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Abstract 

     The reduction of the electronic Schrodinger equation or its calculating algorithm from 4N-

dimensions to a nonlinear, approximate density functional of a 3 spatial dimension one-electron 

density for an N electron system which is tractable in practice, is a long desired goal in electronic 

structure calculation. In a seminal work, Parr et al. (Phys. Rev. A, 55 (1997) 1792) suggested a 

well behaving density functional in power series with respect to density scaling within the orbital-

free framework for kinetic and repulsion energy of electrons. The updated literature on this subject 

is listed, reviewed and summarized. Using this series with some modifications, a good density 

functional approximation is analyzed and solved via the Lagrange multiplier device. (We call the 

attention that the introduction of a Lagrangian multiplier to ensure normalization is a new element 

in this part of the related, general theory.) Its relation to Hartree-Fock and Kohn-Sham formalism 

is also analyzed for the goal to replace all the analytical gaussian based two and four center 

integrals (gi(r1)gk(r2)r12
-1

dr1dr2, etc.) to estimate electron – electron interactions with cheaper 

numerical integration. The Kohn-Sham method needs the numerical integration anyway for 

correlation estimation.  
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1. Introduction 

     The non-relativistic spinless fixed nuclear coordinate electronic Schrodinger equation (SE) in 

free space is capable of describing the electronic motion in molecular systems by providing the 

anti-symmetric wavefunction ZARAxi and electronic energy Etotal electr= Eelectr(RAZA}) 

+Vnn of
 
the

 
ground and excited states. Vnn=A=1,…,MB=A+1,…,MZAZBRAB

-1
, where RAu (u = x,y,z) 

are the M nuclear coordinates with nuclear charges ZA, as well as xi = (ri,si) = (xi,yi,zi,si) are the N 

spin-space electronic coordinates (4N dimensions). For the commonly used ab initio calculations 

as configuration interactions (CI, for ground and excited states) and the faster Hartree-Fock Self 

Consistent Field (HF-SCF, for ground state) [1] longer time and larger disc space are still 

demanded, even for ground state 0 and Eelectr,0, as well as  convergence problems can rise at 

about N=10 and 500 respectively. The density functional theory (DFT) method, based on the 

Kohn-Sham (KS) formulation [2-3] effectively improves the “error” of the HF-SCF method 

(called correlation energy Ecorr  Eelectr,0-EHF-SCF/basis [1, 4-5]), technically with some in-built [6-16] 

functionals during the SCF algorithm, called “exchange-correlation functionals” – not detailed 
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here. (On the other hand, Ecorr can be estimated after the HF-SCF routine, for example with 

Moller-Pleset (MP) and many other methods [1] – also not detailed here.) Another thing, one 

should not forget about the basis set error and basis set superposition error [12]. However, the 

kinetic functional in the KS method is still the sum of the N nabla-square operators, so the 

computational costs remain similar to the HF-SCF method (3N dimensional in nature). It has long 

been desired in DFT, to reduce the dimensionality to 3. While the HF-SCF and KS methods are 

highly developed, there are still no tractable methods based solely on the 3 spatial dimension one-

electron density. 

     The fascinating idea of moment-based density functionals is seductive: replace the thorny 

functional analysis that accompanies DFT with “function analysis” by writing the energy as a 

function (not a functional) of the moments of the electron density.  This paper works along those 

lines. The energy functional for ground state based on scaling correct power series is reviewed 

and the standard Lagrange multiplier method is introduced in this relation, which ensures the 

normalization of the density, to solve and analyse these density functionals. We also discuss about 

the relation of these density functionals with the Kohn-Sham DFT and Hartree-Fock theory. 

 

2. Review of the Energy Functional for Ground State Based on Scaling Correct Power Series 

2.a The N-electron density functional and density integro-differential operator 

     The ground state N-normalized one-electron density, (r1), is the central variable in DFT. 

Since the density functional for (r1) is non-linear, its solution generally requires numerical 

integration as described and cited in refs.[14-15], not only in the correction terms as in KS 

formalism, but also in the main terms as well. In the one-electron density formulation of DFT, the 

energy functional (in the absence of external field other than the molecular frame) comes from  

                  Eelectr[]= N
-1

[D((r1))dr1 +Drr((r1))dr1] A=1,…,MZA(r1)rA1
-1

dr1  

 N
-1
D[]dr1  F[r1)],                                               (Eq.1) 

where rA1 |RA-r1| and the kinetic-, electron-electron-, and nuclear-electron energy terms [14-19] 

can be identified. (In the literature [2] the notation F is sometimes used in another way  i.e. the 

energy functional of nuclear-electron attraction is not included in it, but added after as F[r1)] 

A=1,…,MZA(r1)rA1
-1

dr1.) For ground state electronic energy, the 2
nd

 Hohenberg – Kohn (HK) 

theorem [2, 20] referring to the energy variation principle demands, the true electronic DFT 

functional satisfies the relation Eelectr,0[]  Eelectr,0[0,trial] for a trial, N-normalized, everywhere 

positive density 0,trial(r1), where  is the true solution. The N-norm is 

0,trial(r1)dr1 = N.                                               (Eq.2) 

     The terms of N-electron DFT (differential or integro-differential [14]) operator (D) come from 

integrating both sides of the electronic SE containing the Hamiltonian H for all xi except r1 after 

multiplying by the complex conjugate of the same j
th

 excited state wave function from the left:  

D[] D[]+DRr[]+Drr[]=Eelectr                                    (Eq.3) 

The disadvantage of D is its non-linearity. Notice that N
-1

 in Eq.1 comes from integrating both 

sides of Eq.3 for the 3 dimensional space and the normalization dr1= N. (In detail, one must be 

careful with the normalization when manipulating for Eq.1: while 0

0dx1…dxN=1 stemming 

from “N over N is 1 in combinatorics for HF-SCF”, the 0dr1= (0

0ds1dx2…dxN)dr1= 

0

0dx1…dxN=N stemming from “N over 1 is N for DFT.) The peculiarity of D is that some of 

its terms can have zero integral [14] in the form of Eq.1, although it plays a part in shaping the  

via Eq.3. For H-like atoms (or an unstable system of a molecular frame with one electron) the sub-

case of Eq.3 is the partial differential equation, D[N=1,(r1)]  -(1/4)1
2
(r1) + (1/8)(r1)

-1
|1 
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(r1)|
2
 +(r1)v(r1) = Eelectr (r1), for ground and excited states [14]. In practice, the main problem 

with D or F is that their exact analytical formula are unknown, there are only approximations for 

them, the latter are problematic in programming, and more importantly in chemical accuracy (i.e. 

to reach the 1 kcal/mol even in energy differences). 

     While the DFT formula for the nuclear–electron energy term (using notation v(r1)  

A=1,…,MZArA1
-1

 for “external potential”),  

Vne[(r1)]  N
-1
DRr((r1))dr1 = A=1,…,MZA(r1)rA1

-1
dr1 = v(r1)(r1)dr1     (Eq.4) 

in Eq.1, is extremely simple and analytically 100% accurate, the other two in F are very difficult 

algebraically and only approximations are known. (In. ref.[14] the integral formula, DRr[]  = 

(r1)v(r1) + (N-1)d2(r1,r2)v(r2)dr2, is reported for the intergo-differential equation in Eq.3, where 

d2 is the N-normalized two-electron density. There exists another equation which compares to 

Eq.4 with respect to its simplicity and also its importance “at the same time” in DFT,  the famous 

electrostatic theorem of Feynman as a subcase of Hellmann–Feynman theorem [2, 21]: 

Eelectr/RAu = (r1)(v(r1)/RAu)dr1 = -ZA(r1)(u1-RAu)rA1
-3

dr1 with u=x, y or z to be used in 

Etotal electr/RAu = Eelectr/RAu + Vnn/RAu with straightforward partial derivative for Vnn.) 

 

2.b Scaling correct power series for kinetic and electron-electron repulsion density 

functionals  
     Parr et al. reported a power series [22] based on the rules of density scaling [2] for the other 

two terms than the nuclear-electron one in F: for kinetic energy in Eq.1 the series of coordinate 

homogeneous functional of degree two is 

T[(r1)]  N
-1
D((r1))dr1 = j=1,…n Aj[

[1+2/(3j)]
dr1]

j
                                (Eq.5) 

, while the electron-electron repulsion energy term, the functional is of a degree one 

Vee[(r1)]  N
-1
Drr((r1))dr1 = j=1,…n Bj[

[1+1/(3j)]
dr1]

j
                             (Eq.6) 

(The density scaling, which is the base of Liu and Parr's work [22], is well discussed in the book 

of general theory in ref. [2], and will not be detailed here.) In ref.[14] the 100% accurate integral 

formula, Drr[] = (N-1)d2(r1,r2)r12
-1

dr2 + [N(N-1)/2 – (N-1)]d3(r1,r2,r3)r23
-1

dr2dr3, is reported for 

the intergo-differential equation in Eq.3, where d2 and d3 are the N-normalized two- and three-

electron densities. These are symmetric (called r-symetric) in exchange of ri and rj. Furthermore, 

the two-electron density functional, Vee ≡ (1/N)∫Drr[d2]dr1dr2 = ((N-1)/2)∫d2r12
-1

dr1dr2, is also 

100% accurate analytically [14]: however, the N- representability is not so simple for d2 and for 

d3. The latter means that, when d2 or d3 is expanded into a series of e.g. Gaussian type orbital 

(GTO) in 6 or 9 dimensional (r1,r2) or (r1,r2,r3) space as r-symmetric function, one must ensure 

that it can be de-convoluted into an anti-symmetric 4N dimensional wavefunction (generally it is 

not necessarily possible). Furthermore, d3(r1,r2,r3)dr3 = d2(r1,r2) and   d2(r1,r2)dr2 = (r1) hold. 

     Before we analyze Eqs.5-6 and their consequences further, we mention that while there has 

always been some work on “moment expansions” of the electron density, the work really started 

in earnest with the work of Agnes Nagy in the mid-1990’s, and the subsequent work from the Parr 

group that this stimulated. The idea is incredibly attractive: one can rewrite every density 

functional as a function of the moments of the density. (In practice, it is a bit tricky, because one 

has to make sure the moments are complete; cf. ref. [23].) This allows one to replace the 

functional analysis in DFT with simple multivariate calculus, which is a huge formal advantage. 

Most of the work (the only exception we know of is a tiny bit of work from Parr [23]) assumes 

that quantities can be written as a linear function of the moments, though that is obviously an 

incorrect assumption, thought it is perhaps a useful approximation. The biggest drawback of these 

approaches is that most moment expansions (and especially most nonlinear moment expansions) 
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are not size consistent. The biggest advantage of this approach is that it works well (if not 

excellently) and that there are beautiful mathematical results, including an explicit method for 

finding the exact universal density functional from the form of the density functional for one 

specific system [23-24]. Our contribution here fits into this context. 

 

2.c Truncation opportunities and the series constants in scaling correct power series for 

density functionals 

     Truncation j=1 in Eq.5 provides the classical Thomas-Fermi (TF) formula (T  A1
5/3

dr1) as 

the main term for T with TF constant [2] cF = (3/10)(3
2
)
2/3

= 2.871234  A1. The rest, mostly in  

KS formalism, is approximated in the literature: with local, non-local, spin and spinless, gradient 

corrected DFT functionals for ground state. These contain the derivatives of , and have 

completely different forms than Eq.5. For example, T[(r1)]  [cF
5/3

+ 

|1|
2
/+corr.terms]dr1 form is the so-called Weizsacker gradient correction [2, 16]. (In the 

TF+W theories, the estimation for  is between 1/9 and 1/5 [2, 16], however, a very popular 

choice, early on, was =1 [25-28].) We will not summarize the vast literature about it here, but  as 

analyzed below, we mention that Eqs.5-6 have reality via the general property of functions 

capable to be expanded into series. The constants Aj in Eq.5 can be subdivided as 

A1  c10cF and Aj = c10cFaj = A1aj        for j=2,3,4,…                            (Eq.7)  

where the c10 is supposed to correct the TF constant, and the others (aj) are “behind” A1 for higher 

terms without N-dependence. The c10, a2, a3, a4, … can come from parameter fitting, (c10 > 0 is not 

far from unity, and |aj| < c10 for j=2,3,4, …). 

     Truncation j=1 in Eq.6 gives the main term as Vee= B1
4/3

dr1 +corr1 with B1 2
-1/3

(N-1)
2/3

, 

mentioned and analyzed in ref.[2], however, it can also only be the main term of correction (Dirac 

exchange functional approximation [6, 18] with constant BDirac) if the main term is taken as the 

classical Coulomb repulsion energy as Vee= (1/2)(r1)(r2)r12
-1

dr1dr2 +corr2 with corr2= 

BDirac
4/3

dr1. The latter is a more accurate approximation, i.e. generally |corr2| < |corr1|, however, 

both corri are necessary for accuracy. This coincidence is not accidental, since the Dirac formula is 

also a scaling correct power series truncated after the first term. Vee[(r1)] scales one, but the 

classical Coulomb repulsion energy approximation, scales two, which is incorrect. It is the main 

source of correlation energy (Ecorr), which is the major problem with respect to chemical accuracy 

in HF-SCF (due to the lack of formula) or KS (which does have a suitable but yet not perfect 

formula) methods, stemming from using only a single Slater determinant to approximate . 

     We also mention that, the classical Coulomb repulsion energy as the main algebraic term 

contains only the first (in fact second) powers of , good for HF-SCF routine where a GTO basis 

set is used to make the integrations analytical in the approximation. The Dirac formula is one trial 

of the many which is designed to estimate its error (corr2). It is considered in great detail in the 

literature. Recall again the local, non-local, spin and spinless, gradient corrected, hybrid, etc. 

exchange-correlation functionals in KS formalism. Historically, the promising approximations of 

corr have made DFT successful in practice, but there is still no total control over its accuracy in 

different systems. The exact analytical form is unknown at the present time, there are only 

empirical formulas, parameterized and optimized mainly for ground states. 

     The constants Bj in Eq.6 can be treated as 

    B1  c20(2
-1/3

(N-1)
(2/3)c200

) and Bj =  B1bj  for j=2,3,4,…                        (Eq.8)  

where the c20 is supposed to correct the expression 2
-1/3

(N-1)
(2/3)c200

, and the others (bj) are 

“behind” B1 for higher terms without N-dependence. In ref.[2] c200= 1, leaving the power simply 
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as 2/3, but we are trying to correct this part too by tuning with the factor c200 in later work. The 

c200, c20, b2, b3, b4, … can come from a parameter fitting as well, (c20, c200 > 0 are not far from 

unity, and |bj| < c20 for j=2,3,4,…). 

     We call the attention that it isn’t strictly true that the exact form of the functional isn’t known 

for these sorts of moment expansions. The exact form is known, but it is hopelessly complicated 

and, as pointed out by Ayers, contains terms that are not included in the simple series expansion in 

Eqs.5-6. Specifically, increasingly complicated ratios of moments appear [23-24]. While the 

approach is very elegant, the results in those papers [23-24] are much less favorable than those of 

Liu, Nagy, and Parr [29-30], probably because much the dataset being fit was much larger. The 

modern literature on density moments in DFT is quite small, with only a few important 

researchers (Nagy, Parr, and some others) have published yet results [23-24, 29-43]. 

 

2.d The magnitude of the series constants of scaling correct power series for density 

functionals 

     In ref.[22], the series on the right hand side of Eq.6 is used for exchange energy [2] (as a part of 

Ecorr in HF-SCF formalism) or the similar magnitude exchange correlation energy [3] (to describe 

Coulomb and Fermi holes in KS formalism), however, here we use it to estimate the entire Vee. In 

this way, if we do not truncate too soon, Eqs.5-6 help to avoid the problem of  Ecorr, as well as the 

algorithm becoming simpler since one does not have to deal with messy derivatives and non-local 

integrals. In ref.[22] the formulas in Eqs.5-6 were tested with HF-SCF one-electron densities, 

0,HF-SCF, and among many conclusions, the most important thing for us now is that 3-4 terms may 

be enough for chemical accuracy, and in accord, the absolute value of the coefficients decrease 

rapidly. Here we use these formulas as direct substitution into Eq.1 and solve them for ground 

state, but we emphasize that Eqs.4-6 hold for excited sates as well. The rapid decrease of Aj and Bj 

are not surprising if one recognizes that a crude and more precise estimation (see Appendix) for 

the magnitude of power terms in Eqs.5-6 is [
[1+a/(3j)]

dr1]
j
 ~ [dr1]

j
 = N

j
 and 

[
[1+a/(3j)]

dr1]
j
  G

 j
  with G(x)  N

x
(N

3
/)

x-1
/x

3
 and x  1+a/(3j),              (Eq.9) 

respectively, where a = 1 or 2 and j>1, as well as notice that G(1)=N, – i.e. these increase rapidly 

with N, which is large in calculations for molecules. Another hypothesis is that a replacement of aj 

and bj in Eqs.7-8 with ajN
1-j

 and bjN
1-j

 for j=2,3,4, … may be better (i.e. in this way aj and bj are 

more independent from N), because Eqs.5-6 contain larger powers of N in view of Eq.9. (View in 

the perspective of dimensional analysis that functional 
5/3

dr1 approximates T and 
4/3

dr1 

approximates Vee, while functional dr1 gives N.) An answer for this will be given via tests on 

real systems. Also, we must mention that N-dependent functionals are not size consistent. Hard to 

find a good reference for that (though it is obvious), for example, it was mentioned by Parr in his 

work on the Fermi-Amaldi model [44]. 

 

2.e Density functionals in scaling correct power series form versus partial differential 

equation to describe molecular systems   
     Replacing a partial differential eigenvalue equation with a functional containing algebraic 

equation can be perilous, but recall the truth that Eelectr in SE depends only on the {RA, ZA}A=1,2,…M 

molecular frame (the basic, original inspiration of the HK theorems). In this way, for a power 

series expansion, e.g. with  (in which DFT states that it contains all the properties), it is just a 

question of the quality of the power series that has been chosen. We point out that the HF-SCF 

and CI methods (see Fock matrix, secular equation, or advanced devices based on series 

expansion, etc.) obtain roots (energy values) from a k
th

 order determinant transformed from SE. 
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This also corresponds to a k
th

 order algebraic equation, so from this view the form examined here 

should not be considered unusual. We mention that Parr et al. [2, 45] recognized that in F for 

ground state, the problem of finding the electronic structure of molecules reduces to treat some 

algebraic expressions for the 2
nd

 HK theorem back in 1979. However, due to the early stages of 

computers, problems of accuracy and finding a convenient method to locate the extremum, it has 

not moved into a focus of interest. Mostly, HF-SCF level 0,HF-SCF(r1) functions were used to test 

these kinds of DFT functionals. 

     Expanding with the Weizsacker term, Handy et al. [18] have tested the non-KS formalism DFT 

functionals by expanding the 0(r1) with a gaussian basis set. Before and more generally, similar 

approaches have been examined by Liu and Parr [22], however, they only focused on atoms and 

correlation, here we also examine molecules, as well as we consider Eqs.5-6 as the main and 

correction terms together. Most importantly [22], Parr introduced a genius form of expansion in , 

which is correct in density scaling. The related ideas of the contracted Schrodinger equation by 

Nakatsuji [46] and March’s density differential equation  [47] should also be taken into account. 

These latter two papers, which are more than thirty years old, have established an idea to reduce 

the dimensionality of the electronic Schrodinger equation, but up until today, the main task is to 

work out a tractable algorithm that overcomes the difficulty stemming from its non-linear nature. 

     The N-representability (meaning that anti-symmetric wave function exists which generates this 

 via (r1)= 

ds1dx2…dxN, most importantly for ground state) is simple [48-49] in one-

electron DFT, where in fact there is no N-representability problem, however, one must 

approximate the exact energy functional (F or D). In this N-representability problem, we cite 

Garrod and Percus for the pair density (first attempt, [50]), Davidson (explicit demonstraton, [51]), 

Pistol (lattice model solution, [52]), and Ayers (real-space solution [53]), as well as there is a 

review by Davidson [54]. According to our particular problem here, the best references for the N-

representability of the one-electron distribution function (the normal electron density) are refs.[55-

56]. The advantage of the refs.[17, 48-49] is that they demonstrate that even without the (quite 

simple) constraints on the electron density, one can minimize the energy, provided that the 

functionals are defined appropriately. Below, a model is introduced wherein the HF-SCF or KS 

orbitals will be completely eliminated from the DFT formulation and the density can be solved 

directly from these DFT functionals. It has been a commonly desired task [17] and this work 

targets that task. More precisely, the only real disadvantage of KS orbitals in DFT is their 3N 

dimensional nature in spatial space, otherwise, by using KS orbitals one regains a one-electron 

picture from a many electron DFT problem where electron correlation is included. The form and 

energies of KS orbitals are the basis of many qualitative rationalizations of DFT results.  

     Here we perform the first ever variational calculation with a moment functional (to our 

knowledge) and have several interesting, provocative, and even controversial ideas on how the 

method might be applied. There has been a lot of work on orbital-free DFT, those methods are 

effective, but not very accurate, see details on this in refs.[57-60]. Finally, Eqs.4-6 are not 

restricted to the vicinity of stationary points on the potential energy surface, and do not suffer with 

the open or closed shell programming complexities that are present in HF-SCF or KS methods. 

 

3. Lagrangian for Scaling Correct Power Series Energy Functional to Estimate Ground 

State Electronic Energy, its solution, analysis and discussion  

     Now, we are at the main part of our work. Using the “Lagrange’s method of undetermined 

multiplier” for the 2
nd

 HK theorem, we must minimize the functional L
*
 = Eelectr[] – ((r1)dr1 

– N) with respect to ground state one-electron density, ,  where we emphasize the ground state 
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with subscript zero. The  is the Lagrange multiplier, providing that the density is normalized to N 

electrons as constrain. Using Eqs.1-6 it takes the form 

                   L
*
 = j=1,…n Aj[

[1+2/(3j)]
dr1]

j
 + j=1,…n Bj[

[1+1/(3j)]
dr1]

j
  

+ v(r1)(r1)dr1 - ((r1)dr1 – N)                                                         (Eq.10) 

In HF-SCF there are also constrains for all pairs of molecular orbitals (MO) to get them 

ortonormal, here we have only one constraint: the N-normalization. (To be more precise, we also 

need to force the density to be nonnegative, e.g., by writing it as the square of some other function, 

see a particular choice in Eq.18 below.) Therefore, we set the first variation in L
*
 equal to zero 

                0 =  L
*
 = {j=1,…n (1+2/(3j))jAj [

[1+2/(3j)]
dr1]

j-1


2/(3j)
 

+ j=1,…n (1+1/(3j))jBj[
[1+1/(3j)]

dr1]
j-1


1/(3j)
 + v(r1) - }(r1)dr1      (Eq.11) 

where we have integrals to evaluate inside the integrand. Since  is arbitrary, it follows that the 

quantity in the curly brackets must be zero. It yields 

j=1,…n{(1+2/(3j))jAj[
[1+2/(3j)]

dr1]
j-1


2/(3j)
 + (1+1/(3j))jBj[

[1+1/(3j)]
dr1]

j-1


1/(3j)
} +v(r1) =  

(Eq.12) 

which is a 3 spatial dimension integral equation. Eq.12 is a substitute for the 4N spin-orbit 

dimension partial differential electronic Schrodinger equation, and the ground state electronic 

energy is just Eelectr,0(RA,ZA)/N  . The  is called the chemical potential. (More precisely, the 

electronic chemical potential is the partial derivative Eelectr,0/N, which is more sensible if N is 

large.) The larger the n, the more accurate Eq.12 is, and hopefully it converges fast. (We mention 

that there are other ways to choose terms to the exact answer in the moment expansion [23].) 

Recall that in the HF-SCF formalism the single Slater determinant is a very good but not a very 

precise form of approximation, the drawback of HF-SCF, that is, it needs correction (correlation 

calculation) to reach chemical accuracy even for energy differences. In Eqs.11-12 the series 

expansion of 0 via 0 ala Parr can be taken as arbitrarily accurate with increasing n. 

 

3.1 Semi-analytical solutions for truncated scaling correct power series functionals or 

Lagrangian 

3.1.1 First order truncation 

     It is useful to consider the truncations for Eq.12. If n=1, then 

(5/3)A1
2/3

 + (4/3)B1
1/3

 + v(r1)    Eelectr,0 / N                    (Eq.13) 

This equation, which is a crude approximation for the solution of Eq.3 or the SE for ground state, 

has been considered in detail in ref.[15]. Although it does have some flaws (see below), it 

maintains some positive properties, e.g. it approximates absolute ground state electronic energy 

values quite well for atoms with {ZA < 11 and 2 < N < ZA +2} and molecules built of these atoms. 

For atoms, it predicts [15] ionization potential better in some cases than e.g. the HF-SCF/6-31G*. 

For atoms, and irrespective of the nuclear frame of equilibrium geometry molecules, it provides 

[15] a very close value to the virial theorem value: 2. It should also be noticed that such 

comparisons (HF and definitely a too small basis set) are not relevant, because actual calculations 

in practice try to use larger and larger basis sets. However, many researchers agree that functionals 

should be equally suitable for smaller basis sets too. Generally, one should use a relatively small 

basis to start with and put more emphasis on the empirical parameterization. It is an appealing idea 

to assume that the parameterization performed within a small basis expansion set can absorb some 

deficiencies of the basis limitations itself (see p.108 in ref.[3]). The latter has also been confirmed 

as a side result in a new correlation calculation method published in ref. [61]. Actually, at this 

point in this section we show a basis set free algorithm, but in later truncations for more accurate 

results below, basis set will be necessary. 
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     The algorithm to solve Eq.3 for this truncation is as follows. With the substitution z  
1/3

, 

Eq.13 is a second order algebraic equation, and can be solved for z(r1, approx), providing the 

 = z
3
(r1, approx). (We draw attention to the fact that v(r1) does not appear in the kinetic 

and electron-electron Hamiltonian or DFT operator explicitly: however,  includes it implicitly as 

 = (v(r1)), a known functional relationship, see ref.[2] – it is satisfied via the approximate 

Eq.13.) For Eq.13, it is important and convincing to mention some early work of March’s [47] 

who derived the 0(x1) = const.(-v(x1))
1/2

 for independent fermions in one dimension (which is 

exact in those very simple conditions as well as  being the chemical potential). The energy 

functional in Eq.10 in this case (n=1) is  

Eelectr[]  Eelectr,0,approx  (A1
5/3

 +B1
4/3

 +v(r1))dr1                   (Eq.14) 

and approx(r1) = Cz
3
(r1, approx) is supposed to be substituted for  in the integrand, where C 

fixes N= Cz
3
(r1, approx)dr1 to be satisfied in every step. Integral in Eq.14 depends on  such as 

exhibiting one well defined minimum, and the numerical solution for Eelectr[]/ = 0 yields the 

approximation for ground state electronic energy (recall the 2
nd

 HK theorem). This completes the 

procedure indicated in the title of this section. All the integral evaluations must be numerical. Its 

two parameters, c10 and c20 via Eqs.7-8, were fitted [15] to ground state electronic energies of CI 

atomic ions. The limit and integral behavior of model 0 from Eq.13 is as follows. For a peak at 

RA, the integral ZA
3/2

RA1
-3/2

dr1 = ZA
3/2
|r1|

-3/2
dr1 = 4ZA

3/2
u

2
u

-3/2
du = (8/3)(ZArmax)

3/2
 over a 

sphere with radius rmax around RA, i.e. finite, although the integrand value is infinite at RA. 

Similarly holds for other algebraic powers of model 0 appearing for integration in Eq.14. 

However, because the “ring off” at around a radial rmax value via the discriminant in Eq.13 (that is 

a 2
nd

 order algebraic equation for 0
1/3

), the integral in Eq.14 is finite in the algorithm. Computer 

investigations have shown that this internal rmax value in the calculation is about 3-4 times the van 

der Waals’ radius of atoms in a molecule. Although the energy integral is finite in Eq.14, one 

drawback of model 0 in Eq.13 is that limr1RA[0,approx] = , instead of an expected finite value 

as has just been mentioned. Recall e.g. the analytic atomic 1s solution for H-like atoms. 

     The flaws of truncation at n=1 can be summarized as follows: 1. The normalization constant, 

C, is not 1 (it was introduced after the solution of a second order equation), but about 0.46, 

however, it has at least a very small dependency on (ZA, N) of atoms and nuclear frame ({RA ,ZA}, 

N=  ZA) of (at least neutral or close to neutral) molecules. 2. The approx depends on certain 

power of v(r1) yielding infinite values at any nuclei RA, and as it is characteristic in certain DFT 

approximations, it can not show the shell structure for atoms, it is only a decaying function. 3. The 

value of approx at minimum (approx,min) multiplied by N, and the integral (Eelectr,0,approx) at this 

approx,min has to be the same, i.e. they have to be self-consistent, however, instead [15], Eelectr,0,approx 

/(Napprox,min)  3, showing a marginally stronger dependency on the nuclear frame than C above. 

4. The check for virial theorem for atoms and equilibrium molecules gives values between 1.95-

2.05, which is a bit off  the expected theoretical value 2.00. 5. If atoms with atomic charge Z > 10 

are involved in the molecular system, the calculated electronic energy value is absolutely invalid, 

it means that powers belonging to n=1 are not enough. 6. It can not account for chemical bond, for 

example calculating energy of atomization yields that known stable molecules are not stable via 

Eq.14; it is in accord with the known weakness of TF functional if it stands alone for kinetic 

energy – again, the truncation at n=1 is too early. 

     We also note, that the energy functional in Eq.14 is a known, well-established expression [2] as 

first approximation. The approx from Eq.13 provides an educated guess for trial one-electron 

density that was new in ref.[15], and new here is that how it relates to the Lagrangian. Another 
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way to originate Eq.13 is by integrating SE yields (

H-E


)dx1...dxN = 0, and if – trivially – 

one substitutes a true solution  (more specifically the ground state 0) into the left hand side, the 

integral is zero because the integrand itself is a zero function. Actually, it has a more rigorous 

internal relationship because an integral can be zero too if the integrand is not a zero function. 

This integral form of SE also leads to the true DFT functional with the device of reducing the 

variables of integration mentioned in Eq.1. Now, start with the approximate Eq.14 as established 

in the literature and rearrange it as (NA1
5/3 

+Nv(r1) + NB1
4/3
Eelectr,0,approx)dr1  0 with 

back-substitution (or extension) of N=dr1. All terms in the integrand are supposed to follow the 

individual energy terms (kinetic, etc.). In this way one can suppose, that the integrand in this case 

is also an approximate zero function, and we have recovered a similar equation to Eq.13 for 

expressing approx, if one divides with  and N. The Eelectr,0/N correspondence can be 

recognized. (Notice that fitting parameters, c10 in A1 and c20 in B1, can absorb 5/3 and 4/3 

respectively in Eq.13 as was done in ref.[15].) This derivation is a bit more complex than it looks  

at first take, some more details can be found in ref.[14]: For example, there can be additive terms 

in the integrand which individually yield zero integral value, although they are not zero functions, 

see equation 32 in ref.[14]. Consequently, these terms do not show up in F but shapes the  in an 

equation like Eq.13 for Eq.14. Generally speaking, it is just another relationship between the exact 

DFT functional F and the exact DFT integro-differential operator D mentioned above. Eq.13 

suffers from the crude truncation (n=1) after a rigorous and exact derivation yielding Eq.12, but 

Eqs.13-14 at least show explicitly how the DFT functional and its approximate solution behave as 

functions.  

 

3.1.2 Second order truncation 

     Truncation of Eq.12 at n=2 yields 

(5/3)A1
2/3

 + (8/3)A2[
4/3

dr1]
1/3

 +(4/3)B1
1/3

 +(7/3)B2[
7/6

dr1]
1/6

 +v(r1)   (Eq.15) 

With substitution u  
1/6

, one yields the integral-equation for u(r1)  as 

(5/3)A1u
4
 + (8/3)A2[u

8
dr1]u

2
 +(4/3)B1u

2
 +(7/3)B2[u

7
dr1]u +v(r1)             (Eq.16) 

The procedure should be similar to truncation at n=1, however, it is much more difficult to solve 

this equation for u  
1/6

 than Eq.13 for z  
1/3

. But obviously, Eq.16 is more flexible than 

Eq.13, i.e. it provides a more realistic u
6
 approx(r1, ) in accord with the fact that the series in 

Eqs.5-6 converge rapidly [22]. Furthermore, because it is not an algebraic equation like Eq.13, but 

a relation between functions and their integrals (or functions and their derivatives), the cusp 

condition for approx is better satisfied, e.g. it yields finite value at any nuclei, RA. It can be 

simplified crudely as u
8
dr1 

8/6
dr1  u

7
dr1 

7/6
dr1  (dr1) = N or N

8/6 or 7/6
, or more 

realistically as G(x=4/3) and G(x=7/6), respectively, according to Eq.9. With the later, Eq.16 

degrades to  

(5/3)A1u
4
 + [(8/3)G(x=4/3)A2+ (4/3)B1]u

2
 +(7/3)G(x=7/6)B2u +v(r1)  ,       (Eq.17)

which is a 4
th

 order algebraic equation  in u, a more powerful equation than Eq.13, which was 2
nd

 

order in z. It can be solved analytically because the general analytic solution exists up to a 4
th

 

order algebraic equation: however, like z from Eq.13, u via Eq.17 contains certain positive powers 

of v(r1), crudely represented as approx ~ v(r1)
c
, which suffers again from the unrealistic cusp 

limr1RA [approx] = . On the other hand, the analytic solution of a 4
th

 order algebraic equation is 

via the 3
rd

 order algebraic equation, and Eq.17 does not have the problem of negative discriminant 

(artificial error) for some far away positions from the nuclear frame as Eq.13 has. The better 

properties of Eq.17 to predict electronic energy will be reported in a later work. Notice the fine 
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detail that the truncation n=1 of Eq.12 it only yields an algebraic equation (second order, Eq.13) 

suffering from e.g. the wrong cusp description beside the not adequate accuracy, while truncation 

n=2 (or higher) of Eq.12 yields integral (or differential) equation (Eq.15) which is more flexible to 

describe properties, e.g. cusps,  it is also more accurate. 

 

3.1.3 Larger than second order truncation 

     Equations 13 and 17 reveal that Eqs.10-12 need numerical integration and the power series in it 

should go up to at least n=4 in the truncation to accurately describe shell structure, ground state 

electronic energy (Eelectr,0) and ground state one-electron density ((r1)), as a function of nuclear 

frame (RA, ZA and number of electrons (N). Numerically solving Eq.15 has similar, at least, 

not fewer programming complexities than the more accurate Eq.12, so, one should evaluate the 

latter for more accuracy wherein the n is a tuning variable for accuracy. Eqs.13 and 17 can show 

approximately how the true algebraic form of (r1) may analytically behave, what is less visible 

by the numerical solution of Eq.12. Eelectr,0(RA,ZA) via Eq.12 is supposed to be accurate not 

only in the vicinity of stationary points but in the van der Waals regions as well, and for open and 

closed shell molecular systems since spin pairing effect does not come up in this method in 

contrast to HF-SCF and post HF-SCF methods. Analytical integration may possibly be used for 

Gaussian type atomic orbital (GTO) basis set, see chapter 5 below. If numerical integration is 

chosen, the Slater type atomic orbital (STO) basis set can also be used, a more realistic choice, 

since it provides faster convergence. The parameters c10, a2, a3, a4, … and c20, c200, b2, b3, b4, … 

entered in Eqs.7-8 must be fitted to e.g. CI atomic and atomic ion ground state energies, which are 

supposed to be transferable [15] for molecular systems at any place on the potential energy surface 

for ground state. Of course, accurately known molecular Eelectr,0 values can also be used for fitting 

procedure, e.g. stationary point G2 values, however these are not totally accurate in contrast to 

atomic Eelectr,0 values from CI calculations or measurements, of which accuracy is far below the 

chemical accuracy. Eq.13 (n=1) needed fit [15] for A1 and B1 or equivalently for c10 and c20, Eq.15 

(n=2) needs fit for A1, A2, B1 and B2 or equivalently for c10, a2, c20 and b2 as well as c200 is unity or 

additional fitting parameter for Eqs.13 and 15. If truncation is at n> 2, see chapter 3.2 below, the 

c10, a2, …, an, c20, c200, b2, …, bn parameters need to be fitted. It will be detailed in a later paper, 

the theoretical foundation is described in chapters below. 

     We also mention that, it is pretty well known that e.g. the ionization potential can be well 

approximated using the moment expansion. However, if one considers a long series of atoms, with 

very different electron numbers, the density-moment expansion stops working as well [31]. In the 

literature there are opinions that, first, it is difficult to expand the Coulomb energy in terms of 

moments. For example, in the study of Tran, there are impressive results but the results are far 

from the sub-milli-Hartree accuracy that is needed in practical computations of the Coulomb 

energy [32], and that work only treats the absolute simplest case – atoms. Second, and more 

importantly, the moment expansion (at least the linear moment expansion [23]) does not 

necessarily converge. Not every functional can be exactly expressed as a simple power series of 

the moments, even trying to reproduce a simple functional (like the Weizsäcker kinetic energy, or 

the Coulomb energy). One must keep these in mind when we suggest alternative functional in 

Eq.25 below. However, the promising results in ref.[15] on atoms and molecules indicate the 

opportunities in this direction. 

 

3.2 Numerical solution for scaling correct power series functional at larger truncations 

3.2.1 LCAO approximation of one-electron density to start the minimization 
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     As was just analyzed, Eq.10 must be solved numerically for the minimum (extremum) because 

Eq.16 and the higher n-truncated cases of Eq.12 cannot be solved analytically. For this purpose, 

we have to proceed further with Eq.11. The density can be expanded as a linear combination of 

atomic orbitals (LCAO) where the basis, {bk(r1)}k=1…L, is consisted of e.g. L Cartesian, 

x
a
y

b
z

c
exp(-rA1

i
) STO (i=1) or GTO (i=2) basis functions (or contracted basis functions), a wisely 

chosen bunch, grouped and centered on each nuclei (as in HF-SCF or KS methods for MO’s). A 

good choice for this form is  

(r1)  (k=1…L dk bk(r1))
2
                                                      (Eq.18) 

,a function which is positive everywhere, as required by the 2
nd

 HK. If L is large enough and the 

basis set is wisely chosen, the true  will be approximated correctly. One must at least consider  

the concept of “minimal basis” [1]. Recall the form of HF-SCF or KS one-electron density [1] 

with N/2 (>1, e.g. closed shell) ortonormal molecular orbitals, (r1)  2i=1…N/2 [k=1…L1 cik 

bk(r1)]
2
  0, wherein the {cik} set, also called LCAO coefficients, contains L1(N/2) elements, and 

the square brackets contain the i
th

 MO, called fi(r1), see also Eq.23 below. Though there are only 

L1 square terms in it, (2icik
2
)bk

2
, running via index k and the 2icik

2
 corresponds to dk

2
, but more 

cross terms, bkbj, if L=L1, in comparison to Eq.18. (For example, if N=4 and L=L1=2, it yields 0 

 d1
2
b1

2
 + d2

2
b2

2
 + 2d1d2b1b2 by Eq.18, i.e. the weight of cross term (inter-nuclear electron density, 

b1b2) is fixed by square term coefficients d1 and d2. On the other hand, the HF-SCF density (just 

mentioned or Eq.23 below) provides 2(c11
2
+c21

2
)b1

2
 + 2(c12

2
+c22

2
)b2

2
 + 4(c11c12+c21c22)b1b2, i.e. 

there are four coefficients to weight the three terms, i.e. the inter-nuclear electron density can be 

tuned more independently from the weight of cusps (b1
2
 and b2

2
). Notice, that in this simple 

example Eq.18 requires 2 parameters (d1, d2) to fit vs. 4 parameters (c11, c12, c21, c22) via Eq.23; to 

improve the flexibility of the former we must allow for the fact L>L1. Notice also, that Eq.23 

builds the parts of electron density (cusps b1
2
 and b2

2
 and bond b1b2) via 4 parameters, although 3 

would be enough as in C1b1
2
 + C2b2

2
 + C3b1b2 for the DFT central variable on this basis set {b1,b2} 

level.) In this way one should accept L>L1, but first, one should use STO and numerical 

integration instead of GTO with analytical integration employed by HF-SCF or KS. This allows 

the basis set to have fewer elements, i.e. with a lower value L. Secondly, using the HF-SCF or KS 

methods N/2 or (N+1)/2 pieces of MO’s must be approximated, while here there is only one 

quantity, the . Finally, if L is large enough, Eq.18 is a good approximation. There is another way 

to choose the form than Eq.18: (r1)  k=1…Lj=k…L(ckj bk(r1)bj(r1)) with symmetric ckj= cjk 

property, containing L(L+1)/2 terms, i.e. more cross terms. However, one must ensure that it 

provides everywhere positive one-electron density which is more difficult than in the case of 

Eq.18. In Eq.18, the right hand side is obviously  0, only the L needs to be increased for more 

accuracy. (For example, [k=1…Lj=k…L(ckj bk(r1)bj(r1))]
2
 is a way to ensure positive function 

values or the form in Eq.23 itself, but in respect to programming it has more difficult indexing 

than Eq.18. Like the approximate Slater form of the wavefunction in HF-SCF, this model serves to 

approximate one-electron density in DFT, and along with the choice of basis set, both are crucial 

points for effective calculation.) 

 

3.2.2 Numerical recipe for direct minimization  

     Inserting Eq.18 into Eq.10, and taking the derivative with respect to dk and , Eq.11 

reformulates as  

        L
*
/di = j=1,…n (1+2/(3j))jAj [

[1+2/(3j)]
dr1]

j-1


2/(3j)
i)dr1 

+ j=1,…n (1+1/(3j))jBj[
[1+1/(3j)]

dr1]
j-1


1/(3j)
idr1  + (v(r1) - idr1     (Eq.19) 
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L
*
/= N - (r1)dr1                                                                                            (Eq.20) 

for i=1…L. Using Eq.18, the partial derivatives are simply 

i(r1)/di =  2 bi(r1) (k=1…L dk bk(r1)), and im 

(r1)/didm = 2 bi(r1)bm(r1)    (Eq.21) 

i.e. the second and third indices refer to the partial derivatives. As mentioned [22], a truncation at 

n= 4 in Eq.10 is adequate. The system in Eqs.19-21 is non-linear, so e.g. the “steepest descent 

(gradient)” method can be employed. This method needs the second derivatives or Jacobian 



L

*
/(didm) for all i,m= 1,…,L+1, where dL+1  . The Jacobian matrix is ((L+1)x(L+1) 

dimensional, with element at row i and column m as Wim  

L

*
/(didm) a straightforward 2

nd
 

derivative. 

     Eqs.10 and 18 yield the powers for the recently defined LCAO parameters in Eq.18, dk. In L
*
, 

the dk parameters obtain the integer and non-integer power values between 1 and maximum 

2(1+2/(3n))n= 2(n+2/3)= 9.333 for n= 4; roughly and generally 2n+1. It means, that the L
*
, that 

we have to optimize via Eqs.19-20, is an L+1 dimensional polynomial with parameter vector 

{dk}k=1…L+1 with roughly the degree of about 2n+1 if truncation at j=n is taken – and hopefully, the 

truncation n=4  will provide a flexible enough function to calculate ground state electronic energy 

and one-electron density for molecular systems. The coefficients to dk come from integrating 

certain powers of linear combinations of the basis functions bk(r1), see note on the non-integer 

powers as well as GTO and STO basis sets in this respect below. Also, see Eq.19 for the algebraic 

position of v(r1), where the ∫bk(r1)bi(r1)rA1
-1

dr1  kind of integral comes up, but the ∫bk(r1)bi(r2)r12
-

1
dr1dr2 kind (also characteristic in HF-SCF or KS method) does not. 

 

3.3 On some expected behaviors of the Lagrangian 

     Note must be made on the asymptotic (far from the nuclei) behavior of the density: From the 

general theory [3], as well as it was discussed above, the (r1) must 1. be a non-negative function 

of only the three spatial variables, 2. vanish at infinity ((r1  ) = 0), and 3. integrate to the 

total number of electrons (Eq.2). The first property is ensured with the right hand side of Eq.18, 

the second is ensured with e.g. a nuclear centered GTO or STO basis set, and the third is ensured 

with Eq.10 via . However, a finer relationship [3] is its asymptotic exponential decay for large 

distances from all nuclei, that is (r1) ~ exp[-2 sqrt(2I) |r1|], where I is the exact first ionization 

energy of the system. This latter can be easily ensured with e.g. an STO basis set, and the LCAO 

coefficients are supposed to yield the constant value, 2 sqrt(2I) as well as the large enough value 

of n in Eqs.5-6 is important in this respect. 

     For the question, how do these series mathematically converge, the answer can come from 

refs.[15, 22]. Evidences have been shown [15] that the main parts of different energies come from 

j=1 in Eqs.5-6 or 10, and the convergence is very fast [22] thereafter: a truncation at n= 4 or 5 

may enough for chemical accuracy.   

      With respect to the spin states or spin polarization (measured through the spin-polarization 

parameter as (-)/ with =+ [3, 62]), Eq.10, solved e.g. via Eqs.19-20, 

describes the one having the lowest, i.e. the ground state energy, inherent in the Lagrangian 

method and 2
nd

 HK theorem. This means that, the choice, what HF, post HF, and KS methods 

have in this respect, e.g. to enforce singlet vs. triplet spin state calculation, for example 1s
2
2s

2
2px

2
 

(excited state) vs. 1s
2
2s

2
2px

1
2py

1
 (ground state in agreement with Hund’s rule) carbon atom, is not 

available here; Eq.10 always provides the ground state only. But on the other hand, basic problem 

present in HF, post HF, and KS methods with increasing bonds lengths or atom-atom distance 

inside a molecule toward transforming non-stable molecule or system with van der Waals 

distances, that is, for example stable H2 molecule (Spin= ½ - ½= 0, approximate wave function= 
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()f(r1)f(r2)) vs. well but not infinitively separated two H atoms (e.g. Spin= ½ + ½ =1, 

recall RHF, UHF modes etc.), is not a problem in Eq.10, it is supposed to handle any change in 

inter-nuclear distances in the system under consideration continuously. At this point we call the 

attention that although Eqs.3-6 are valid for ground and excited states too, but Eq.10, or its 

solution via e.g. Eqs.19-20, is on the calculation track for ground state only, (recall that the HK 

theorems apply to ground states).  

     Dobson [63-64] have shown, among others, that van der Waals complexes can be accurately 

accounted by (r1)(r2)h(r1,r2) kernels, which use only the density and not its derivatives – 

notice that this kernel description is formally the definition of the Coulomb hole. Approximations 

leading to Eq.10 also use only , but with using local functionals, capable to account for 

correlation effects [22]. 

 

4. Two serious tests have already been made for the scaling correct power series energy 

functionals  

     The calculation and proof test on atoms and molecules in ref.[15] for n=1 in Eqs.5-6 leading to 

Eq.13, which is (5/3)NA1
5/3

 + (4/3)NB1
4/3

 + Nv(r1)  Eelectr,0 via a small reformulation to 

get comparable expression to the one reported in ref.[15], has yielded that 1: (5/3)NA1 = 

1.4433781907 N cF; notice that A1  c10cF (Eq.7) so (5/3)c10 = 1.4433781907, (to avoid confusion, 

the entire product (5/3)c10 here was called c10 in ref. [15], i.e. (5/3)c10
here 

= c10
ref.[15]

), 2: (4/3)NB1 = 

0.8374131087 N 2
-1/3

(N-1)
(2/3)

, notice that B1  c20(2
-1/3

(N-1)
(2/3)

) (Eq.8 with c200 =1) so (4/3)c20 = 

0.8374131087, (to avoid confusion, the entire product (4/3)c20  here was called c20 in ref. [15], i.e. 

(4/3)c20
here 

= c20
ref.[15]

). Calculation on ionisation potentials of atoms is demonstrated on Figure.1. 

Important, in ref.[15] a direct calculation for  and Eelectr,0 was done with a non-HF-SCF one-

electron density, where the latter is the second order algebraic solution for  via Eq.13. The 

weakness of this fit from ref.[15] is that n was truncated early, namely at n=1, as detailed in 

section 3.1 above.   

     Another calculation and proof test on atoms was made in ref.[22] for n=3 in Eqs.5-6: however, 

they used HF-SCF one-electron density, and accurate Eelectr,0 to fit  the parameters of Eqs.5-6, i.e. 

not a direct calculation for  and Eelectr,0, but a fit after an ab intio calculation. Another difference 

is that instead of Eq.6, they used the form J[]+j=1,…nCxj[
[1+1/(3j)]

dr1]
j
, where 

J[]=CJ[
6/5

dr1]
5/3

. In this way the classical Coulomb repulsion energy J[] was modeled with 

a DFT form (i.e. with a functional of ) and the scaling correct series (Eq.6) was used to estimate 

the related part of correlation energy. (Recall the Dirac form mentioned above for comparison.) In 

this way T and J were high values, while Cxj’s served for only a correction. The fitted constants 

they have obtained are A1= 3.26422, A2= -0.02631, A3= 0.00498, CJ = 1.0829, Cx1= -0.85238, 

Cx2= 0.004911, Cx3= -0.000074. Although this fit in ref.[22] was suggested for correlation 

calculation after a HF-SCF routine, and its credence was demonstrated, its artifact in the view of 

this work is that it was not a direct calculation for  for the fit. Furthermore, we draw attention to 

the fact that the form, Vee= CJ[
6/5

dr1]
5/3

 + j=1,…nCxj[
[1+1/(3j)]

dr1]
j
, used instead of  Eq.6 is 

another proper power series, and Eq.10 can be changed accordingly (that is: the sum for Bj has to 

be replaced by this sum for CJ and Cxj).  

     We should also mention the classical example known for decades [2-3] and indicated above, 

with respect to this parameter value and fitting: Slater’s approximation of HF exchange energy 

x((r1))(r1)dr1  Cx(r1)
4/3

dr1, where Cx  = -(9/8)(3/)
1/3
 and is called the X method. It 

depends solely on the local values of the electron density, and  is an adjustable, semi-empirical 
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parameter. It has enjoyed a significant amount of popularity among physicists, but has never made 

much impact on chemistry. This 4/3-power law of electron density was obtained from two 

completely different approaches [3]: Slater (based on the potential of a uniformly charged sphere 

from standard electrostatics with radius corresponding to the Fermi hole), Bloch in 1929, and 

Dirac (as named above and as it is cited among chemists) in 1930 - using the concept of uniform 

electron gas, a fictitious model system of constant electron density. Typical values obey 0.666 <  

< 1 and depend on molecular frame (N, {RA, ZA}) slightly i.e.  stays in this interval: however, 

taking only an average value from this interval can destroy the chemical accuracy (1 kcal/mol) 

even for differences of ground state electronic energy in the outcome of the calculation for 

different systems. Exact mathematical form for this small functional dependence or fluctuation is 

unknown, but a well-established fact is that a major part of it is described by this 4/3-power 

formula. The rest can be described by higher power terms via Eq.6. Similarly, as mentioned 

above, in their model Thomas and Fermi [2-3] have arrived at the TTF = cF
5/3

dr1, very simple 

expression for the kinetic energy based on the uniform electron gas also. 

     As it has been demonstrated in refs.[15 and 22] fit to existing ground state (e.g. CI) atomic, 

atomic ions and (e.g. G2 or G3) molecular energies are feasible for parameters in Eqs.5-6. The 

best next step is a parameter fit for Eqs.5-6 with direct calculation for  and Eelectr,0 and n>3 as 

described above in section 3 and based on Eq.10 – it is our plan and will be reported in a later 

work. 

     We must mention some other parametrizations and tests: Burke and coworkers have recently 

developed semi-classical approaches, for example for the kinetic energy of one-dimensional 

model finite systems the leading corrections to local approximations as a functional of the 

potential have been derived [65]. Furthermore, condition on the Kohn–Sham kinetic energy and 

modern parametrization of the Thomas–Fermi density was elaborated by them [66], being the 

recovery of the correct expansion yields a condition on the Kohn–Sham kinetic energy that is 

important for the accuracy of approximate kinetic energy functionals for atoms, molecules, and 

solids – see also the discussion in section 5 in this relation. 

 

5. Relation to HF-SCF and Kohn-Sham formalism, and replacing all the time consuming 

gaussian based two and four center integrals  

5.1 Comparing the energy functionals 

     Classically, to solve the SE for ground state electronic energy, Eelectr,0, and normalized, anti-

symmetric 0 with the help of the variation principle, one must minimize the energy functional 

E[0,trial]= <0,trial|H|0,trial>, where H is the electronic Hamiltonian (used also at the beginning 

for Eq.1) with the known bra-ket notation [1-2]. The HF approximation [1-2] uses a single Slater 

determinant for 0,trial, denoted by Strial, obtaining 

EHF[Strial] = i=1,…,N i
*
(x1)[(-½)1

2 
+ v(r1)]i(x1)dx1 + (½)i,j=1,…,N (Jij-Kij)       (Eq.22) 

where the Coulomb integral is Jij = i(x1)i
*
(x1)[r12

-1
]j

*
(x2)j(x2)dx1dx2, and the exchange 

integral is Kij= i
*
(x1)j(x1)[r12

-1
]i(x2)j

*
(x2)dx1dx2. In Eq.22, the i are the orto-normalized 

MO’s approximated with LCAO using a GTO basis to be able to solve the integrals analytically, 

they also have pair-wise the same spatial part to build up Strial. The latter means that there is a 

common spatial function, f, such as 1(x1)= 1f(x1) and 2(x2)= 2f(x2) for i=1,2, g for i=3,4, and 

so on, where f,g,… are orto-normalized also. A systematic notation for them is {f1,f2,…,f(N/2) or 

f(N+1)/2} for even and odd N respectively. In this way the ground state one-electron density (via 

00

0ds1dx2…dxN Sopt

*
Soptds1dx2…dxN) is  

0,Slater,trial= 2i=1,…,N/2fi
2
 or 2i=1,…,(N-1)/2fi

2
 + f(N+1)/2

2
.                        (Eq.23) 
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Above we have used the notation 0,HF-SCF for this, meaning the optimized one - electron density, 

but now we want to emphasize the Slater determinant formalism included during the optimization. 

The main cases [1] abbreviated as RHF, ROHF and UHF, etc. will not be detailed further now. 

Eq.22 is decomposed to the so called HF or Fock differential equations and with standard 

computer routines the minimization problem can be treated to find the LCAO parameters for all 

HF molecular orbitals fi. Because a single Slater determinant is only an approximation for the 0, 

Eelectr,0 < EHF[Sopt] (see, variation principle), and the difference comes from the basis set error and 

correlation energy mentioned above. The latter, called Ecorr, is calculated after [1-2] the HF-SCF 

routine. 

     The KS theory [2-3], based on DFT, corrects this error during (i.e. not after) the algorithm 

using the single determinant form via the functional 

     EKS[0,Slater,trial] = -i=1,…,N/2fi
*
(r1)1

2
fi(r1)dr1 + v(r1)0,Slater,trial(r1)dr1  + 

 (1/2)0,Slater,trial(r1)0,Slater,trial(r2)r12
-1

dr1dr2 + Exc(0,Slater,trial)            (Eq.24) 

for the even N in the sum and the corresponding one for the odd N. Comparing Eq.22 and 24, the 

terms with nablas are basically the same (before and after integration over spins), actually it is a 

main idea in KS formalism. The latter means that the functional in Eq.24 does not only contain 

one-electron density, as it should in DFT (e.g. in Eq.10), but it also contains one-electron orbitals - 

overcoming the difficulties of not knowing the peculiar form of kinetic energy functional. The 

terms with the external (mostly nuclear frame) potential, v, in Eq.24 is also basically the same as 

the single determinant based approximation in Eq.22. However, the terms with r12
-1

 have basically 

different forms in Eq.22 vs. 24 even though they yield similar values in comparison to the 

magnitude of Eelectr,0. The term Exc (exchange-correlation) [1-3] in Eq.24 is an extra device in 

comparison to Eq.22, and according to DFT it can correct the error that Eq.22 makes. Actually, the 

main idea in KS formalism comes into effect during the SCF routine, and for this reason the HF 

orbitals from Eq.22 and KS orbitals from Eq.24 are not the same: however, they are close to each 

other. Similarly, the final correlation energy and basis set error, the Ecorr and Exc values are also 

close to each other at least on the same basis set level, and about 1-2 % of Eelectr,0. Eq.24 is 

decomposed to the so called KS differential equations, and with standard computer routines the 

minimization problem can be solved to find the LCAO parameters for all KS molecular orbitals fi. 

Here we do not address the problem of the single Slater determinant RHF vs. UHF behavior in the 

vicinity of stationary points vs. dissociating or van der Waals region etc. that Eq.22 has, but Eq.24 

can treat better.  

     A great technical advantage of KS formalism was that all the previously existing HF-SCF 

routines in the history of computation chemistry could be modified easily to handle any or both of 

Eq.22 or Eq.24. Knowing a very good form approximating the exact Exc in Eq.24, the Eelectr,0  

EKS[optimized 0,Slater] would hold very accurately. Without details, the acceptable approximate 

forms of Exc in Eq.24 embody the following properties focusing on the subject of this work: 1, it 

provides algebraic variation properties, but not necessarily variation with respect to Eelectr,0, 2, it is 

designed (e.g. in its parameter fit for approximate Exc) to Slater determinant or Eq.23, although 

0,trial can possess other algebraic forms, see e.g. the solution of Eq.13 [15] and Eq.17 or Eq.18, 3, 

there are some simple but important mathematical properties [3] that Exc or parts of it should 

provide, for example, the two-electron density is factorized as d2(x1,x2)= (x1)(x2)(1+f(x1,x2)), 

where f is called the correlation factor, and of course it strongly relates to the correlation energy, 

and theoretically ∫(x2)f(x1,x2)dx2 = -1, a property that an approximation must have -  at least 

approximately, etc.. For property 1, recall DFT concerning the variation of the true functional 

Eelectr,0  E[0,trial]=T[0,trial]+ Vee[0,trial]+ Vne[0,trial] with true T, Vne and Vee functionals and the 
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minimum at the true N-normalized 0, as opposed to the fact that Exc in Eq.24 is only an 

approximate functional in practice. For property 2, recall that a theoretically correct Exc for true 0 

re-corrects the error made by the previous terms in Eq.24, but 0 is approximated with a Slater 

form, so its correction has to be provided also. Furthermore, the basis set error is always present in 

practice. As we have emphasized, Exc in Eq.24 is not exactly known, only approximate forms are 

available and tested. We do not summarize the vast literature about it, but we do mention that no 

overall approximate form is yet known which provides the chemically accurate calculations: 

geometry optimums, energy differences, vibronic frequencies, dipol moments, van der Waals 

forces, etc. for any system. Instead, each existing and accepted functional is good for certain 

groups of chemical systems and problems only, but fails for some others. For this reason, different 

functionals are used in different systems or problems, that is not adequate scientifically. We have 

also mentioned above that the suggested and accepted approximate forms for Exc in the literature 

include derivatives (gradients) of the one-electron densities (or spin densities), in contrast, here we 

deal with scaling correct power series including the main (j=1) and correction terms (j>1) in 

Eqs.5-6. 

     Based on the previous parts of this work, an alternative functional to the ones in Eqs.22 and 24 

used in HF-SCF and KS routines, respectively, is  

     ESCMF-1[0,Slater,trial] = -i=1,…,N/2fi
*
(r1)1

2
fi(r1)dr1 + v(r1)0,Slater,trial(r1)dr1  + 

 j=1,…,n{Cj[0,Slater,trial
[1+2/(3j)]

dr1]
j
 + Bj[0,Slater,trial

[1+1/(3j)]
dr1]

j
}         (Eq.25) 

for the even N in the sum and the corresponding for odd N, as well as SCMF stands for “scaling 

correct moment functional”. In Eq.25 the terms with Cj originate from Eq.5 knowing that (unlike 

Eq.5) it does not approximate the entire kinetic energy, T, but only the correction to the first sum 

with nabla (now it is used as in the original idea from Parr et al. [22]). For this reason, the values 

of Cj are different from Aj in Eq.5, but presumably C1, C2, C3, … are similar to A2, A3, A4, … 

respectively, in magnitude. (Compare it algebraically to the aforementioned Dirac exchange term - 

an algebraic form that can be a correction term as well as a main term, depending how one uses it.) 

The terms with Bj in Eq.25 account for the entire electron-electron repulsion energy from Eq.6, 

and being a scaling correct power series, it is supposed to account accurately if n is large enough 

and the accurate 0 is used, and no correction like Exc (exchange correlation, Fermi and Coulomb 

hole, etc.) is needed. The only adjustment needed in the values of C and B coefficients with 

respect to Eqs.5-6 is that in Eq.25 the Slater type one-electron density in Eq.23 is used, not the real 

one as in Eqs.5-6 – although with a larger basis set, the difference may be negligible. According to 

practice [22], n should go up to 4 or 5 to reach chemical accuracy.  

     In the Fock equations associated to HF-SCF or KS method the two-electron operators (rij
-1

) are 

reduced to one-electron operators via some standard non-local integration technique. In this way, 

algebraically a Slater determinant is a 100% accurate form on the way to finding the 

antisymmetric solution for the system of Fock equations [3]. With Exc in Eq.24 the Fock equations 

own the “perturbation” toward a solution to hit the value of the ground state electronic energy of 

its stem equation - the electronic Schrodinger equation, more accurately. In Eq.25 there are only 

one-electron terms and operators, so for the associated Fock equations, a Slaterian form for the 

solution is also adequate in the beginning too. The role of Exc in Eq.24 corresponds to the role of 

terms with coefficients B for j>1 or 2 in Eq.25, and terms with coefficients C provide even more 

improvement (namely in the form of kinetic operators used). An accepted drawback of Exc in 

Eq.24 in the literature, is that it cannot be improved systematically, while the scaling correct 

power series in Eq.25 provides systematic improvement by the increasing n. Moreover, in the next 
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chapter we analyze that the integration needed in Eq.25 puts us on the road to improve upon 

Eq.22-24; the key point is that there is no term with rij
-1

. 

          In the literature there are opinions that it is difficult to expand the Coulomb energy in terms 

of moments, although the above mentioned CJ[
6/5

dr1]
5/3

 main term does the job good [22] with 

three correctional terms, and even the B1
4/3

dr1 main term in Eq.6 performs remarkable [15] 

without correctional terms. We mention that some researchers strictly say that, expanding the 

Coulomb term in moments is ridiculous. It may work for atoms, or for molecules near 

equilibrium. But it can never work for a system like the stretched HF dimer because the 1/r 

electrostatic repulsion between electrons on the fragments is missed.  Of course, this is a practical 

point (not a mathematical point):  it just suggests that (mathematically) the moment expansion 

converges very (perhaps infinitely) slowly. By this reason, instead of Eqs.6 or 10, the alternative 

form (compare what KS uses, Vee(1/2)(r1)(r2)r12
-1

dr1dr2+xcdr1, the origin of the huge 

literature on exchange-correlation energy) is 

Vee[(r1)]= (1/2)(r1)(r2)r12
-1

dr1dr2+j=1,…nBj[
 [1+1/(3j)]

dr1]
j
                     (Eq.26) 

In this way, the classical Coulomb term is the major one, and the entire set of coefficients B falls 

into correction terms - compare to Eq.6 where B1 was connected to the major term and B2, B3, … 

were the correctional ones. It can be used to develop Eq.25, more, another alternate energy 

functional to Eqs.22, 24 and 25, and to the parts in Eq.10 without  is  

    ESCMF-2[0] = j=1,…n Aj[
[1+2/(3j)]

dr1]
j
 + v(r1)(r1)dr1   +  

     (1/2)(r1)(r2)r12
-1

dr1dr2+j=1,…nBj[
[1+1/(3j)]

dr1]
j
                                  (Eq.27) 

with e.g. the use of Eq.18. The expressions in Eqs.10 and 19 can be changed accordingly. The 

additional term entering to Eq.19, by the replacement of Eq.6 with Eq.26, is (r2)(r1)/di)r12
-

1
dr2dr1. Notice that Eq.27 contains only  at this point and Slaterian form is not a restriction. The 

only major restriction coming up by this classical Coulombic term is that GTO basis must be used 

for all terms (no way to use STO) in the corresponding expression to Eq.19, as well as numerical 

integration cannot be used for this term (containing r12
-1

) but analytical one; but of course the other 

terms can be evaluated only numerically. However, the known, relatively good long-range 

behavior of this major non-local functional in Eq.26 (firs term) is well established in a light 

contrast to the local functional in Eq.6. There is no nabla terms in Eq.27, so this form algebraically 

is rather belong to the ones in section 3.2 with respect to solution algorithm and DFT, like Eq.10, 

and unlike Eqs.22, 24-25. 

 

5.2 In relation to numerical integration and programming      
     It is quite obvious that existing HF-SCF routines solving Eq.22 can easily be modified to solve 

Eq.25, as it was possible for the KS formalism in Eq.24. The advantage of Eq.25 is that expensive 

analytical integration for terms containing r12
-1

 are not necessary as opposed to Eqs.22 and 24, the 

most time consuming procedure, despite the fact that subroutines for these analytical integrals, i.e. 

r12
-1

 in the integrand multiplied with GTO’s, are highly developed today in practice. On the other 

hand, the necessary tools of numerical integration for the nonlinear Exc (Eq.24) are already built in 

existing codes using KS formalism. The terms with C and B coefficients in Eq.25 can also be 

calculated numerically and accurately without larger additional programming input. Numerical 

integration is the first choice for the terms with Bj and Cj in Eq.25, because of its not-integer 

powers. Furthermore, since the numerical integration used in these tasks is very accurate, the first 

two terms in Eq.25 - kinetic and nuclear-electron attraction, can also be shifted to the numerical 

integration subroutine, making the program structure simpler. Recall, that in the case of GTO basis 

set these two terms are traditionally evaluated analytically. In this way, even the faster, more 
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powerful STO basis set can be used. (Notice that for integrals with rij
-1

 in the integrand, the 6 

dimensional ∫…dr1dr2 must be evaluated after all algebraic reductions, not so, for the simpler 3 

dimensional ∫…dr1, e.g. for the kinetic and nuclear-electron terms. For analytic integration one 

had to switch from STO to GTO basis set in the HF-SCF method, but with the KS method, the 

additional non-linear Exc term has entered the arena, and it cannot be integrated analytically, even 

though it only needs the ∫…dr1 and the use of the GTO basis set cannot counterbalance the non-

linearity. As a consequence, numerical integration is necessary for this part: however, with 

computational chemistry problems, fast numerical integration is not available for ∫…dr1dr2, not 

so, in the case of ∫…dr1, but Eq.25 is free of rij
-1

.) It must be emphasized that “numerical 

integration for all integrals” has an important effect on computation time, i.e. the computation time 

in this case is proportional to the number of nuclei (M) in contrast to N
c
 characteristic in HF-SCF 

or KS routines (c = 2 to 4), where N is the number of electrons. Recall that M<<N in practically 

important systems, also recall the study in ref.[15]. The use of STO or GTO basis with numerical 

integration for all terms in Eq.25 and the fit for C and B parameters will be reported in later work. 

     We must mention that many powerful multicenter integration schemes, based on density fitting 

(close to proposal above), have been developed since, see e.g. review chapters 7.3–7.6 in ref.[3] 

and references therein, as well as Ahlrichs et al. [67-68] and Parrinello et al. [69]. 

 

5.3 In relation to analytical integration 

     If one wants to stay with analytical integration, avoiding the numerical, our note on it is as 

follows for terms with C and B coefficients in Eq.25, or A and B coefficients in Eqs.10 or 27: The 

fractional (i.e. not integer) power, 
c
 in Eq.25 with Eq.23 or 0

c
 in Eqs.10 or 27 with 

Eq.18 takes the values c= 5/3, 8/6, … and 4/3, 7/6, … up to a truncation, where the c’s are 

between 1 (j or n  ) and 5/3= 1.6667 (j=1). The 0
c
 can be expanded with the help of e.g. a 

truncated Taylor series containing integer powers instead of c’s: in this way, the use of GTO basis, 

allows analytical integration. It is important to note that the Taylor series must be expanded with a 

region of values of 0, and not with a particular value of it. Here we briefly mention the way to 

analytical integration. Using the least square device [0
c
 – (i=1...kai0

i
)]

2
d0  = minimum, where 

the integration is from 0 to R, the ai coefficients can be obtained, as well as k=4-6 is enough 

according to our preliminary tests. The one-electron density is always positive, so the interval for 

integration starts from zero (far away from the molecule or at the nods, if any, inside the molecular 

frame), while the maximum value (R) is what a one-electron density can pick up. The latter is at 

the nuclei with maximum ZA in the nuclear frame. (In the view of “atoms in molecule” and “core 

electrons” concepts, recall that in H-like atoms the radial part of 1s wavefunction is 

R10=2ZA
3/2

exp(-ZAr1), so the maximal value (R) is max(0)~ R10
2
~ ZA

3
 – i.e. magnitudes larger 

than the values at bonds or inter-atomic regions.) The arising difficulty is, that generally 0 has 

high sharp spherical-like peaks at the nuclei and much smoother curves and lower values on a 

graph, for example in the case of an equilibrium molecular system. As a consequence, weighted 

least square is more suitable. The above form is an adequate choice, since the value of c is not far 

from the integer powers (i) present, as well as that, it has a similar monotonity to the integer 

powers in the expression. In this way 0,Slater,trial
c
 is replaced with i=1...kai0,Slater,trial

i
 in Eq.25 and 

similarly in Eqs.10 and 27, and with integer powers analytical integration is possible, since the 

product of GTO type functions (via the sum in 0,Slater,trial) is also GTO type: however, an arising 

problem may cancel this opportunity, e.g. in  the case of, let us say, 100 or 1000 or more GTO 

basis functions in a basis set, the 4-6
th

 power of their sum (see Eqs.18 or 23) generate an enormous 

number of terms to sum up. In contrast, the numerical integration needs to sum up these 100 or 
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1000 terms only and taking the c
th

 power of that value thereafter. Finally, we must state that 

numerical integration is the only choice when Eqs.5-6 are involved in the functional, however, the 

faster STO basis set can be used.   

     We must mention one other way for integration: Numerical integration on a finite grid (see e.g. 

refs.[14-15] or chapter 7.4 in ref.[3])  may have a disadvantages, mostly due to the ‘numerical 

noise’ inherent in this approach. To get rid of these problems it is possible to have grid-free 

implementations to compute terms like the ones in Eqs.5-6 or Exc in Eq.24. A well-known fact 

from linear algebra is that a function of a matrix which is expressed in an orthonormal basis can 

be evaluated by first diagonalizing the matrix, then applying the function on the diagonal elements 

and finally transforming the matrix back to its original basis. An illustration of this simple 

procedure for the functional 0
4/3

 can be found in chapter 7.5 in ref.[3], see also the related 

references therein.  

 

6. Summary 

     The contribution of addressing moment functionals in a true variational method is very 

interesting, important and useful, and it should have been done long ago - at least the author 

thinks that beside the many related research referenced, this has not been done yet in a complete 

discussion, and this work has targeted to do that. After summarising the scaling correct power 

series or moment functionals for the different energy terms in the electronic Schrodinger equation, 

the Lagrangian method was applied first in the literature (to the author’s knowledge) for 

variational solution of the ground state with restricting the N-normalization of the one-electron 

density. Possible semi-analytical solutions were discussed for some early truncations, as well as 

feasible numerical recipe was described for any high level later truncation. Reporting some 

promising preliminary calculations and results, the method was compared with the Hartree-Fock-

SCF and Kohn-Sham methods on theoretical ground along with the discussion of opportunities for 

analytical vs. numerical integration – the inclusion or substitution of the crucial classical 

Coulombic term was also discussed.   

 

Appendix 

     In Eq.9 the first, weaker approximation is [
[1+a/(3j)]

dr1]
j
  [dr1]

j
 = N

j
, which is fine for a 

large j, but for the smallest index j=1, the largest power 
5/3

dr1  N is not accurate enough. The 

idea is reasonable for large j, because 1  1+a/(3j)  5/3= 1.6667 and limj(1+a/(3j))= 1 for both 

a=1 and 2 with rigorous monotonity. However, the number of electrons in a system is generally 

high, recall e.g. that N=10 for CH4, so an additional fact to this very weak approximation is that 

although the power in the integrand decrease with j, but the integral is on power j – 

counterbalancing the decreasing a/(3j). Being , a better approximation is 
[1+a/(3j)]

dr1  

[dr1]
[1+a/(3j)]

 = N
x
. An even more accurate approximation is as follow. The

 
exp(-2Zr1) is an 

atomic 1s orbital, and let us approximate the decay of  with it (at 2-3 van der Waals distances 

from the molecule), as well as we can use Z= ZA= N for a molecule owing peaks at nuclei. Take 

the known integral equality (Z
3
/)

x
exp(-2Zxr1)dr1 = (Z

3
/)

x-1
/x

3
 with the extension 

N
x
(Z

3
/)

x
exp(-2Zxr1)dr1 = N

x
(Z

3
/)

x-1
/x

3
 = N

x
(N

3
/)

x-1
/x

3
 for x=1+a/(3j). For example, for N=20 

and considering a 1s density for 20 electrons (r1) = N(Z
3
/)exp(-2Zr1) = N(N

3
/)exp(-2Nr1)  = 

(1.6/)10
5
exp(-40r) the dr1 = N = 20 and 

4/3
dr1 313 in contrast to N=20 or N

4/3
= 20

4/3
= 

54.29. An N
x
(N

3
/)

x-1
/x

3
 with x=1+a/(3j) is more accurate than N or N

x
 for 

[1+a/(3j)]
dr1.  
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Figure 1.: Error of calculation for atomic ionization potentials (IP for A  A
+
) by HF-SCF/6-

31G*, and Eq.10 (n=1, basis set free calculation) with optimized parameters from ref.[15], ordered 

with increasing atomic number, Z, and number of electrons, N; (the huge IP values for Ne
6+

 and 

Ne are marked for comparison).   
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