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ABSTRACT

We have studied the complete randomness of the angular distribution of gamma-ray bursts
(GRBs) detected by the Burst and Transient Source Experiment (BATSE). Because GRBs seem
to be a mixture of objects of different physical nature, we divided the BATSE sample into
five subsamples (short1, short2, intermediate, long1, long2) based on their durations and peak
fluxes, and we studied the angular distributions separately. We used three methods, Voronoi
tesselation, minimal spanning tree and multifractal spectra, to search for non-randomness in
the subsamples. To investigate the eventual non-randomness in the subsamples, we defined
13 test variables (nine from the Voronoi tesselation, three from the minimal spanning tree
and one from the multifractal spectrum). Assuming that the point patterns obtained from the
BATSE subsamples are fully random, we made Monte Carlo simulations taking into account
the BATSE’s sky-exposure function. The Monte Carlo simulations enabled us to test the
null hypothesis (i.e. that the angular distributions are fully random). We tested the randomness
using a binomial test and by introducing squared Euclidean distances in the parameter space of
the test variables. We concluded that the short1 and short2 groups deviate significantly (99.90
and 99.98 per cent, respectively) from the full randomness in the distribution of the squared
Euclidean distances; however, this is not the case for the long samples. For the intermediate
group, the squared Euclidean distances also give a significant deviation (98.51 per cent).
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1 IN T RO D U C T I O N

Currently, there is no doubt about the cosmological origin of
gamma-ray bursts (GRBs; Zhang & Mészáros 2004; Fox et al.
2005; Mészáros 2006). Thus, assuming a large-scale isotropy for
the Universe, the same property is also expected for GRBs. Another
property that is also expected to occur is that GRBs should appear
fully randomly (i.e. if a burst is observed, it does not give any in-
formation about the place of the next burst). If both properties are
fulfilled, then the distribution is called completely random (for the
astronomical context of spatial point processes, see Pásztor & Tóth
1995). There are several tests for checking the complete random-
ness of point patterns; however, these procedures do not always give
information for both properties simultaneously.

There is increasing evidence that all GRBs do not represent a
physically homogeneous group (Kouveliotou et al. 1993; Horváth
1998, 2002; Mukherjee et al. 1998; Hakkila et al. 2000, 2003; Balázs
et al. 2003; Horváth et al. 2006). Hence, it is worth investigating
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whether the physically different subgroups are also different in
their angular distributions. In the last few years, Balázs, Mészáros
& Horváth (1998), Balázs et al. (1999), Mészáros, Bagoly & Vavrek
(2000a) and Mészáros et al. (2000b) have provided several different
tests for probing the intrinsic isotropy in the angular sky-distribution
of GRBs collected in the Burst And Transient Source Experiment
(BATSE) catalogue (Meegan et al. 2000). Briefly summarizing the
results of these studies, we can conclude the following. (i) The
long subgroup (T90 > 10 s) seems to be distributed isotropically.
(ii) The intermediate subgroup (2 <= T90

<= 10 s) is distributed
anisotropically on the �(96–97) per cent significance level. (iii)
For the short subgroup (2 s > T90) the assumption of isotropy is
rejected only on the 92 per cent significance level. (iv) The long and
the short subclasses, respectively, are distributed differently on the
99.3 per cent significance level. (For details about the definition of
subclasses, see Horváth 1998. T90 is the duration of a GRB, during
which time 90 per cent of the radiated energy is received; Meegan
et al. 2000.)

Independently and using different tests, Litvin et al. (2001) con-
firmed the results (i)–(iii) with one essential difference: for the
intermediate subclass, there is a much higher (99.89 per cent)
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significance level of anisotropy. Again, the short subgroup is found
to be ‘suspicious’, but only the �(85–95) per cent significance level
is reached. The long subclass seems to be distributed isotropically
(but see Mészáros & Štoček 2003). Magliocchetti, Ghirlanda &
Celotti (2003) found significant angular correlation on the 2◦–5◦

scale for GRBs with T90 < 2 s durations. Tanvir et al. (2005) re-
ported a correlation between the locations of previously observed
short bursts and the positions of galaxies in the local Universe, in-
dicating that between 10 and 25 per cent of short GRBs originate at
low redshifts (z < 0.025).

It is a reasonable requirement to continue these tests using more
sophisticated procedures in order to see whether the angular distri-
bution of GRBs is completely random or has some sort of regularity.
This is the subject of this paper. New tests are presented here. In
particular, clarification of the behaviour of the short subgroup is
expected from these tests. In this paper, similar to previous studies,
the intrinsic randomness is tested; this means that the non-uniform
sky-exposure function of the BATSE instrument is eliminated.

The paper is organized as follows. In Section 2, we describe
three new tests; there are no new results presented but, because the
methods are not widely familiar, this minimal survey may be useful.
In Section 3, we give the statistical tests on the data. In Section 4,
we summarize the results of the statistical tests, and in Section 5 we
present the main conclusions of the paper.

2 MATHEM ATICAL SUMMARY

2.1 Voronoi tesselation

The Voronoi diagram (Fig. 1), also known as Dirichlet tesselation or
Thiessen polygons, is a fundamental structure in computational ge-
ometry and arises naturally in many different applications (Voronoi
1908; Stoyan & Stoyan 1994). Generally, this diagram provides a
partition of a point pattern (‘point field’, also ‘point process’) ac-

Figure 1. VT of the short GRBs (short1 sample) in the 0.65 < P256 < 2.00 peak-flux range in Galactic coordinates. The peak flux is given in dimension
photons (cm2 s)−1.

cording to its spatial structure, which can be used for analysing the
underlying point process.

Assume that there are N points (N � 1) scattered on a sphere’s
surface with a unit radius. It is stated that a point field is given on
the sphere. The Voronoi cell (Stoyan & Stoyan 1994) of a point is
the region of the sphere’s surface consisting of points that are closer
to this given point than to any others of the sphere. This cell forms
a polygon on this sphere. Every such cell has its area (A) given
in steradians, a perimeter (P) given by the length of the boundary
(one large circle of the boundary curve is also called the ‘chord’),
a number of vertices (Nv) given by an integer positive number, and
by the inner angles (αi ; i = 1, . . . , Nv). This method is completely
non-parametric, and therefore may be sensitive for various point
pattern structures in the different subclasses of GRBs.

Note that the behaviour of this tesselation method on the sphere’s
surface is different from that on the infinite plane. This follows
from the fact that the areas of the polygons will not be independent
from each other, because the total surface of the sphere is fixed
in 4π steradian. Hence, the spherical Voronoi tesselation (VT) is
not effected by border effects, and the Voronoi diagram becomes a
closed set of convex polygons.

The points on the sphere may be distributed completely randomly
or non-randomly; the non-random distribution may have different
characteristics (clustering, filaments, etc.; for a survey of these non-
random behaviours, see, for example, Diggle 1983).

Every random and some regular patterns have a distribution with
one characteristic maximum (unimodal) but with different vari-
ances. Multimodality means different characteristic maxima indi-
cating a hierarchical (cluster) structure, with the number of modes
determined by the number of scales in the sample. The VT method
is able both to detect the non-randomness and to describe its form.
For more details, see Stoyan & Stoyan (1994), and for the astronom-
ical context, see Coles & Barrow (1990), Coles (1991), Icke & van
de Weygaert (1991), Ikeuchi & Turner (1991), Subba Rao & Szalay
(1992), van de Weygaert (1994), Zaninetti (1995), Doroshkevich,
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Figure 2. The MST for the sample in Fig. 1.

Figure 3. MFR spectra of simulated (dot-dashed), long1 (dashed), short1 (dotted) and short2 (three-dot-dashed) samples. Boxes represent the error of spectrum
points derived from Monte Carlo simulations. Note the shift of the maximum of the spectrum of the short1 sample towards higher values in comparison to
α = 2, corresponding to the completely random two-dimensional Euclidean case.

Gottlöber & Madsen (1997), Yahagi, Mori & Yoshii (1999) and
Ramella et al. (2001).

2.2 Minimal spanning tree

Contrary to VT, this method considers the distances (edges) among
the points (vertices) (Fig. 2). Clearly, there are N(N − 1)/2 distances
among N points. A spanning tree is a system of lines connecting all
the points without any loops. The minimal spanning tree (MST) is a
system of connecting lines, where the sum of the lengths is minimal

among all the possible connections between the points (Kruskal
1956; Prim 1957). In this paper, the spherical version of the MSF is
used, following the original paper by Prim.

The N − 1 separate connecting lines (edges) together define
the MST. The statistics of the lengths and the αMST angles between
the edges at the vertices can be used for testing the randomness of the
point pattern. The MST is widely used in cosmology for studying
the statistical properties of galaxy samples (Barrow, Bhavsar &
Sonoda 1985; Bhavsar & Lauer 1996; Krzewina & Saslaw 1996;
Bhavsar & Splinter 1996; Adami & Mazure 1999; Doroshkevich &
Turchaninov 2001).

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 391, 1741–1748



1744 R. Vavrek et al.

2.3 Multifractal spectrum

Let P(ε) denote the probability for finding a point in an area of ε

radius. If P(ε) scales as εα [i.e. P(ε) ∝ εα], then α is called the local
fractal dimension (e.g. α = 2 for a completely random process on
the plane). In the case of a monofractal, α is independent of the
position. A multifractal (MFR) on a point process can be defined as
unification of the subsets of different (fractal) dimensions (Paladin
& Vulpiani 1987). f (α) usually denotes the fractal dimension of
the subset of points at which the local fractal dimension is in the
interval of α, α + dα. The contribution of these subsets to the whole
pattern is not necessarily equally weighted; practically it depends on
the relative abundances of subsets. The f (α) functional relationship
between the fractal dimension of subsets and the corresponding
local fractal dimension is called the MFR or Hausdorff spectrum
(Fig. 3).

In the vicinity of the ith point (i = 1, 2, . . . , N) we can mea-
sure from the neighbourhood structure a local dimension αi (‘Rényi
dimension’). This measure approximates the dimension of the em-
bedding subset, making it possible to construct the MFR spectrum
that characterizes the whole pattern (for more details, see Paladin
& Vulpiani 1987). If the maximum of this convex spectrum is equal
to the Euclidean dimension of the space, then in the classical sense
the pattern is not a fractal, but the spectrum remains sensitive to the
non-randomness of the point set.

There is a wide variety of astronomical phenomena, where the
concept of fractal and/or MFR can be successfully applied (Giraud
2000; Irwin, Widrow & English 2000; Kawaguchi et al. 2000;
Pan & Coles 2000, 2002; Selman & Melnick 2000; Bottorff &
Ferland 2001; Célérier & Thieberger 2001; Chappell & Scalo 2001;
Tatekawa & Maeda 2001; Vavrek, Balázs & Epchtein 2001; As-
chwanden & Parnell 2002; Casuso & Beckman 2002; Elmegreen
2002; Gaite & Manrubia 2002; Semelin & Combes 2002; Tikhonov
2002; Datta 2003).

3 STATISTIC A L TESTS ON THE DATA

The three procedures outlined in Section 2 enable us to derive sev-
eral stochastic quantities well suited for testing the non-randomness
of the underlying point patterns.

3.1 Input data and the definition of samples

Up to the present, the most comprehensive all-sky survey of GRBs
was carried out by the BATSE experiment on board the Compton
Gamma-ray Observatory (CGRO) satellite in the period 1991–2000.
In this period, the experiment collected 2704 well-justified burst
events and the data are available in the current BATSE catalogue
(Meegan et al. 2000).

Because there is increasing evidence (Horváth et al. 2006, and
references therein) that the GRB population is actually a mixture
of astrophysically different phenomena, we have divided the GRBs
into three groups: short (T90 < 2 s), intermediate (2 ≤ T90 ≤ 10 s)
and long (T90 > 10 s). To avoid problems with the changing de-
tection threshold, we omitted GRBs having a peak flux P256 ≤
0.65 photons cm−2 s−1. This truncation was proposed by Pendleton
et al. (1997). The bursts may emerge at very different distances in
the line of sight and it may happen that the stochastic structure of
the angular distribution depends on it. Therefore, we also carried
out tests on the bursts with P256 < 2 photons cm−2 s−1 in the short
and long populations, separately. Table 1 defines the five samples
studied here.

Table 1. Tested samples of BATSE GRBs.

Sample Duration Peak flux Number
(s) (photons cm−2 s−1) of GRBs

Short1 T90 < 2 0.65 < P256 < 2 261
Short2 T90 < 2 0.65 < P256 406
Intermediate 2 <= T90

<= 10 0.65 < P256 253
Long1 T90 > 2 0.65 < P256 < 2 676
Long2 T90 > 10 0.65 < P256 966

3.2 Definition of the test variables

The randomness of the point field on the sphere can be tested with
respect to different criteria. As different non-random behaviours are
sensitive for different types of criteria of non-randomness, it is not
necessary that all possible tests using different measures reject the
assumption of randomness. In the following, we defined several test
variables that are sensitive to different stochastic properties of the
underlying point pattern, as proposed by Wallet & Dussert (1998).

3.2.1 Voronoi tesselation

Any of the four quantities characterizing the Voronoi cell (i.e. the
area, the perimeter, the number of vertices and the inner angles)
can be used as test variables or even some of their combinations as
well. We defined the following test variables: cell area A; cell vertex
(edge) Nv; cell chords C; inner angle αi ; round factor (RF) average
RFav = 4πA/P ; round factor (RF) homogeneity 1 − [σ (RF av)/
RF av]; shape factor A/P2; modal factor σ (αi)/Nv; and the so-called
‘AD factor’ defined as AD = 1 − [1 − σ (A)/〈A〉]−1, where σ (A) is
the dispersion and 〈A〉 is the average of A.

3.2.2 Minimal spanning tree

To characterize the stochastic properties of a point pattern, we use
three quantities obtained from a MST: the variance of the MST
edge-length σ (LMST); the mean MST edge-length LMST; and the
mean angle between edges αMST.

3.2.3 Multifractal spectrum

Here, the only variable used is the f (α) MFR spectrum, which is a
sensitive tool for testing the non-randomness of a point pattern.

An important problem is to study the sensitivity (discriminant
power) of the different parameters to the different types of regular-
ity inherent in the point pattern. In the case of a fully regular mesh,
for example, A is constant, and so AD = 0, σ (αi) = 0, and both
are increasing towards a fully random distribution. In the case of
a patchy pattern, the distribution of the area of the Voronoi cells
and the edge distribution of the MST become bimodal, reflect-
ing the average area and the edge-length within and between the
clusters, in comparison to the fully random case. In a filamentary
distribution, the shape of the areas becomes strongly distorted, re-
flecting an increase of the modal factor in comparison to the case of
patches.

Wallet & Dussert (1997) investigated the power of the VT and
MST by discriminating between distributions having large and small
clusters, full randomness and hard cores (random distributions but
the mutual distances of the points are constrained by the size of a
hard core), respectively. They concluded that the Voronoi roundness
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factor did not separate small clusters and hardcore distributions, and
the roundness factor homogeneity did not distinguish between small
clusters and random distributions, or between random and hardcore
distributions. The MST has very good discriminant power even in
the case of hardcore distributions with close minimal interpoint
distances.

Because the sensitivities of the variables are different on changing
the regularity properties of the underlying point patterns, we can
measure significant differences in one parameter but not in the
other, even when these are correlated otherwise. This is not a trivial
issue. In most cases, extended numerical simulations are necessary
to study the statistical significance of the different parameters.

3.3 Estimation of the significance

Let ξ denote one of the 13 test variables defined in Section 3.2. The
probability that ξ < x occurs is given by P(ξ < x) = F(x), where
F(x) is the probability distribution function. We approximated F(x)
numerically by the Fn(x) empirical probability distribution function,
which can be calculated by Fn(x) = k/n, where n is the number of
simulations and k is the number of cases for which the simulated
ξ < x holds.

Similarly, the probability that ξ is within the interval [x1;x2] can
be obtained by Fn(x1) − Fn(x2) = (x2 − x1)/n. Then, the β probabil-
ity that ξ is outside this region is given by β = 1 − (x2 − x1)/n. In
the following, we suppose that the [x1;x2] interval is symmetric to
the x sample mean. To obtain the empirical distributions of the test
variables, we carried out 200 simulations for each of the five sam-
ples. The numbers of simulated points were identical to those of the
samples defined in Section 3.1.

We generated the fully random catalogues using Monte Carlo
(MC) simulations of fully random GRB celestial positions, and
taking into account the BATSE sky-exposure function (Fishman
et al. 1994; Meegan et al. 2000).

Assuming that the point patterns obtained from the five samples,
defined in Table 1, are fully random, we calculated the probabilities
for all 13 test variables selected in Section 3.2. Based on the simu-
lated distributions, we computed the level of significance for all 13
test variables and in all samples defined.

Table 2. Calculated significance levels for the 13 test variables and the five samples. A calculated numerical significance greater than 95 per cent is given in
bold face.

Name Var Short1 Short2 Intermediate Long1 Long2

Cell area A 36.82 29.85 94.53 79.60 82.59
Cell vertex (edge) Nv 36.82 87.06 2.99 26.87 7.96
Cell chords C 47.26 52.24 18.91 84.58 54.23
Inner angle αi 96.52 21.39 87.56 37.81 63.18
RF average 4πA/P 65.17 99.98 33.83 10.95 86.07
RF homogeneity 1 − [σ (RF av)/RF av] 19.90 24.38 58.71 55.72 32.84
Shape factor A/P2 91.04 94.03 90.05 55.22 63.68
Modal factor σ (αi )/Nv 97.51 1.99 7.46 56.22 8.96
AD factor 1 − {1 − [σ (A)/〈A〉]}−1 32.84 25.37 11.44 95.52 52.74
MST variance σ (LMST) 52.74 38.31 22.39 13.93 59.70
MST average LMST 97.51 7.46 89.05 56.72 8.96
MST angle αMST 85.07 14.43 36.82 73.63 60.70
MFR spectra f (α) 95.52 96.02 98.01 73.63 36.32

Binomial test (equation 1 with p = 0.05) 99.69 86.46 51.33 51.33 –

Squared Euclidean distance 99.90 99.98 98.51 93.03 36.81

4 D I SCUSSI ON OF THE STATI STI CAL

PROPERTIES

4.1 Significance of independent multiple tests

In Section 3.3, we calculated the numerical significance for the
tests, assuming they were performed individually. The calculated
significance levels are given in Table 2. In reality, however, these
figures would mean significance at a certain level if we performed
only that single test. Assuming that all the single tests were inde-
pendent, the Pn(m) probability that among n trials at least m will
result in significance only by chance at a certain level is given by
the following equality:

Pn(m) =
n∑

k=m

P n
k . (1)

Here, Pn
k is the binomial distribution giving the probability of k

successes among n trials:

P n
k = n!

k!(n − k)!
pk(1 − p)n−k. (2)

In equation (2), p denotes the probability that a single test has
given a significant result only by chance. It is easy to see that this
equation results in Pn(1) = 1 − (1 − p)n ≈ np, which gives a
significance of 1 − np approximately instead of 1 − p. This means,
for example, that a single test resulting in 1 − p = 0.95 significance
is reduced to 1 − 0.9513 = 0.49 if we perform n = 13 independent
tests but only one results in 1 − p = 0.95 significance.

Inspecting Table 2, which lists the calculated numerical signifi-
cance of single tests, we can infer that the short1 sample has four
tests with a significance of 1 − p = 0.95 or more. Taking into account
the calculations at the end of the previous paragraph, however, we
have to emphasize that the calculated numerical significance, based
on the individual probability distribution of the test variables sepa-
rately, does not have its original meaning. Significance refers to the
certainty of rejecting the null hypothesis on the basis of the series
of tests as a whole. Applying equation (1) with m = 4 and n =
13, we obtain a significance of 99.69 per cent. Applying the same
sequence of arguments to the short2 sample, we obtain a figure of
only 86.46 per cent (m = 2 and n = 13). For the intermediate, long1
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and long2 samples, we cannot obtain figures above the 95 per cent
significance level.

There may be a serious concern, however, with the results ob-
tained above. Namely, the basic requirement of the independence
of the single tests is not fulfilled in our case. On the contrary, there
are strong correlations between the test variables in Table 2. In Sec-
tion 4.2, we try to outline an approach that takes into account the
correlations between the test variables and overcomes this difficulty.

4.2 Evaluation of the joint significance levels

We assigned to every MC simulated sample 13 values of the test
variables and, consequently, a point in the 13-dimensional (13D)
parameter space. Completing 200 simulations in all of the subsam-
ples, in this way we obtain a 13D sample representing the joint
probability distribution of the 13 test variables. Using a suitable
chosen measure of distance of the points from the sample mean,
we can obtain a stochastic variable characterizing the deviation of
the simulated points from the mean only by chance. An obvious
choice would be the squared Euclidean distance.

In the case of a Gaussian distribution with unit variances and with-
out correlations, this would result in a χ 2 distribution of 13 degrees
of freedom. The test variables in our case are correlated and have
different scales. Before computing the squared Euclidean distances,
we transformed the test variables into non-correlated variables with
unit variances. Because of the strong correlation between some of
the test variables, we can assume that the observed quantities can be
represented with non-correlated variables fewer in number. Factor
analysis (FA) is a suitable way to represent the correlated observed
variables with non-correlated variables fewer in number.

As our test variables are stochastically dependent following
Wallet & Dussert (1998), we attempted to represent these by fewer
non-correlated hidden variables, supposing that

Xi =
k∑

j=1

aij fj + si i = 1, . . . , p; k < p. (3)

In equation (3), Xi , fj and si denote the test variables (p = 13 in
our case), the hidden variables and a noise term, respectively. Equa-
tion (3) represents the basic model of FA. After making some rea-
sonable assumptions (Kendall & Stuart 1973), k can be constrained
by the following inequality

k ≤ (2p + 1 −
√

8p + 1)/2, (4)

which gives k ≤ 8.377 in our case.
Factor analysis is a common ingredient of professional statisti-

cal software packages (BMDP,
R©

SAS,
R©

S-plus,
R©

SPSS
R©

, etc.).
The default solution for identifying the factor model is to perform
principal component analysis (PCA). We kept as many factors as
were meaningful with respect to equation (4). Taking into account
the constraint imposed by equation (4), we retained eight factors. In
this way, we projected the joint distribution of the test variables in
the 13D parameter space into an eight-dimensional parameter space
defined by the non-correlated f i hidden variables.

The fj hidden variables in equation (3) are non-correlated and
have zero means and unit standard deviations. Using these vari-
ables, we defined the following squared Euclidean distance from
the sample mean:

d2 = f 2
1 + f 2

2 + . . . + f 2
k (k = 8 in our case). (5)

If the fj variables had strictly Gaussian distributions equation (5)
would define a χ 2 variable of k degrees of freedom.

4.3 Statistical results and their interpretations

In addition to the significance obtained by the binomial test in
Section 4.1 using the distribution of the squared Euclidean distances,
defined by equation (5), we can obtain further information about
whether a BATSE sample represented by a point in the parameter
space of the test variables deviates only by chance or whether it
significantly differs from the fully random distribution.

In all categories (short1, short2, intermediate, long1 and long2)
we carried out 200, altogether 1000, simulations. We calculated the
d2 squared distances for all simulations and compared these with
those of the BATSE samples in Table 1. Fig. 4 shows a histogram
of the simulated squared distances along with those of the BATSE
samples. The full line represents a χ 2 distribution of k = 8 degrees of
freedom. Fig. 4 clearly shows that the departures of samples short1
and short2 exceed all those of the simulated points. The probabilities
that these deviations are non-random are 99.9 and 99.98 per cent,
respectively.

The full randomness of the angular distribution of the long GRBs,
in contrast to the regularity of the short and to some extent the inter-
mediate GRBs, points towards the differences in the angular distri-
bution of their progenitors. The recent discovery of the afterglow in
some short GRBs indicates that these events are associated with the
old stellar population (Fox et al. 2005) accounting probably for the
mergers of compact binaries. This is in contrast to the long bursts
resulting from the collapse of very massive stellar objects in young
star-forming regions. The differences in progenitors also reflects
the differences between the energy released by the short and long
GRBs.

Unfortunately, little can be said about the physical nature of
the intermediate class. The statistical studies (Horváth et al. 2006,
and references therein) suggest the existence of this subgroup, at
least from a purely statistical point of view. The non-random sky-
distribution also occurs here, but its physical origin is not fully
solved yet (Horváth et al. 2006).

5 SU M M A RY A N D C O N C L U S I O N S

We carried out additional studies on the degree of the randomness
in the angular distribution of samples selected from the BATSE
catalogue. According to the T90 durations and P256 peak fluxes of
the GRBs in the catalogue, we defined five groups: short1 (T90 <

2 s and 0.65 < P256 < 2); short2 (T90 < 2 s and 0.65 < P256);
intermediate (2 <= T90

<= 10 s and 0.65 < P256); long1 (T90 > 2 s
and 0.65 < P256 < 2); long2 (T90 > 10 s and 0.65 < P256).

To characterize the statistical properties of the point patterns,
given by the samples, we defined 13 test variables based on the
VT, the MST and MFR spectra. For all five GRB samples defined,
we carried out 200 numerical simulations assuming fully random
angular distribution and taking into account the BATSE exposure
function. The numerical simulations enabled us to define empirical
probabilities for testing the null hypothesis (i.e. the assumption that
the angular distributions of the BATSE samples are fully random).

Because we performed 13 single tests simultaneously on each
subsample, the significance obtained by calculating it separately for
each test cannot be treated as a true indication for deviating from the
fully random case. At first, we supposed that the test variables were
independent and, making use the binomial distribution, we com-
puted the probability of obtaining a significant deviation in at least
one of the variables only by chance. In fact, some of the test vari-
ables are strongly correlated. To concentrate the information on the
non-randomness experienced by the test variables, we assumed that
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Figure 4. Distribution of the squared Euclidean distances of the simulated samples from the stochastic mean of the f i hidden variables (factors) in the
eight-dimensional parameter space. There are altogether 1000 simulated points. The full line marks a χ2 distribution of eight degrees of freedom, normalized
to the sample size. The distances of the BATSE samples are also indicated. The departures of samples short1 and short2 exceed all those of the simulated
points. The probabilities that these deviations are non-random equal 99.9 and 99.98 per cent, respectively.

they can be represented as a linear combination of non-correlated
hidden factors fewer in number. Actually, we estimated k = 8 as
the number of hidden factors. Making use of the hidden factors, we
computed the distribution of the squared Euclidean distances from
the mean of the simulated variables. Comparing the distribution of
the squared Euclidean distances of the simulated variables with the
BATSE samples, we concluded that the short1 and short2 groups
deviate significantly (99.90 and 99.98 per cent, respectively) from
the full randomness, but this is not the case for the long samples.
For the intermediate group, the squared Euclidean distances also
give significant deviation (98.51 per cent).
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