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The effective atomic orbitals have been realized in the framework of Bader’s atoms in molecules the-
ory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a
proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the
respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows
that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These
correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The
occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with
hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed
as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken
population analysis carried out on this basis set exactly reproduces the original QTAIM atomic pop-
ulations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of
orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular
value decomposition procedure. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807775]

INTRODUCTION

The concept of atom in a molecule has always craved
for a proper definition. However, we are lacking a single,
unambiguous one. Instead, over the last decades a number
of schemes or formalisms have been devised to identify the
atom within a molecule.1–10 Probably, any of such schemes
considers the nucleus as part of the atom, so the differences
always arise in how the electron population distributed in the
physical space (or in the Hilbert-space) is subdivided into
atomic shares.

Within the LCAO approach, the atom may be identi-
fied with the subspace of the basis functions attached to it.
Such approach leads to the so-called Hilbert-space analyses,11

such as the classical Mulliken1 or Löwdin2 population anal-
ysis of the density. Despite their simplicity, Hilbert-space
analyses have been criticized by their restricted applicabil-
ity (the use of atom-centered basis functions is necessary)
and their notable basis set dependence. The latter repre-
sents a true flaw when using extended basis sets includ-
ing diffuse functions.12 Alternative population analyses based
upon occupation numbers13, 14 carried out onto an AO basis
set different from the extended one minimize the basis set
dependence.

A different strategy is to subdivide the physical three-
dimensional (3D) space into atomic regions or domains,
which represent (together with the nucleus) the atom. These
domains may be defined disjoint, like in Bader’s atoms in
molecule theory4 (often referred to as QTAIM—“quantum
theory of atoms in molecules”), or may be allowed to
overlap, like in the different flavors of “fuzzy” atoms.3, 5–10

a)E-mail: pedro.salvador@udg.edu

The 3D space formalism represents a perfect counterpart
of the Hilbert-space analysis. Indeed, by introducing a
proper mapping,15, 16 one can find a one-to-one correspon-
dence between the expressions of quantities such as atomic
populations and bond orders,5 energy components,17–19 or
local spins,20 obtained in these two frameworks. Of course,
the actual values of these quantities derived from one or
another formalism differ. Moreover, the QTAIM analysis
may yield domains with so-called non-nuclear attractors,
which correspond to regions of the space with no nucleus
associated. Often, the appearance of a non-nuclear attractor
is an artifact of the basis set applied, such as in the case of
acetylene.21, 22 In such cases, it may be worth to use another
partitioning of the space.

When looking for an atom in a molecule, obviously we
are not merely interested in a subdivision of the 3D space
into atomic volumes, but rather in assigning different physi-
cal quantities to the individual atoms (or their groups). Any
physical quantity is expressed as the expectation value of
one-electron (two-electron) operators, and it can also be writ-
ten in terms of the integral over the space of the appro-
priate one-electron (two-electron) density functions. Hence,
the subdivision of the space into atomic regions naturally
leads to the decomposition of different physical quantities
into atomic (diatomic) terms that can be considered the
effective atomic (or diatomic) values of that physical quantity
within the molecule. This has been extensively accomplished
within the QTAIM framework, partly due to the special prop-
erties provided by the zero-flux condition, such as the local
fulfillment of the virial theorem.4 However, it has been shown
that one can obtain quantities such as atomic populations and
valences,5 energy components,17–19 or local spins20 for essen-
tially any atom in molecule definition. Similarly, the atom in
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the molecule can also be characterized from the analysis of
the density matrix.23–25

Probably, the most appropriate entities that serve to char-
acterize the state of the atom within the molecule are the
so-called effective atomic orbitals (“effective AOs”).26–31 In
this approach, one obtains for each atom a set of orthogonal
atomic hybrids and their respective occupation numbers usu-
ally adding up to the net population of the atom. A remarkable
feature of this scheme is that, for a given molecular system,
irrespective of the basis set size applied in the calculation,
one in practice obtains the same number of significantly pop-
ulated atomic hybrids. This number has always been found
equal to the number of the orbitals in a classical minimal ba-
sis, which means that in this manner one obtains “effective
minimal basis sets” by performing a posteriori analyses of the
calculations (special provisions should be made in the case of
hypervalent systems). This happens to be the case even if no
atom-centered basis functions are used at all.31 These atomic
hybrids closely mimic the core and valence shells of the atom,
as anticipated on the basis of classical notions of electron con-
figuration of the atom/fragment within the molecule.

This formalism was first introduced nearly two decades
ago in the framework of Hilbert-space analysis,27 and then it
was generalized for an arbitrary Hermitian bilinear “localiza-
tion functional.”28 It was applied to the case of “fuzzy” atoms
a few years ago.30 It had also been formulated in the context
of Bader’s QTAIM,29 but until now that version was never
actually realized.

When the atoms are associated with non-overlapping do-
mains, as is the case of Bader’s QTAIM, the “effective AOs”
have special properties that make them very appealing from
both conceptual and practical points of view, as will be shown
later on. The first feature is that the “effective AOs” associ-
ated to different atoms are also orthogonal, as a direct conse-
quence of not sharing at all the physical space. Also, because
the atoms are not allowed to overlap, the atom’s net and gross
populations are equal. In other words, the sum of the occupa-
tion numbers of the “effective AOs” of a given atom is equal
to its atomic population.

It is fair to note that the formalism of the domain-
averaged Fermi hole analysis32, 33 (DAFH) also produces or-
bital functions in the framework of QTAIM (or other AIM
schemes). With the DAFH analysis, one first obtains a set of
domain orbitals and orbitals occupancies, that have their ori-
gin in the average of the exchange-correlation density over a
space domain, typically the union of several atomic domains.
These orbitals are then localized via a non-unitary isopycnic
transformation,34 leading to a new set of objects that are inter-
preted in terms of bonding orbitals, lone pairs, and dangling
valences. Even though their origin is different, the DAFH and
“effective AO” analyses share some similarities, particularly
when the DAFH analysis is carried out over a single atomic
domain. In fact, in the restricted single-determinant case the
orbitals before isopycnic localization, sometimes denoted as
domain natural orbitals,33 are exactly the same as the original
“effective AOs.”29

The special features of the “effective AOs” in the frame-
work of QTAIM (or any disjoint partition of the space in
general) suggests that they could be used as (numerical)

atomic basin-centered orthogonal basis set, in which the ac-
tual molecular orbitals of the molecule can be expanded. Fur-
thermore, since the “effective AOs” can be obtained even if
no atomic basis functions are used at all31 (e.g., plane wave
calculations), this formalism can be used to actually retrieve
from such type of calculations a proper set of orthogonal
atomic basis functions.

Of course, the fact that the molecular orbitals can be ex-
pressed as a linear combination of an alternative set of basis
functions, even if it is orthonormal and has a reduced num-
ber of functions, adds no special chemical relevance per se.
But, as we show in the “Theoretical Methods” section, in this
particular basis, the Hilbert-space and 3D space analyses turn
out to be fully equivalent numerically. Thus, the Mulliken
population analysis of the density carried out on the basis of
“effective AOs” exactly reproduces the original QTAIM
atomic populations of the atoms.

In other words, these “effective AOs” appear to be the
genuine atomic orbitals of Bader’s theory, perhaps one of the
few ingredients missing in QTAIM’s toolbox.

THEORETICAL METHODS

Let us consider a system with n orthonormalized doubly
occupied orbitals ϕi(�r), i = 1, 2. . . , n, and the division of the
3D space into Nat disjunct atomic domains �A defined, e.g.,
by Bader’s “topological” QTAIM method. Let us for each
atom A (A = 1, 2, . . . , Nat) form the n × n Hermitian matrix
QA with the elements

QA
ij =

∫
�A

ϕ∗
i (�r)ϕj (�r)dv. (1)

Matrix QA is essentially the “atomic overlap matrix” in the
basis of the MOs ϕi.

Furthermore, for each atom A we define the “intraatomic”
part ϕA

i of every MO ϕi as

ϕA
i (�r) =

{
ϕi(�r) if �r ∈ �A;

0 if �r �∈ �A.
(2)

Thus,

QA
ij = 〈ϕA

i |ϕA
j 〉, (3)

i.e., QA is the overlap matrix of the orbitals ϕA
i .

Owing to the disjunct character of the atomic domains,
one obviously has

ϕi(�r) =
Nat∑
A

ϕA
i (�r). (4)

We diagonalize the Hermitian matrix QA by the unitary
matrix UA

UA†QAUA = �A = diag{λA
i }. (5)

It can be shown that every λA
i ≥ 0, as is the case for every

overlap matrix.
For each atom A, we can define nA (nA ≤ n) “effec-

tive atomic orbitals” χA
μ (�r) as linear combinations of the
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“intraatomic” parts ϕA
i (�r) of the MOs as

χA
μ (�r) = 1√

λA
μ

n∑
i=1

UA
iμϕA

i (�r) ; μ = 1, 2, . . . , nA, (6)

where nA is the number of non-zero eigenvalues λA
i .

One may consider rewriting the original MOs as linear
combinations of the set of “effective AOs” with non-zero
eigenvalue of different atoms, with the appealing result that
the atomic populations calculated by the Hilbert-space anal-
ysis in the basis of the “effective AOs” are equal to those
obtained by the 3D AIM analysis. The proof is given in
Appendix A. Similarly, it can be seen that the classical Wiberg
bond orders index calculated on the orthogonal basis of “ef-
fective AOs” exactly coincides with the bond orders15 or
(delocalization indices35).

In practice, the dimension of the “effective AO” basis has
nothing to do with the dimension of the LCAO basis (if any)
used in the original calculation. Equation (6) indicates that the
maximum number of “effective AOs” that can be obtained is
Nat × n, which can be both less or more than the total number
of the LCAO basis functions. Indeed, the proof provided in
Appendix A considers up to n “effective AOs” per atom.

Moreover, experience shows that the number of “effec-
tive AOs” with significant occupation numbers on each atom
is limited, and typically much smaller than the number n of
the doubly occupied orbitals in the whole molecule. The re-
maining “effective AOs” with very small occupation numbers
should have a marginal significance. Thus, one may think over
expressing the molecular orbitals, to a good approximation as
a linear combination of a (numerical) atomic basis set build
up from a subset of the “effective AOs” (selected by an oc-
cupation number criterion), in an expansion similar to that of
Eq. (A3) but with nA < n. Since only a limited number (com-
pared to the number of basis functions) of “effective AOs”
typically exhibit significant occupation numbers, each molec-
ular orbital could be expressed as a linear combination of a
much reduced set of orthogonal basis functions with distinct
atomic character, which may permit a much simpler analysis
in chemical terms, specially when the MOs are expanded over
an extended AO basis.

In order to obtain the new LCAO coefficients, one can
make use of the singular value decomposition (SVD) tech-
nique to perform a pairing between the set of “effective AOs”
from one side, and the set of doubly occupied MOs from the
other. The procedure is described in Appendix B. In the Re-
sults and Discussion section, we will illustrate numerically
how by this SVD process one can produce highly accurate
atomic populations using a very much reduced set of “effec-
tive AOs.” That is, the MOs can be expanded to a good ap-
proximation in terms of a minimal basis of “effective AOs.”

Finally, it is worth to note that the scheme described
above is not only applicable in the single-determinant closed-
shell case. As noted by one of us,28 the “effective AOs” of
atom A can also be obtained from the diagonalization of the
matrix PSA, where P is the LCAO density matrix and SA is
the atomic overlap matrix in the actual (AO or MO) basis. (In
the single determinant case, if the dimension of the atomic
basis applied is greater than the number of the occupied or-

bitals, there will be an appropriate number of strictly zero
eigenvalues.)

This alternative also permits the straightforward gen-
eralization of the method both to the unrestricted single-
determinant case and the correlated level, from which the P
matrix is readily available. In that case, the SVD method can
also be applied with some necessary adjustments, as indicated
in Appendix B.

COMPUTATIONAL DETAILS

We have obtained the “effective AOs” in the framework
of QTAIM for a series of molecules for illustrative purposes.
The analysis has been performed by our program apost-3D.36

The program includes a version of the grid-based scheme
proposed by Rodríguez et al.37 to integrate over atomic do-
mains without the explicit calculation of the zero-flux surface.
For the orbital plots, we have generated relatively large cubic
atom-centered grids of 60 × 60 × 60 points. The truncated
nature of these orbitals makes rather difficult to obtain high-
quality plots. An isosurface value of 0.15 has been used for
all plots.

The ab initio calculations have been carried out with
GAUSSIAN 0338 program, employing the B3LYP density
functional combined with cc-pVTZ basis set, unless other-
wise indicated. For the triradical nitrene of Figure 6, we have
also obtained the wavefunction at the complete active space
self-consistent field (CASSCF) level of theory with an ac-
tive space composed by 9 electrons and 9 orbitals. The active
space includes the six orbitals of the π system of the ring,
the σ orbital of the radical carbon, and the σ and π orbitals
on the nitrogen atom. All calculations have been carried out
at the geometrical structure of the molecules optimized at the
current level of theory.

RESULTS AND DISCUSSION

Figure 1 depicts the “effective AOs” obtained for the C
atom of methane. The corresponding occupation number is in-
dicated below each orbital plot. As in methane there are only
five doubly occupied MOs (in the single-determinant descrip-
tion), one can obtain up to five “effective AOs” for each atom.
Thus, in this case there appear no weakly occupied ones on
the carbon.

The first orbital can be clearly identified as a core 1s-type
orbital with an occupation number of 2.000. The next “ef-
fective AO” is a 2s-type orbital, with an occupation number

FIG. 1. “Effective AOs” for C atom in methane and their occupation
numbers.
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FIG. 2. “Effective AO” for H atom in methane and its occupation number.

of 1.189. The last plot of Figure 1 corresponds to one of the
three degenerated (in the present context we use this term to
denote orbitals with the same occupation numbers) 2p-type
atomic orbitals.

The main feature of the “effective AOs” is that they are
completely confined within the corresponding atomic domain,
i.e., in this case they are strictly cut at the boundary limit of
the Bader atom. We have chosen a relatively small isocontour
value on the plots to highlight this feature. The occupation
numbers are typically close to 2 for core orbitals or lone pairs,
while hybrids that are involved in bonding (valence “effective
AOs” ) present occupations that oscillate around 1, depending
upon how the atom is polarized by the presence of the neigh-
boring atoms. The most electronegative atoms exhibit higher
occupation numbers than the less electronegative ones. For
instance, for the CF4 molecule the “effective AOs” of the C
atom are strikingly similar to those of Figure 1 (only smaller
because the volume of the C atom is reduced), and only the
occupation numbers differ. In this case, the occupations of
the 2s- and 2p-type orbitals decrease to 0.444 and 0.296,
respectively.

In the case of the H atoms of methane, only the truncated
s-type orbital shown in Figure 2 has a significant occupation.
There are two additional “effective AOs” of p-type with much
lower occupations (less than 0.03, not shown).

The polarization of the H-atoms is already included in
the most populated effective AOs which (within the atomic

domain) need not to be pure s-functions. Similarly for carbon
atoms, although the number of effective AOs is the same as in
a minimal sp basis, the form of the orbitals may slightly devi-
ate from the ideal s or p, and reflect, therefore, the polarization
effects. The truncation of the orbitals, of course, introduces
another, much bigger, “polarization.”

The “effective AOs” with significant occupation numbers
of the C, N, and O atoms of fulminic acid (HCNO) are shown
in Figure 3. Again, five hybrids with non-negligible occupa-
tion numbers are obtained for each atom, associated to their
core and valence orbitals. The orbitals of all three atoms ex-
hibit similar shapes, and the occupation numbers of analogous
orbitals increase from C to O, following the increase of elec-
tronegativity. One can identify a 1s-type core orbital, with an
occupation close to 2 in all cases. A somewhat distorted 2s-
type orbital is also present in all atoms. Remarkably, a similar
orbital was also obtained for the C atom of the acetone from
a wavefunction expressed in terms of plane waves and in the
framework of the “fuzzy” atoms.31 The occupation number in
the case of the oxygen atom is almost 2, as the atomic do-
main has no boundary on the direction opposite to the nitro-
gen atom. Both carbon and nitrogen exhibit two boundaries,
so the corresponding hybrids are truncated from both sides. A
pair of degenerate 2p-type orbitals on each atom are involved
on the π system of this molecule. One can observe an appar-
ent correspondence between the hybrids on carbon and nitro-
gen atoms. Their respective occupation numbers reflect that
the atomic boundary between them is shifted towards the car-
bon atom. The two pairs of hybrids seem like “halves” (with
different shares) of a common C–N π bond. However, it is
worth to recall that they originate from two independent cal-
culations. Similar complementarity is also observed between
the two hybridized σ -type 2p-orbitals along the internuclear
axis of nitrogen and oxygen atoms, with occupations of 0.944
and 1.091, respectively.

The occupation number of the sixth “effective AO” of the
carbon atom is essentially zero (smaller than 0.01). In the oxy-
gen atom it is 0.03, but in the case of the nitrogen atom there

FIG. 3. “Effective AOs” and occupation numbers for the heavy atoms in fulminic acid.
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FIG. 4. Weakly occupied “effective AO” of the nitrogen atom of fulminic
acid.

is a pair of degenerate “effective AOs” with a more significant
occupation number of 0.133. This is a distinct manifestation
of the hypervalent character of nitrogen in this molecule. In
fact, Karadakov et al.39 already discussed this phenomenon
in this molecule with a rather involved analysis combining
valence-bond and CASSCF calculations.

The shape of this weakly occupied hybrid is shown in
Figure 4. It corresponds to a strongly polarized (its centroid
appears displaced from the nuclear position) d-type orbital in
a plane containing the four atoms, and with the proper orien-
tation in order to be involved in the pi-bonding system of the
molecule. Even though the occupation number is small, its
participation is necessary to explain how this nitrogen atom
can be involved in (formally) more than four covalent bonds
(three with the carbon atom and two with the oxygen atom).

Another example of hypervalent behaviour is given by
the sulfur atoms in the series CH3SOxCH3, x = 0, 1, 2. In this
case, occupation numbers of the “effective AOs” of the sulfur
atoms are displayed in Figure 5.

The first observation is that the sulfur atoms exhibit in
all cases five “effective AOs” with occupation number equal
to 2, that correspond to the doubly occupied 1s, 2s, 2p inner
shell. Inspection of the curve of the sulfur of dimethyl sulfide

FIG. 5. Occupation numbers (in descending order) of the “effective AOs” of
the sulfur atom of dimethyl sulfide, dimethyl sulfoxide, and dimethyl sulfone
molecules.

(squares) reveals the presence of two more almost doubly oc-
cupied hybrids, corresponding to lone pairs. The first has a
strong 3s character while the second one is of 3p-type, per-
pendicular to the plane formed by the sulfur and the two car-
bon atoms. The next two hybrids have an occupation close to
1 and are oriented towards the carbon atoms, indicating that
they are involved in the sulfur-carbon σ bonds. The occupa-
tions from the ninth hybrid drop to a very small value (∼0.05).
Hence, the number of “effective AOs” with significant occu-
pation number is again equal to the number of orbitals in the
classical minimal basis (nine orbitals for 3rd row elements).

The curve of dimethyl sulfoxide (diamonds) indicates
that there is only one lone pair. The 3p-type hybrid that in the
case of dimethyl sulfide corresponded to a lone pair, now ap-
pears oriented towards the oxygen atom with occupation num-
ber of 0.472. Such decrease in the occupation is caused by
the stronger electronegativity of the oxygen atom. The shape
of the two remaining hybrids involved in the sulfur-carbon σ

bonds is changed by the presence of the oxygen atom, but
their occupation numbers are remarkably similar to those ob-
tained in the case of dimethyl sulfide. In the inset of Figure 5,
one can see that in this case there appear two more“effective
AOs” with occupation numbers close to 0.10. These hybrids
are of d-type and contribute to provide a slight π character to
the sulfur-oxygen bonding. Similar to the case of the central
N atom in fulminic acid, the participation of these d-orbitals is
necessary to account for the formal double bond between the
S and O atoms. Finally, for the sulfur atom of the dimethyl
sulfone molecule there appear no doubly occupied valence
hybrids. Instead, the two hybrids that are to be involved in
the bonding with the oxygen atoms now exhibit occupations
of 0.482 and 0.381. Moreover, there is a larger number of
“effective AOs” with significant occupation numbers beyond
the valence shell. The inset of the figure shows that there are
essentially four hybrids of d-type that have a small but non-
negligible contribution. The occupation number of the fifth d-
type orbital (0.055) is very similar to that of the ninth hybrid
in the case of dimethyl sulfide molecule. Such a behaviour
is characteristic for the effective AOs of the hypervalent sul-
fur in the framework of the Hilbert space analysis, too; for an
early example see Ref. 27.

For illustrative purposes, we also consider a singular ni-
trene triradical40 molecule with a quartet ground state. We
have obtained the “effective AOs” from the wavefunctions
calculated for the quartet ground state at the CASSCF(9,9)
and B3LYP levels of theory. The respective occupation num-
bers for selected atoms (for their numeration see Fig. 6) are
gathered on Table I. The pictures of the orbitals do not differ
significantly and are not shown.

FIG. 6. Structure of the quartet fluorophenyl nitrene triradical.

Downloaded 06 Jun 2013 to 193.224.67.163. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



214107-6 Ramos-Cordoba, Salvador, and Mayer J. Chem. Phys. 138, 214107 (2013)

TABLE I. Occupation numbers (larger than 0.01) of selected atoms of the nitrene triradical (see Fig. 6) obtained at the B3LYP and CASSCF(9,9) (in paren-
theses) levels of theory.

Orbital C1 C3 C4 F1 N

1s 1.999 (1.999) 2.000 (2.000) 2.000 (2.000) 2.000 (2.000) 2.000 (2.000)
2s 1.131 (1.133) 1.295 (1.265) 1.074 (1.053) 1.998 (1.999) 1.991 (1.995)
2pa 0.916 (0.899) 0.969 (0.960) 0.862 (0.819) 1.914 (1.951) 1.144 (1.121)
2pb 0.845 (0.861) 0.865 (0.857) 0.793 (0.784) 1.942 (1.959) 0.983 (0.982)
2pc 0.342 (0.283) 0.769 (0.779) 0.584 (0.486) 1.639 (1.702) 1.349 (1.461)
d-type 0.034 (0.036) 0.039 (0.037) 0.032 (0.030) 0.061 (0.069) 0.034 (0.048)
d-type 0.030 (0.026) 0.018 (0.016) 0.029 (0.028) 0.044 (0.050) 0.032 (0.044)
d-type 0.027 (0.023) 0.013 (0.015) 0.027 (0.020) 0.027 (0.026) 0.012 (0.014)
d-type 0.025 (0.021) 0.011 (0.010) 0.017 (0.013)

aOut-of-plane.
bIn-plane.
cIn-plane towards the center of the ring.

The occupation numbers obtained with the two methods
are strikingly similar, not only between the strongly occu-
pied “effective AOs” but also between the weakly occupied
ones. The largest difference in the occupations is only about
0.10, found for a 2p hybrids of the N and C6 atoms. This indi-
cates a slight change in the polarity of the C4–N bond going
from B3LYP to CASSCF. Each of the atoms contributes to
the π system with roughly one electron except for F atoms,
in which the 2p “effective AOs” is essentially doubly occu-
pied (1.914). The 2p hybrids directed towards the center of
the ring exhibit different occupation numbers from one atom
to another. These “effective AOs” are the ones that are in-
volved in forming the σ -type C–F and C–N bonds, and the
radical center in C3. Thus, the occupation numbers of the
“effective AOs” for C4 and N (0.584 and 1.349) and for C1

and F (0.342 and 1.639) exhibit a good correspondence. That
close parallel between the unrestricted B3LYP and CASSCF
results may be understood if one takes into account that the
CASSCF method accounts for valence correlation only. The
use of a method which is able to account for the (basically
intra-atomic) angular correlation would perhaps make the re-
sults more complicated – but hardly lead to a different overall
picture.

The picture of Fig. 6 where one unpaired electron sits on
the C3 atom and two unpaired electrons sit on the N atom has
no straight correspondence with the “effective AO” analysis
given in Table I. In order to locate individual electrons (of a
given spin), one can obtain the “effective AOs” from the alpha
and beta densities separately.41

TABLE II. Occupation numbers of the valence “effective AOs” of the rad-
ical centers of the nitrene triradical (see Fig. 6) obtained at the B3LYP and
CASSCF(9,9) (in parentheses) levels of theory.

Orbital C3 alpha C3 beta N alpha N beta

2s 0.528 (0.506) 0.577 (0.566) 0.996 (0.997) 0.996 (0.997)
2pa 0.613 (0.651) 0.354 (0.309) 0.856 (0.854) 0.314 (0.287)
2pb 0.431 (0.419) 0.415 (0.419) 0.935 (0.952) 0.000 (0.000)
2pc 0.912 (0.936) 0.000 (0.000) 0.697 (0.723) 0.675 (0.723)

aOut-of-plane.
bIn-plane.
cIn-plane towards the center of the ring.

The respective occupation numbers for the two radical
centers are collected on Table II. Note that the values of
Table I are not exactly expressed as the sum of the occupa-
tion numbers of the alpha and beta contributions, as the “ef-
fective AOs” for each spin case are different. The differences
in the occupation numbers between B3LYP and CASSCF are
again minimal (less than 0.05). The radical center C3 is char-
acterized by an alpha “effective AO” with occupation close to
1, pointing outside the center of the ring. For the remaining
“effective AOs” of this atom, the alpha and beta occupation
numbers are similar, except for the out-of-plane hybrids form-
ing the π system of the molecule. In that case, the occupation
number of the alpha part almost doubles that of the beta. The
picture of the other radical center (N atom) is very similar.
The occupation numbers are in general larger than for the C3

atom, due to the more electronegative character of nitrogen.
There is a singly occupied “effective AO” of the alpha part,
that lies in the molecular plane, perpendicular to the C4–N
bond. But there is no singly occupied 2p orbital perpendic-
ular to the molecular plane. Instead, the occupation numbers
of these alpha and beta “effective AOs” are not too different
from those obtained for C3, and as a matter of fact, for the
rest of C atoms. Thus, the chemical picture that emerges from
the analysis of the “effective AOs” is that there are two σ -
type radical centers located on C3 and N atoms, but there is a
completely delocalized unpaired π -electron, as it is expected
for such a benzonoid species. This is in agreement with the
picture obtained from a local spin analysis.42

Finally, we illustrate how by the SVD procedure one can
expand the MOs to a very good accuracy using a reduced
subset of “effective AOs.” We have applied the method for
the alanine molecule computed with two different basis sets,
namely, the 6-31++G** and the cc-pVTZ. The results are
collected on Table III. We have used three different thresh-
olds for the occupation numbers to select the subset of “ef-
fective AOs.” For the cc-pVTZ basis set, up to 119 “effective
AOs” have occupation number above a threshold of 0.001.
This number decreases to just 71 for a threshold of 0.01, and
to just 37 for a threshold of 0.1. Indeed, for this molecule
the minimal basis set (1s for H atoms and 1s2s2p for the
rest) includes 37 atomic orbitals. Once the “effective AOs”
are selected, the SVD procedure is used to obtain the LCAO

Downloaded 06 Jun 2013 to 193.224.67.163. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



214107-7 Ramos-Cordoba, Salvador, and Mayer J. Chem. Phys. 138, 214107 (2013)

TABLE III. Accuracy of the SVD procedure for Ala molecule with two
basis sets (number of basis functions in parentheses). Ne indicates the number
of effective atomic orbitals with occupation number above the threshold. δ̄

and δmax are the average and maximum error in the atomic population values
after the SVD procedure.

6-31++G(d,p) cc-pVTZ
(156) (278)

Occ. number >0.001
Ne 114 119
δ̄ 8.9 × 10−4 8.8 × 10−4

δmax 1.9 × 10−3 1.6 × 10−3

Occ. number >0.01
Ne 69 71
δ̄ 7.6 × 10−3 7.3 × 10−3

δmax 1.7 × 10−2 1.6 × 10−2

Occ. number >0.1
Ne 37 37
δ̄ 3.2 × 10−2 3.1 × 10−2

δmax 9.8 × 10−2 8.9 × 10−2

coefficients of the MOs in the new numerical atomic basis.
Then, the atomic populations are calculated with classical
Mulliken population analysis on this basis set.

The δ̄ and δmax on Table III account for the average and
maximum error in the recomputed atomic populations, with
respect to those originally obtained by the 3D-space QTAIM
method. It is worth to recall that the total number of electrons
is conserved after this transformation. Thus, any lack of flex-
ibility of the numerical basis set to expand the MOs will be
translated in fluctuations of the atomic populations. With a
basis of 119 “effective AOs” the errors introduced are essen-
tially within the accuracy of the numerical integration. With a
basis of 71 elements, the average and maximum errors in the
atomic population are 0.007 and 0.016, respectively. In case
of using only the minimal basis set of 37 elements, the errors
increase but still one can see that the atomic populations can
be reproduced within 0.1 electrons. Interestingly, these results
appear to be almost independent of the original basis set.

It is worth to note that the use of the “effective AOs”
as a numerical basis set is not restricted to the framework of
QTAIM of disjunct atomic domains. In fact, in the framework
of “fuzzy” atoms the “effective AOs” do not strictly form an
orthogonal basis set but on the other hand they can be used to
construct in a systematic manner numerical basis sets of in-
creasing accuracy for atoms (or functional groups), that could
be used in fully numerical43 ab initio calculations. Of course,
one should expect that in the case of correlated methods the
size of the numerical basis set should be larger, for a better
description of the virtual orbitals.

CONCLUSIONS

The “effective AOs” have been realized in the framework
of Bader’s QTAIM. This formalism can be used to retrieve
from any type of calculation a proper set of orthogonal atomic
basis functions. They form an orthonormalized set of numer-
ical atomic orbitals, with occupation numbers that sum up to
the respective QTAIM atomic populations. Importantly, only

a limited number of “effective AOs” exhibit significant oc-
cupation numbers, i.e., these atomic hybrids closely mimic
the core and valence shells of the atom. In the case of hyper-
valent atoms, there appear additional hybrids with small but
non-negligible occupation numbers.

We have shown that the MOs can be exactly expressed as
a linear combination of this orthonormalized set of numerical
atomic orbitals. Moreover, the Mulliken population analysis
carried out on the basis of “effective AOs” exactly reproduces
the original QTAIM atomic populations of the atoms. Ap-
proximate expansion of the MOs over a much reduced set of
orthogonal atomic basis functions can also be accomplished
to a very good accuracy with a SVD procedure.

Thus, this shows that there is nothing fundamentally in-
appropriate with a Hilbert-space based population analysis.
The flaws of the classical Mulliken populations are rooted in
the use of unsuitable atomic basis functions, not in its mathe-
matical framework.44
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APPENDIX A: EQUIVALENCE OF HILBERT-SPACE
ANALYSIS IN THE BASIS OF EFFECTIVE AOs AND
QTAIM ANALYSIS

By virtue of the definition (2), orbitals χA
μ (�r) differ from

zero only in the atomic domain of atom A. They are orthonor-
malized

〈
χA

μ

∣∣χA
ν

〉 =
〈

1√
λA

μ

n∑
i=1

UA
iμϕA

i

∣∣∣∣∣∣
1√
λA

ν

n∑
j=1

UA
jνϕ

A
j

〉

= 1√
λA

μλA
ν

n∑
i,j=1

(UA†)μiQ
A
ijU

A
jν

= 1√
λA

μλA
ν

λA
μδμν = δμν (A1)

as a consequence of the eigenvalue equation (5). In fact,
orbitals χA

μ represent the functions obtained by performing
Löwdin’s “canonic” orthogonalization of the functions ϕA

i .
(Not to be confused with the usual Löwdin-orthogonalization
performed by using matrix S−1/2.)
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Relationship (6) can be trivially inverted, and one gets

ϕA
j =

nA∑
μ=1

UA∗
jμ

√
λA

μχA
μ . (A2)

Owing to this result and Eq. (4), the MOs can be written as
linear combinations of the “effective AOs” of different atoms

ϕi =
Nat∑
A

nA∑
μ=1

UA∗
iμ

√
λA

μχA
μ . (A3)

Thus, our analysis of the behaviour of the molecular orbitals
in the different atomic domains resulted in a special LCAO
expansion of the molecular orbitals. One can also introduce a
continuous numbering of the basis orbitals, and write

ϕi =
m∑

ν=1

Cνiχν, (A4)

where the overall dimension of the “effective AO” basis is

m =
Nat∑
A=1

nA, (A5)

and the orbitals χν with ν ≤ n1 are attributed to atom with
number A = 1, those with n1 + 1 ≤ ν ≤ n1 + n2 to atom
A = 2, and so on, For the LCAO coefficients Cνi, one obvi-
ously has

Cνi = UA∗
iμ

√
λA

μ. (A6)

If orbital χν belongs to atom A, then subscripts μ and ν are
trivially related as

μ = ν −
A−1∑
B=1

nB. (A7)

Owing to the orthogonality relationship (A1) and the disjunct
character of the atomic basins, the orbitals χν , ν = 1, 2, . . . , m
form an orthonormalized basis. Therefore, there are no over-
lap populations, and Mulliken’s net and gross populations co-
incide. Thus, the Hilbert space or LCAO population of atom
A in terms of the “effective atomic orbitals” is given by the
sum of the diagonal density matrix elements for the orbitals
belonging to that atom

QLCAO
A =

∑
ν∈A

Dνν = 2
n∑

i=1

∑
ν∈A

|Cνi |2=2
n∑

i=1

nA∑
μ=1

∣∣UA∗
iμ

√
λμ

∣∣2

= 2
n∑

i=1

nA∑
μ=1

UA
iμUA∗

iμ λμ =
n∑

i=1

nA∑
μ,ν=1

UA
iμUA∗

iν λμδμν

=
n∑

i=1

n∑
μ,ν=1

UA
iμ�μν(UA†)νi

= 2
n∑

i=1

(UA�AUA†)ii = 2
n∑

i=1

QA
ii, (A8)

where the inverse of Eq. (5) has been utilized. (The summa-
tion limit for μ, ν was increased from nA to n because that
meant only adding terms containing factors λμ = 0.)

The AIM population of atom A is given by

QAIM
A =

∫
�A

ρ(�r)dv = 2
∫

�A

n∑
i=1

|ϕi(�r)|2dv

= 2
n∑

i=1

∫
�A

|ϕi(�r)|2dv = 2
n∑

i=1

QA
ii . (A9)

Comparing Eqs. (A8) and (A9), we see that

QLCAO
A = QAIM

A , (A10)

i.e., the atomic population calculated by the Hilbert-space
analysis in the basis of the “effective AOs” is equal to that
obtained by the 3D AIM analysis.

APPENDIX B: APPROXIMATE EXPANSION OF THE
MOs IN THE BASIS OF “EFFECTIVE AOs”

Let us consider those “effective AOs” χA
μ , A = 1, 2,

. . . Nat which meet some criterion λA
μ ≥ t ≥ 0. Let their ef-

fective number be neff. In order to get an (approximate) ex-
pansion of the MOs, we should take enough “effective AOs,”
so it must be neff ≥ n.

Now we build the rectangular neff × n matrix Z, with
elements

Zμi = 〈χμ|ϕi〉. (B1)

With the SVD, the rectangular matrix is transformed as

U†ZV = �, (B2)

where U and V are unitary matrices of dimension neff × neff

and n × n, respectively, and � is a rectangular diagonal matrix
containing the singular values ξ i of Z. From the definition of
matrix Z and using Eq. (B2), one can write

neff∑
μ

n∑
j

U ∗
μi〈χμ|ϕj 〉Vji = ξi, (B3)

that is, the singular value ξ i is the overlap between the
function

ψi =
neff∑
μ=1

Uμiχμ, (B4)

which is a linear combination of the “effective AOs” and

ϕ′
i =

n∑
μ=1

Vjiϕj , (B5)

representing a molecular orbital after performing a unitary
transformation with the matrix V.

If ξ i = 1, the two functions have an overlap equal one,
ψ i and ϕ′

i are essentially (“almost everywhere”) equal to each
other, and one can write

ϕ′
i =

neff∑
μ

Uμiχμ. (B6)

That is, the columns of the unitary matrix U contain the
LCAO coefficients of each rotated MO in the orthogonal basis
of “effective AOs.”
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If ξ i is close to, but not exactly equal one, Eq. (B6)
represents an approximation to the (rotated) molecular
orbital. Under these circumstances, Eq. (A10) is no longer
strictly fulfilled but, since these approximated MOs form an
orthonormalized set, the number of electrons is conserved.
(The “effective AOs” χμ are orthonormalized and matrix U
is unitary, so we have n orthonormalized approximate MOs
ϕ′

i , so the closed shell determinant wavefunction constructed
by their use carries exactly as many electrons as the original
wavefunction containing the orbitals ϕi.)

Finally, the SVD method can also be applied in practice
beyond doubly occupied orbitals. First of all, in order to re-
duce the dimensionality of the problem, it is worth to consider
the natural orbital representation, ψnat

i , and thus perform the
pairing between the set of “effective AOs” on one side and a
reduced number of natural orbitals, nocc (chosen again by an
occupation number criterion). After the SVD process, each
rotated natural orbital is identified with a linear combination
of “effective AOs,” as in the previous case

nocc∑
j

Vjiψ
nat
j

∼=
neff∑
μ

Uμiχμ. (B7)

However, now it is more convenient to have the connection di-
rectly with the original set of natural orbitals, where the den-
sity matrix is diagonal. Multiplying Eq. (B7) by the matrix
element (V†)ik = V ∗

ki , and summing up over i, one gets

ψnat
k

∼=
neff∑
μ

nocc∑
i

Uμi(V†)ikχμ =
neff∑
μ

Wμkχμ, (B8)

where now the columns of matrix W = UV† gather the (ap-
proximate) LCAO coefficients of the original subset of natural
molecular orbitals over the “effective AO” basis.
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