
Three examples of the use of neural networks in analyses of geologic data from hydrocarbon
reservoirs are presented. All networks are trained with data originating from clastic reservoirs of
Neogene age located in the Croatian part of the Pannonian Basin. Training always included similar
reservoir variables, i.e. electric logs (resistivity, spontaneous potential) and lithology determined from
cores or logs and described as sandstone or marl, with categorical values in intervals. Selected
variables also include hydrocarbon saturation, also represented by a categorical variable, average
reservoir porosity calculated from interpreted well logs, and seismic attributes. In all three neural
models some of the mentioned inputs were used for analyzing data collected from three different oil
fields in the Croatian part of the Pannonian Basin. It is shown that selection of geologically and
physically linked variables play a key role in the process of network training, validating and
processing. The aim of this study was to establish relationships between log-derived data, core data,
and seismic attributes. Three case studies are described in this paper to illustrate the use of neural
network prediction of sandstone-marl facies (Case Study # 1, Okoli Field), prediction of carbonate
breccia porosity (Case Study # 2, Benić̀anci Field), and prediction of lithology and saturation (Case
Study # 3, Kloštar Field). The results of these studies indicate that this method is capable of providing
better understanding of some clastic Neogene reservoirs in the Croatian part of the Pannonian Basin.
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Introduction

Generally, neural networks are modern interpretation tools with several
purposes. In the early days of artificial intelligence Rosenblatt – an American
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psychologist – developed a machine called a perceptron, based on memorizing
the pattern of the human mind (Rosenblatt 1957). In 1958 Rosenblatt proposed
the perceptron as a more general computational model than the
McCulloch–|Pitts units. McCulloch and Pitts (1943) developed the first artificial
neuron, the Threshold Logic Unit (TLU) in 1943; later it was improved by
Rosenblatt. The essential innovation was the introduction of numerical weights
and a special interconnection pattern. In the original Rosenblatt model the
computing units are threshold elements and the connectivity is determined
stochastically. Learning takes place by adapting the weights of the network with
a numerical algorithm (Minsky and Papert 1969; Rojas 1996).

Supervised and unsupervised trainable networks are used in many different
fields such as geology; however, the application of a supervised network is more
current because the unsupervised learning network can solve specific problems
like clustering and pattern recognition problems, such as identifying spatial
patterns (Horváth 2010). The geology and geophysics of hydrocarbon reservoirs,
which include many indirect subsurface measurements, is an example where a
supervised trainable neural network is widely applied (e.g. Chen et al. 1999;
Huang and Williamson 1996; Luthi and Bryant 1997; McCormack 1991; Ouenes
2000). A considerable amount of data is available from different types of
resistivity and radioactive logs as well as interpreted seismic sections. Such
quantities make the process of learning or training, and the validating of
networks, possible. How networks are constructed is critical. The user provides
some examples for the neural network to learn, and then the network is tested or
validated with another data set to check the success of training. Eventually the
network is ready for processing of a new dataset with a target variable of
unknown value. However, any new variable not included in the training set will
be misclassified or not recognized. There are several neural algorithms, each with
their advantages and limitations, which can be subdivided into two main groups:
the feed back and feed forward networks. Networks are called feed forward
when they do not have any feedback cycle in the construction of their spanning
tree; otherwise they are called feedback ones. Feed forward networks are widely
applied and fully connected perceptron artificial neural networks (ANN). There
are several algorithms of such networks like Probabilistic Neural Networks
(PNN), Radial Basis Function Networks (RBF), and Resilient Propagation
Algorithm (RPA); some of them are applied in this work.

A trained neural geologic model for the same input always give the same
output, but in each iteration this input is trained with different weighting
coefficients for neurons, which practically means that errors and consequently
output, will be different. At the same time neural algorithms require a large
amount of data, which can be available in reservoirs of deterministic or,
sometimes stochastic, types. According to the classification of Jensen et al. (2000)
reservoirs can be considered as:
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1. Completely deterministic reservoirs where the inter-well areas are well
known and described by paleoenvironments. However, such localities are rare,
and mostly include mature fields with many wells. These are of interest only in
the development stage or when searching for "by-passed" oil;

2. Stochastic reservoirs are those where the architecture is mostly known at the
macro-scale. However, the inter-well area cannot be described for certain. In this
case improved interpolation methods, like geostatistics, are very desirable.

3. Random reservoirs are very rare and are mostly not a goal in geological
modeling. They are defined only by a few wells and/or gravimetric and
magnetometric data. They could be characterized by Monte Carlo sampling or by
analogy of similar prospects.

This means that neural algorithms can be applied to well-studied reservoirs,
where many previous results of geologic modeling are available; those
algorithms are applied for advanced characterization of subtle traps or
hydrocarbon reserves.

The important question was whether it was possible to apply neural
algorithms for a better description of hydrocarbon fields in the Pannonian Basin.
The reservoir description of such fields can consist of the description of clastic
systems, which include more than 90% of the hydrocarbon pools in the Croatian
part of the Pannonian Basin, where data has been collected. The term "better
description" was used for the application of neural networks in (a) the prediction
of reservoir lithology in parts without available electric logs or cores and (b)
mapping of porosity with the expectation that the obtained maps will be more
accurate than maps obtained with other interpolation techniques.

There are three Croatian hydrocarbon fields where neural analyses have been
applied so far, with the purpose of describing reservoir facies (Fig. 1). The oldest
analysis is of the Okoli Field (Malvić 2006) where neural networking has been
applied to predict the vertical position of sandstone and marl intervals in two
wells in the "c2" reservoir sequence (Lower Pontian age). A back-propagation
algorithm was applied for log curves from two wells. The second target was the
Benić̀anci Field where the reservoir is of massive type, represented by dolomite
and limestone breccia. The neural analysis was performed in 14 wells for interval-
averaged porosity and seismic attribute data by using a classical back-
propagation algorithm. The last analysis was performed in the Kloštar Field, with
the goal of predicting lithology and saturation in the 1st (Lower Pontian) and 2nd
(Upper Pannonian) sandstone reservoir "series". Here two supervised network
algorithms – multi-layer perceptron and radial basis function – were used.

Neural networks method description

The idea of a machine that could "learn" represents the prototype of a neural
network. The scheme called perceptron included connections like those in an
associative memory, representing the artificial neuron model (Fig. 2) that is
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assembled from several inputs and a single output. Each input (x) is associated
with related weight (w) added to the input value. Depending on the result (uj),
and conditions in activation function, the neuron could stay inactive or be
activated (y). Neurons are organized through layers (Fig. 3). The first set of
neurons makes an input layer. Such inputs are modified through hidden layers
(that are not connected with information outside the network) and the result is
given in the output layer. Expression (1) represents a set of calculations of the
neuron, and equation (2) detects activation of the neuron.

100 T. Malvić et al.
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Fig. 1
Location of hydrocarbon fields where neural analyses had been applied in the Croatian part of the
Pannonian Basin

Fig. 2
The artificial neuron model

Fig. 3
Schematic organization of neural networks
through layers



where:
j – number of neurons
i – number of inputs
xi – value of input "i"
wij – previously determined weighting coefficient for input "i"
uj – value of output in neuron "j"

where:
f – activation function
tj – target value for neuron "j"
yj – layer output (or total output if it is the last layer)

Equation (1) implies previously determined weighting coefficients, value of
activation hypothesis acceptance, number of layers and number of neurons in
each layer. The network training (learning) means that values of the weighting
coefficients and hypothesis acceptance are changed through this period. The
very first networks were based only on perceptrons and the main problem was
that the perceptron solves only a simple linear equation. It was a heavy
restriction, which was overcome by the back error propagation paradigm (abbr.
backprop). Such a network uses a large number of hidden layers and is named
multiple layer perceptron (e.g. Anderson and Rosenfeld 1988).

Multi-layer networks and backpropagation learning algorithm 

A multi-layer perceptron has an input layer of source nodes and an output
layer of computation nodes and these two layers are connected by one or more
layers of hidden neurons, which are not directly accessible. Usually the training
of an MLP runs using a backpropagation algorithm that involves two training
phases, the forward phase and backward phase (Werbos 1974; Rumelhart et al.
1986).

The term backpropagation algorithm means that network training includes
determination of the difference between true and wanted network response
using a training dataset. Calculation of differences, i.e. error, is backed in the
network for optimizing training (Fig. 4). Such an error is determined for each
neuron and used for adopting the existing weighting coefficient and activation
value. This corrective procedure is called backpropagation. It is repeated as many
times as required until the particular or total error is decreased below the limit or
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until maximal iteration is reached.
Thereupon the trained network can be
applied for processing new inputs.
Backpropagation is the most popular
paradigm that is applied to neural
networks, where the weighting
coefficients and errors are calculated

with equations (3) and (4).

where:
wnew – weighting coefficient of input (seismic attribute) in "i-th" iteration
wold – weighting coefficient of previous iteration
∆w – difference between the two weighting coefficients (new and old)
LR – Learning Rate; indicates in each iteration the use level of the

transformation function and momentum coefficient. If LR=0 the
transformation function is not used and entire network is based
only on applying the Momentum Coefficient

TR – Transfer Function; can be selected among several types. Here we
used the sigmoid shape expressed as f(x)=1/(1+ex)

CT – Correction Term; value depends on differences between true
(measured) and trained (by network) value

MC – Momentum Coefficient; defines how large the influence of the
result of previous iteration is in instantaneous calculation.

where:
yj – true output
dj – desired response
ej – error rate

This algorithm is used in multi-layer networks, but often could be
characterized by long-lasting training, which can be a limitation in a large
dataset, such as in geophysics (McCormack 1991). This type of reduced learning
rate resulted from the gradient descent method used in the backprop algorithm,
which only allows sending information to previous layers, i.e. back. 

The backpropagation learning algorithm is simple to implement and
computationally efficient, in that its complexity is linear in the synaptic weights
of the network. However, a major limitation of the algorithm is that it does not
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[wi]new = [wi]old + [LR × TF × CT] + [MC × previous ∆w]

ej = yj × (1 – yj) × (dj – yj)

(3)

(4)

Fig. 4
Adoption of weighting coefficient and error
decreasing



always converge and can be excruciatingly slow, particularly when we have to
deal with a difficult learning task that requires the use of a large network
(Sandberg et al. 2001).

There are many additional algorithms that can be used in neural networks and
which abolish the above-mentioned convergence problem, but most of them are
considered as an extension of backpropagation algorithms or another gradient-
based algorithm like Resilient Propagation Algorithm (RPA). They can be applied
as primary (solely) or secondary learning algorithms. These are conjugate
gradient descent (Gorse et al. 1997), quasi-Newton (Bishop 1995), Levenberg–
Marquardt (Levenberg 1944; Marquardt 1963), quick propagation (Fahlman
1988), and delta-bar-delta (Jacobs 1988). The greatest advantage of these
algorithms over backpropagation is that they are significantly faster, but not
always better in terms of errors.

Resilient Propagation Algorithm

Today, there are several other algorithms that can increase training speed. One
of them (Riedmiller and Braun 1993) is the Resilient Propagation Algorithm
(RProp). The main difference with the standard backprop algorithm is expressed
through using only partial derivations in the process of weighting coefficient
adjustment. RProp uses so-called training through epochs, where weighting
coefficients are adjusted after all the patterns or connections for input data are
sets. RProp is 4–5 times faster than the standard backprop algorithm.

The speed of training can be easily explained by variables in equation (3) called
momentum coefficient, learning rate and correction term. Look at an imaginary
set of eight 1D porosity values 7.2, 7.0, 6.3, 5.7, 6.2, 6.5, 5.5, 5.2% that tend to a
minimum at the end, also including one local minimum 5.7% in 4th place. The
network will recognize these local minima if the momentum coefficient is set at
an extremely sensitive level for the detection of local minima. But the general
trend is recognized using the learning rate parameter. The correction term
represents the differences between true and modeled values, which are
calculated for each hidden layer, when the network tries to decrease these
differences through the next iteration.

Radial Basic Function (RBF) networks

Another popular layered feed forward network is the radial basic function
(RBF) network which has important universal approximation properties (Park
and Sandberg 1993). RBF networks differ from multi-layer perceptrons in some
fundamental respects (Sandberg et al. 2001). Hereinafter RBF networks are
described by some differences:

The RBF networks, as opposed to the backpropagation model, have only one
single hidden layer with a non-linear RBF activation function, and the output
layer is always linear; the structure of the RBF model is shown in Figure 5.
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RBF networks are local approximations, whereas MLP networks are global
approximations.

The activation function of MLP computes the inner product between the input
signal vector and the pertinent synaptic weight vector. On the other hand, in the
RBF networks the activation function computes the Euclidean distance between
the input signal vector and parameter vector of the network. 

Radial basis functions are typically used to build up function approximations
of the form (5).

where:
xi – value of input "i"
ui – value of output in neuron "j"
wi – previously determined weighting coefficient for input "i"
ci – center vector of neuron "i"  
g(.) – radial basis function
||  || – usually the Euclidean distance, but it can be replaced with the

Mehalanobis distance.

The RBF network is frequently applied in solving classification problems rather
than in solving prediction problems. Neural networks have been successfully
applied in petroleum geology problems such as determining reservoir properties
(e.g. lithology and porosity) from well logs (e.g. Bhatt 2002; Malvić 2006;
Cvetković et al. 2009), well-log correlation (Luthi and Bryant 1997), and mapping
porosity supported by seismic attributes (e.g. Malvić and Prskalo 2007), etc.
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Fig. 5
Radial basis function network

input
layer

hidden layer
of basis function

output layer
with linear associator



Neural algorithm in reservoir characterization examples from Croatia

Three neural networks applied to analyzing of log and seismic data of three
different oil and gas fields are presented here. Supervised neural algorithms had
been applied for data analysis in all three fields.

Case Study # 1: Okoli Field

The first analyzed field is the Okoli Field, located in the northwestern part of
the Sava Depression, which encompasses several sandstone series, each of which
is divided into reservoir levels. The field structure is brachianticline with NW–SE
strike, and faulted in its deeper parts. The reservoirs are of Upper Pontian ("b"
and "c" series) and Pliocene ages ("p", "A", "B" and "a" series). Sandstone porosity
varies between 14 and 37%, permeability 1.3 and 24.8 × 10–3 µm2 and reservoir
thickness ranges from 1 to 20 meters. 

Particular intervals of the c2 reservoir are outlined. The entire "c" series was
deposited over the major part of the field, and particular reservoirs are
concordant (continuous), characterized by locally correlative marlstone levels at
the top and bottom of sandstone ones. The following log curves were obtained
from the B-1 well: GR (gamma ray), R16" and R64" (resistivity logs). In the B-2
well the selected log curves were: GR (gamma ray), PORE (effective porosity),
PORT (total/true porosity), PORW (porosity in rock 100% saturated with water),
R16" (resistivity), SANDSTONE (sand portion curve) and SHALE (marl portion
curve). The newly calculated curve, in both cases, was called RESERVOIR. This
curve represents an artificial "categorized" variable, defined with numerical
values 0 and 1. Value 0 shows marlstone, and value 1 sandstone.

A backpropagation network was applied to the data from the Okoli Field. The
network is described, in applied software, as a Completely Connected Perceptron
type. In this type of network, training was divided into one cluster defined by 10
different sub-networks (called experts) with their own initial conditions. The
values of 10 experts were selected here. The first expert is initiated by the random
seed value of 0.01, and the next one with the previous value increased by 1. Each
subsequent sub-network was built with an increasing number of hidden layers.
Training options define the initial learning rule and learning rate. Here the local
(minima) adaptive rule called Improved Resilient Propagation Plus (iRProp+)
was selected. The initial learning rate was set at 0.01, later self-adjusted during
training. Network training was completed on the basis of two criteria. The first is
the error domain; when the domain value decreases below the limit, training is
stopped in terms of what is used in this analysis. The second criterion is the
number of maximum epochs in training; when this number is reached, training
is completed, although the error is not below the limit. The results obtained by
the cVision program (Fruhwirth 2005) are represented by several tables and
graphs (Malvić 2006), as in Figs 6 and 7. There are three main results expressed
through so-called "machines". The Face machine describes the best network
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obtained through the entire training, i.e. it is the measure of the network's
successful work. The Best machine encompasses data of momentarily the best
iteration, and the Trip machine includes a series of the most successful iterations
obtained in the entire analysis.

In the B-1 well the learning process (L) is performed with 153 data with the
value of 0, and 142 data with the value of 1. Validation (V) is carried out by using
48 data with the value of 0 and 50 data with the value of 1. In the B-2 well the
learning process (L) is performed with 225 data of the value of 0, and 215 data
with a value of 1. Validation (V) used 71 data of the value of 0 and 75 data of the
value of 1.
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Fig. 6
Relations of errors in periods of training divided in learning (L) and validation (V) and position of
Face and Best configurations (the symbols F, B in legend) for the B-1 well (from: Malvić 2006)

Fig. 7
Relations of errors in periods of training divided in learning (L) and validation (V) and position of
Face and Best configurations (the symbols F, B in legend) for the B-2 well (from: Malvić 2006)



In all 393 data for learning and validation were used in the B-1 well, and 586 in
the B-2 well.

The analytical target was the prediction of the true position of the values of 0
and 1 (i.e. sandstone and marlstone sequences). The success in prediction, in the
B-1 well, of intervals that were not interpreted lithologically from e-log, but
instead using neural networking, is visually presented in Table 1. 
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Table 1
Prediction of lithology by trained neural network and comparison of existing results (masked for
network). Theoretical probability of successful prediction was 88.1% and real probability was 52.5%
(100% in sandstones, 6.66% in marlstones)



Numerically a high correlation was obtained between predicted and true
position of sandstone lithology in the reservoir; on the other hand, marlstone
positions mostly do not correspond. Moreover, the total probability for facies
prediction is high. In the B-1 well (3 log curves) it is >=78.3% and in the B-2 well
(7 log curves) at least >=82.1%. The Face machine is calculated relatively in the
early period of network training (in the B-1 well this in the 2186th iteration, in the
B-2 well in the 7626th iteration, of a total of 30,000).

Case Study # 2: Benić̀anci Field

The Benić̀anci Field is located in the eastern part of the Drava Depression. It is
brachianticline with a W–E strike, connected to a "buried hill" above Paleozoic
paleorelief. The reservoir is of massive type, lithologically represented by
dolomitic and limestone breccia of Badenian age. The average porosity is 7.33%
and initial water saturation 28.13%. The reservoir rocks are the result of Middle
Miocene breccia depositional model that resulted from alluvial fan as well as
tectonic activity. It is still one of the five main hydrocarbon reservoirs in Croatia,
represented by carbonate breccia of Badenian age. The seismic amplitude, phase
and frequencies are interpreted from the 3D seismic cube, and interpolated (from
a total of 16,384 values) at 14 well locations with the newest reservoir mean
porosity calculations. Those four variables at 14 locations represented the dataset
used for the backpropagation network training with 10,000 iterations, searching
for the correlation between attribute(s) and porosities. Such an obtained network,
with the best weighting coefficient, had been used for porosity mapping in the
southern part of the field (Fig. 8).

In this case the neural network uses a logistic activation function for the
backpropagation algorithm. Furthermore, the network included two groups of
parameters that dictated training, the network's low and the high sensitivity
parameters. The low-sensitivity parameters were (a) the number of hidden
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Fig. 8
The neural network porosity map of the Benicanci Field - color scale 5–10% (from: Malvić and Prskalo
2007)



layers, (b) the learning rate, (c) the momentum coefficient and (d) the number of
iterations. The number of hidden layers varied between 5 and 25, but improved
correlation (seismic-log porosity) only for 0.001–0.01 and significantly reduced
the training. Values of learning rate and momentum coefficient are kept on
defaults (0.9 and 0.6). Eventually, the number of iterations was 10,000, because
experiment up to 30,000 did not improve results. The high-sensitivity parameters
were (e) the number of seismic attributes, (f) the activation function and (g) the
convergence criteria. The most important parameter was the number of included
attributes, and the best training was obtained with all three attributes.
Numerically the determination coefficient between amplitude + frequency +
phase and porosity was R2=0.987, with convergence (Σε2) of 0.329. The activation
function was of the log-sigmoid shape. The convergence criteria (Σε2) had the
role of stopping training if the value was the lower than the defined limit (which
was 1). Also, the lower convergence indicated higher correlation.

Porosity could be predicted with any number of attributes, but the highest
correlation was reached using all three attributes together. Estimated porosity
ranged between 5.27–11.06%, but the estimation by the neural network had a
tendency to group majority of cell data in a narrow range. 

Case Study # 3: Kloštar Field

The Kloštar Field is situated in the northwestern part of the Sava Depression.
It is structurally located in the Kriz̀́ structure of Dinaric strike (NW–SE), along Mt.
Moslavac̀́ka gora. The complete stratigraphic sequence includes the units of
Paleozoic, Middle Miocene, Upper Miocene, Pliocene and Quaternary sediments.
The main hydrocarbon reservoirs are found in Upper Pannonian ("II sandstone
series") and Lower Pontian ("I sandstone series") sandstone, with calcareous marl
as isolators. The field structure was formed between main strike slip faults in
extensional phase from Badenian to Lower Pontian. Later, it was inverted to a
faulted anticline, uplifted from the Upper Pontian onward, when the main faults
changed displacement character. 

Basic well log data were used from two wells (Klo-A and Klo-B) for the
backpropagation neural analysis (Cvetković et al. 2009). Electric logs included
resistivity (R16 and R64) and spontaneous potential (SP) with resolution of 10
measurements. Neural networks had been used for prediction of lithology and
hydrocarbon saturation in sandstone reservoirs of Lower Pontian (1st sandstone
series) and Upper Pannonian (2nd sandstone series) age. 

Neural analyses were performed using StatSoft STATISTICA 7.1. Lithology
prediction was performed with data collected by manual determination
(Cvetković et al. 2009) of lithological components selected in layers described as
marl (0)  and sandstone (1) from well logs (Bassiouni 1994). The neural network
was trained on data from the 1st sandstone series, and prediction made on the
intervals in the 2nd sandstone series, and vice versa. Thus it was possible to easily
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recognize the success of the neural network as well as training and prediction
error. Also, the training set was divided into true training (learning) and
validation datasets. Stopping criteria in network training were the desired
number of iterations, or amount of error. Moreover, for both cases and wells two
types of networks were used: a multi-layer perceptron (abbr. MLP) network (type
of backprop) and a radial basis function type analysis (abbr. RBF). Unfortunately
the results of the neural analyses could not be spatially correlated, due to
different relative shifts of SP curves in the selected wells. A comparison between
lithology determined classically from logs (blue line) and using neural network
(red dotted line) is given in Fig. 9.

Hydrocarbon saturation prediction uses cross-prediction, i.e. the neural
network is trained on the Klo-A well, and the prediction was performed on the
Klo-B well. Hydrocarbon saturation was manually determined from resistivity
log R64, and defined as a categorical value (1 for hydrocarbon accumulation and
0 for none). Only the MLP neural network was used because an RBF network
was characterized by a high selection and training error (Cvetković et al. 2009);
the results are shown in Fig. 10.
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Fig. 9
Comparison of lithology predicted manually and by MLP network. Abscissa represents vertical depth
and ordinate lithology (marl=0, sandstone=1; from: Cvetković et al. 2009)



Discussion

Three examples of using of neural networks in analyses of geologic data from
hydrocarbon reservoir have been presented. All networks were trained with data
originating from clastic reservoirs of Neogene age located in the Croatian part of
the Pannonian Basin. Training always included similar reservoir variables, i.e.
electric logs (resistivity, spontaneous potential), lithology determined from cores
or logs and described as sandstone or marl with categorical values in intervals.
Other variables were hydrocarbon saturation, also represented by a categorical
variable, and average reservoir porosity calculated from interpreted well logs and
seismic attributes. Some of mentioned inputs were used in all three neural
models.

In this section the results are discussed in light of what is already known about
the subject of the investigation, and explaining our new understanding of the
problem after taking results into consideration.
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Fig. 10
Comparison of saturation predicted manually and by MLP network. Abscissa represents vertical
depth and ordinate saturation (hydrocarbons=1, water=0; from: Cvetković et al. 2009)



The results obtained in the facies prediction in the Okoli Field for a
monotonous alteration of sandstone and marl can be extended to the entire
depression, because the analyzed lithology and relationships are very
characteristic for the entire area. It is clear that such a facies analysis does not
need such a large iteration set. A larger positive impact could be obtained by
increasing the number of relevant input log curves. The present network is over-
trained and does not contain enough criteria for recognizing marlstone
sequences. In general, however, a well-trained backpropagation network was
able to be used for lithology prediction in the well intervals where e-logs are of
poor quality or partially absent. Such intervals need to be selected in the same
reservoir where the network has successfully undergone learning and validation.

The Benić̀anci Field porosity map showed a tendency to group neural results
in a narrow range. This is also often characteristic in geostatistics and regression.
Not one of the selected seismic attributes shows high linear relationship with
porosity (low correlation), and only one of their syntheses summarized in one
particular value was able to show correlation with porosity. The neural porosity
map was compared to previously interpolated Collocated Co-kriging porosity
maps (Malvić and Ðureković 2003), the best porosity estimation prior to using the
neural approach, obtained with reflection strength as the secondary seismic
source of information. A relatively smooth map, and one rarely reaching
measured porosity minimum and maximum, strongly points to the conclusion
that neural estimation is more precise than previous interpolations.

It turned out that for the Kloštar Field the neural results were the most
successful, with very low network error. As Cvetković et al. (2009) concluded:
"…selection error is a much more reliable indicator of success of a neural network
than the training error is. Thus, when neural network training is finished, the
best network parameters are the ones with the smallest errors." Prediction of
lithology and hydrocarbon saturation in sandstone reservoirs was excellent and
showed that the software used was the best one for analysis of geologic data
collected for this analysis. Also, neural results confirmed the multi-layer
perceptron algorithm as the one that can be applied most often as the
appropriate one for modeling and prediction of hydrocarbon reservoir
properties.

Conclusions

It is well known that neural networks favor numerous inputs, because in this
way they can be trained with lower prediction error. However, this can result in
a counter-effect because such networks also can be over-trained and provide
prediction for almost every input item, which is useless. Such behavior can be
compared to polynomial regression of a higher degree (polynomial curve of 4th,
5th, 6th, etc. degree) that can perfectly fit almost any geologic variable in a
hydrocarbon reservoir, but cannot describe any geologic process, due to (a) our
limited knowledge and (b) the high stochastic component of geologic processes.
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This problem of an over-trained network and the selection of many inputs
arose in the Benicanci Field network. The best training and prediction had been
achieved using all three seismic attributes simultaneously in the prediction of
lateral reservoir porosity. However, this solution was accepted based on geologic
knowledge that connection between these three attributes could be described as
"geophysically possible and even meaningful".

Using classical electric logs in the prediction of lithology, and even of
saturation, indicated the importance of applied neural programs for analysis. For
now, the famous Statistica package (StatSoft) showed very good performance for
well log analyses, and not only with a neural algorithm. However, based on
selected well logs and interpretation intervals inside the reservoir, training can
also reach the critical point of an over-trained network, especially when (a)
resistivity and especially spontaneous potential curves are not characterized with
significant shifts and (b) there are too many lithological intervals selected for
prediction inside the reservoir.

In the end all presented networks were of backpropagation type. Most of them
have a multi-layer perceptron architecture and apply the sigmoid or log-sigmoid
activation function. One network, however, used only three layers and a radial
basis function as an activation function, emphasizing that different types of
backpropagation architecture and activation can be used. Without regard to over-
training in the case of numerous inputs, additional well logs that describe
reservoir lithology or saturation, such as compensated neutron or density, would
enhance prediction of every neural network applied to petroleum geology.
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Malvić, T., M. Ðurekovic 2003: Application of methods: Inverse distance weighting, ordinary kriging
and collocated cokriging in porosity evaluation, and comparison of results on the Benić̀anci
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