine and illite/smectite mixed-layer minerals
(Table 1). On average, illite is the major phyllosilicate in many of the samples (Fig.
5). Some samples from borehole Dv-3, however, have high kaolinite contents, up
to 50% of the clay-sized fraction.

Table 1
Composition of the Téseny siliciclastic sedimentary rock samples studied from three different
boreholes in southern Transdanubia

Sample ill chl+ber kao ill/sme ALO; CaO Na,O K,0 CIA
% wt%
Bm-1278.4-279.8 m 88 - 12 - 11.02  0.16 1.47 3.89 61
Bm-1465.8-466.5 m 98 - 2 - 9.92  0.90 149 4.00 54
Bm-1515.2-516.2 m 92 5 8 - 2091 074 098 5.61 70
Bm-1 785.8-786.4 m 90 5 5 - 1926 0.79 1.09 524 68
Bm-1939.1-940.3 m 95 - 5 - 9.42  0.10 1.18 3.19 63
Bm-11138.2-1138.5 m 85 10 5 - 1212 042 174 236 66
Bm-11273.0-1274.0 m 90 5 5 - 11.84 022 128 227 70
Dv-31199.0 m 50 - 50 - 11.82 033 1.01 4.04 64
Dv-3 1218.4 m 73 - 24 3 10.50  0.33 152 293 63
Dv-31219.5m 75 - 25 - 15.05  0.29 1.62 3.64 68
Dv-3 1220.6 m ND ND ND ND 1672 0.20 142 425 70
Dv-3 1235.0 m 90 10 - - 1230 0.14  0.15 3.30 75
Dv-3 1240.0 m 90 6 4 - 1250 0.13 0.17 3.43 75
Dv-3 1289.0 m 95 - 5 - 10.65  0.15 0.13 3.07 74
Dv-3 1301.2 m 80 - 18 2 1232 027 031 4.24 69
Dv-3 1301.7 m 83 - 14 3 1141 024 070  3.94 66
Dv-3 1343.9m 80 - 18 2 13.84 029 1.03 4.20 67
Sb-1673.0-684.0 m /b 80 15 - 5 17.93 047 1.41 3.11 73
Sb-1694.0-697.0 m 80 5 - 15 1937  0.21 1.17 3.29 77
Sb-1697.0-702.0 m 95 5 - - 2112 025 124 4.06 75
Sb-1697.0-702.0 m /b 95 5 - - 19.79  0.16 1.09  3.87 76
Sb-1697.0-702.0 m /e 95 5 - - 17.14 021 0.97 3.35 75
Sb-1708.0-712.0 m /d 70 30 - - 22,57 031 129 4.09 76
Sb-1739.0-746.0 m 90 - 10 - 2123 0.19 132 483 73
Sb-1847.2-850.1 m 95 5 - - 13.01 014 037 257 78
Sb-1993.2 m 90 5 5 - 2030  0.89 1.03 4.85 70
Sb-11130.4-1133.3 m 87 13 - - 2037 0.30 158 421 73
Sb-11138.2-1138.5m ND ND ND ND 1071 092  2.08 1.82 60
Legend: ill = illite (xmuscovite); chlxbe = chloritexberthierine; kao = kaolinite; ill/sme = illite/

smectite mixed-layer; CIA = Chemical Index of Alteration; ND = no data

The high proportion of illite, together with chlorite, in the clay-mineral
assemblage of the core Sbh-1 samples confirms the predominance of metamorphic
sources for this formation (Varga et al. 2001, 2003). Chlorite with Fe(ll)-rich
interlayer is present in minor quantity due to its coarser grain-size, suggesting
that it is formed by alteration of detrital biotite, and less commonly as authigenic
matrix material (Bauluz et al. 1995). Kaolinite, illite and smectite (illite/smectite
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mixed-layer) are common clays produced during weathering of primary detrital
phases (Nesbitt et al. 1980; Nesbitt and Young 1982, 1984, 1989; Weaver 1989). In
comparison with recent profiles developed on granitic rocks, kaolinite should
dominate in the alteration products (Nesbitt and Young 1984, 1989) with respect
to the petrographic composition of the studied Téseny samples (Hetényi and
Ravasz-Baranyai 1976; Varga et al. 2001, 2003, 2007; Varga and Szakméany 2004).
However, kaolinite is generally scarce and illite is the most abundant clay mineral
(Table 1). These observations suggest that kaolinite has been partially or totally
converted to illite. Therefore, the clay mineralogy of the Téseny samples probably
reflects the effects of K-metasomatism, which is favored around the periphery of
subsiding continental sedimentary basins where dilute continental ground
waters display low Na/K values (Fedo et al. 1995, 1996). This scenario is supported
by the presence of abundant illite/sericite, both as matrix material between
grains, and as alteration of weathered feldspar grains (Varga et al. 2007).

Degree of subaerial weathering

CIA values for the clasts studied from the Téseny conglomerate range from 49
to 62 (Table 2), with an average of 56, a value typical for weakly weathered
protoliths. The weathered state of the extracted clast samples, corresponding to
the fluvial facies, clearly reflects that the parent rocks were exposed to subaerial
weathering agents.

CIA values for sandstone and sandy siltstone samples from borehole Bm-1
range from 54 to 70 (average: 65), from 63 to 75 (average: 69) for samples from
borehole Dv-3, and from 60 to 78 (average: 73) for samples from borehole Sb-1
(Table 1). These data may indicate a weak to moderate degree of chemical
weathering in the source area. Such an interpretation is consistent with the con-
clusions of a previous study on sandstone of the Téseny Formation (Varga et al.
2002). On the other hand, the results of the clay mineralogical study discussed
above indicate that some potassium metasomatism occurred in these samples,
lowering the CIA values (Varga et al. 2007). It is necessary to evaluate the effects
of this metasomatic event before interpreting weathering conditions (Fedo et al.
1995).

Analysis of weathering trends

Compositional trends of the potential parent rocks (unweathered protoliths)
cannot be drawn in the A-CN-K diagram because the requisite chemical data are
not yet available; nevertheless, a prediction can be made of weathering trends,
based on the elemental composition of extracted orthogneiss and igneous rock
clasts (Fig. 6). Figure 6 also shows the bulk compositions of average granodiorite
(tonalite-trondhjemite-granodiorite), granite, andesite, and felsic volcanite from
Condie (1993). The data points of the clast samples collected from the Téseny
conglomerate define two different trends (Fig. 6). Both trends are subparallel to
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Table 2
Composition of the gneiss and igneous rock clast samples

Sample code Lithology ALO; CaO Na,O K,0 CIA PWT
wt%

Bm-1/V1 Dacite 13.80 0.30 6.20 3.30 49 trend—a
Dv-3/GR3 Aplite 11.50 0.55 2.71 4.65 52 trend-b
Dv-3/GR5 Quartz diorite 13.60 0.42 3.06 2.28 62 trend—a
Dv-3/V3 Andesite 14.70 0.69 1.80 5.10 60 trend-b
Dv-3/V5 Andesite 15.40 0.46 2.20 4.80 61 trend—b
Dv-3/GR2 Rhyodacite 14.80 0.59 2.22 5.41 58 trend-b
Dv-3/V1 Rhyodacite 11.10 0.46 6.30 0.40 49 -

Dv-3/V2 Rhyodacite 14.80 0.45 3.80 2.90 59 trend-a
Dv-3/V4 Rhyolite 13.70 0.59 3.10 5.00 54 trend-b
Dv-3/GR4 Rhyolite 13.10 0.33 2.98 5.15 54 trend-b
Sb-1/G1 Orthogneiss 14.70 0.38 3.90 2.20 61 trend—a
Sb-1/K1 Orthogneiss 13.90 0.54 4.47 2.08 57 trend—a
Sb-1/GR1 Orthogneiss 12.50 0.48 3.58 1.86 59 trend—a
Sb-1/V1 Andesite 14.30 0.75 5.30 1.90 54 trend—a

Legend: CIA = Chemical Index of Alteration; PWT = predicted weathering trend
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\. \ diorite) represent typical un-
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¥ Phanerozoic TTG % Phancrozoic granites triangle is shown

% Gneiss and granitoid clasts  + Volcanic rock clasts

$2 Paleozoic andesites 3¢ Paleozoic felsic volcanic rocks

the A-CN boundary, indicating that Ca and Na are removed in preference to K
(Nesbitt and Young 1984, 1989). The degree of weathering for the studied clasts
(vertical dimension = CIA) is quite variable, producing scatter along the trends.
This pattern is typical of non-steady state weathering conditions, where active
tectonism permits erosion of all zones within weathering profiles developed on
source rocks (Neshitt et al. 1997). A high erosion rate is also indicated by the
abundance of coarse clastics in the sequences from boreholes Bm-1 and Dv-3
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(Hetényi and Ravasz-Baranyai 1976; Varga et al. 2003, 2007; Varga and Szakméany
2004).

According to this interpretation, the two different weathering trends in the
Téseny Formation may indicate the mixing of sediments from two different
source rocks. Trend-a (including orthogneiss, quartz diorite and andesite
samples) is typical of granodioritic weathering profiles from a starting point close
to the average chemical composition of Phanerozoic granodiorite from Condie
(1993). Trend-b (including aplite, rhyodacite and rhyolite samples) is similar to
the initial weathering trends observed over granitic rocks from a starting point
close to the composition of Phanerozoic granites from Condie (1993) toward the
muscovite-kaolinite join, with a small displacement toward the K apex. This
suggests that these Téseny clast samples were derived from a progressively more
felsic source area, following a trend from a slightly more K-feldspar-rich fresh
rock composition than that of average granites. Another possibility is that the
variation indicates that some potassium metasomatism occurred in these
samples. Conversion of secondary aluminous clay minerals such as kaolinite to
illite by K addition results in a lower CIA value than for the premetasomatized
rock (Fedo et al. 1995).

It is important to note that one rhyodacite sample (sample Dv-3/V1;
corresponding to the rhyolite field in the SiO, (wt%) vs. Na,O+K,O (wt%)
chemical classification diagram; Szakmany 2001, unpublished data) plots close to
the plagioclase position (Fig. 6). This sample contains 6.30 wt% Na,O whereas
CaO is 0.46 wt% and K,O is 0.40 wt% (Table 2). Na,O is —3.5 wt% in the
unweathered Paleozoic felsic volcanic rocks (Condie 1993). This suggests that Na
has been added to the parent rock as albite (Na-metasomatism).

On the other hand, the andesite samples studied from borehole Dv-3 plot
away from the expected weathering trend of granodioritic (andesitic) rocks,
following the granitic trend-b. These samples contain 5.10 and 4.80 wt% K,O,
respectively (Table 2), whereas K,O is ~1.3 wt% in the fresh Paleozoic andesites
(Condie 1993). This characteristic is most readily interpreted by assuming an
ancient rock that was subjected to K-metasomatism, partially converting kaolinite
to illite and slightly lowering CIA (Fedo et al. 1995).

As discussed above, some source materials of the Téseny siliciclastic
sedimentary rocks have been affected significantly by diagenetic reactions,
including Na- or K-metasomatism. We suggest, therefore, that the clast samples
corresponding to the inferred weathering trend-b suffered K-metasomatism,
reflecting either peculiar soil-forming processes in the Late Carboniferous, or
post-depositional alteration.

A-CN-K diagram for Téseny sedimentary rocks

On the A-CN-K diagram (Fig. 7) the sandstone samples from boreholes Bm-1
and Dv-3 plot away from the inferred weathering trend-a of granodioritic rocks.
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The majority of these samples plot along Trend-b, in a position consistent with
derivation from moderately to highly weathered granite (Nesbitt and Young
1984, 1989; Fedo et al. 1996). Additionally, some samples from borehole Dv-3 are
slightly enriched in K,O relative to the "limit of weathering" line. Assuming
potassium metasomatism occurred in the Téseny siliciclastic sedimentary rocks
(as indicated by the abundance of illitic material in the clay fraction), and if the
interpretation of a K enrichment in clasts belonging to the weathering trend-b is
correct, the original CIA values of these sandstone samples prior to K enrichment
cannot be determined in the A-CN-K space.

On the other hand, the siliciclastic sedimentary rocks from borehole Sb-1 were
derived from a simple source area dominated by plagioclase-rich crystalline
rocks, corresponding to the granodioritic trend, as supported by previous
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Fig. 7

Ternary A—-CN-K plot (Nesbitt and Young 1984, 1989) for the Téseny siliciclastic sedimentary rock
samples (molar proportions). The open symbols represent the compositions of sandy siltstone to fine-
grained sandstone, and solid symbols represent medium to very coarse-grained sandstone. Mineral
abbreviations: Il = illite; Mu = muscovite. Note that only the top 50% of the triangle is shown
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petrologic data (Hetényi and Ravasz-Baranyai 1976; Varga et al. 2001, 2003, 2004,
2007). The major element data of these samples (except for the sample studied
from the base of the sequence) plot in a very limited region, diagnostic of steady-
state conditions, where material removal rate matches the production of miner-
alogically uniform weathering products generated in the upper zone of soil
development (Nesbitt et al. 1997). All samples plot on the K,O-rich side of the
inferred weathering trend-a (Fig. 7), indicating a substantial enrichment in K,O
when compared with trends for recent granodioritic profiles (Nesbitt and Young
1984, 1989). Because this type of K enrichment involves addition of K,O to
aluminous clays, it follows a path toward the K,O apex of the triangle (Fedo et al.
1995). A line from the K apex through the sample point studied from borehole Sb-
1 intersects the predicted weathering trend-a at a point representing its
premetasomatized composition (Fig. 7). Two analyses of the sandstone samples
from borehole Sb-1 illustrate the technique to correct for K-metasomatism. These
samples have intermediate CIA values (70 and 78, respectively), whereas the
premetasomatic CIA values are 77 and 84. A quantitative estimate of K
enrichment is determined by the difference between the premetasomatized CIA
and the current value (Fedo et al. 1995, 1996). Téseny sandstones thus have a
minimum range of K,O addition of 6-7% in A-CN-K space.

Although precise premetasomatic CIA values cannot be ascertained, this result
suggests that the Téseny siliciclastic sedimentary rocks developed under
intermediate to extreme (CIA > 80) chemical weathering conditions. Therefore,
in general, the CIA values corrected for K-metasomatism indicate that their
primitive source areas underwent a more intense chemical weathering.

Conclusions

Clay mineralogical and major element analyses of the Upper Carboniferous
siliciclastic sedimentary rocks in southern Transdanubia (Téseny Sandstone
Formation, Hungary) yield several conclusions with regard to source-area
weathering conditions and post-depositional modifications:

1. The clay mineralogy of the Téseny sedimentary rocks reflects the effect of
variable degrees of K-metasomatism (illitization), which is common in con-
tinental settings.

2. Orthogneiss and igneous rock clasts extracted from the Téseny conglomerate
show two different trends; one shows an ideal weathering trend observed over
granodioritic rocks, and the other follows a trend from a fresh rock composition
that is slightly more K-feldspar-rich than average granite. Additionally, some
source materials have been affected by K- or Na-metasomatism.

3. The sedimentary rock samples were derived from source terrains where
intermediate to extreme chemical weathering produced intermediate to high CIA
indices which were subsequently decreased by K-metasomatism to the present
values (54-78).
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4. When considered in A-CN-K compositional space, the distribution of the
samples from borehole Sb-1 lies far off of the granodioritic weathering trend-a.
Their position indicates that the Téseny region experienced a major K-
metasomatic event that added 6-7% K,O (in A-CN-K space) to the sandstones
via conversion of kaolinite to illite. The timing of this event is uncertain.
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