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Alliance formation with exclusion in the spatial public goods game
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Detecting defection and alarming partners about the possible danger could be essential to avoid being exploited.
This act, however, may require a huge individual effort from those who take this job, hence such a strategy seems
to be unfavorable. But structured populations can provide an opportunity where a largely unselfish excluder
strategy can form an effective alliance with other cooperative strategies, hence they can sweep out defection.
Interestingly, this alliance is functioning even at the extremely high cost of exclusion where the sole application
of an exclusion strategy would be harmful otherwise. These results may explain why the emergence of extreme
selfless behavior is not necessarily against individual selection but could be the result of an evolutionary process.
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I. INTRODUCTION

It is always disappointing to realize exploitation by others
in a joint venture where participants decide independently
whether to contribute to a common pool. The core of social
dilemmas originates from the fact that players in general
have no preliminary information about how partners will
behave [1–3]. This problem can be addressed in several ways,
such as by recording previous acts via a reputationlike tag,
by monitoring and rewarding cooperators, or punishing a
defector who becomes less successful in this way [4–22]. But
every kind of approach requires an additional individual effort
from the player who pays extra attention to check others.
This possibility transforms the dilemma onto a new level
where the question is who bears the extra cost of monitoring
and punishing defection [23–25]? Interestingly, this so-called
second-order free-riders dilemma may be solved automatically
in structured populations where players have limited numbers
and practically stable links which allow punishing players
to separate from pure cooperators who can be considered
as second-order free riders [26]. When these strategies form
isolated groups in the sea of defectors, then the advantage of a
punishing strategy is revealed, and pure cooperators diminish,
which results in a higher average cooperator level.

Punishing others, however, is not necessarily an attractive
strategy for every cooperator, and the application of punish-
ment will reduce the average payoff in the population [27,28].
An alternative way to avoid being exploited is if a player
monitors defection and alarms all other cooperator players in
the group about the possible danger. The mentioned player
hence can exclude defectors from the joint venture for the
benefit of all the others. Some previous works have already
studied the possible positive effect of social exclusion in well-
mixed populations [29–32], but its consequences in structured
populations is explored here. The goal of our present paper is
to reveal how an exclusion strategy may influence the evolution
of cooperation in a system where network reciprocity already
establishes a supporting environment for cooperation.
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For this reason we extend a previously studied model where
besides pure cooperators punishing, players also compete
with defectors for space in a structured population [33]. In
our present model we add a new strategy, which is called
an excluder, who undertakes the extra effort of monitoring
and excluding defectors from the joint venture. Our principal
goal is to identify the limit of the excluder’s cost until
this strategy is able to survive and serve the community.
We will show that the most effective way to fight against
defection is when an exclusion strategy forms a defensive
alliance with other cooperative strategies and they support
each other mutually to sweep out defectors. First, however,
we proceed with presenting the details of the extended spatial
model.

II. PUBLIC GOODS GAME WITH EXCLUSION

We study an evolutionary public goods game (PGG) on the
square lattice where players can choose from four different
strategies. The competing strategies are D defectors who
do not contribute to the common pool but only enjoy its
positive consequence, C cooperators who contribute c = 1 to
the joint venture but do not bear the extra cost of punishment
or exclusion, P punishers who do not only contribute to the
pool, but also punish defectors at the expense of an extra cost,
and finally E excluders who besides contributing to the pool
also monitor defectors in the group and alarm all other group
members about the possible danger. Due to this alarming a
defector will be excluded from the common game and returns
empty handed, whereas other group members can enjoy the
benefit of common acts. Perhaps it is worth noting that social
exclusion maintains only if E players are present in the groups,
otherwise, when they are absent, the defector player can exploit
group efforts again. Evidently, monitoring and alarming others
require an extra effort from an E player which is considered via
an extra cost. We should also stress that the cost of punishment
and social exclusion should not necessarily be equal, hence
we can study the specific cases when an excluder may bear an
extremely high cost.

Denoting the number of cooperators, defectors, punishers,
and excluders among neighbors in the group by ND, NC, NP ,
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and NE , respectively, the payoff of the focal player is as
follows:

�D = δ(NE)
r(NC + NP )

G
− β

NP

G − 1
, (1)

�C = δ(NE)
r(nC + NP + 1)

G
+ [1 − δ(NE)]r − 1, (2)

�P = �C − γ
ND

G − 1
, (3)

�E = r − 1 − ε
ND

G − 1
, (4)

where the Kronecker-δ function is δ(x) = 1 if x = 0, otherwise
δ(x) = 0. By using this δ function we can handle the situation
when a defector player cannot gain anything from the group
venture due to the presence of an excluder. The other
parameters are identical to those we used in a simplified
model [33]. Namely, r denotes the synergy factor, β is the
maximum value of a fine for a defector when it is surrounded
by punisher players exclusively. Parameter γ denotes the
maximum value of punishment cost that should be borne by a
punisher when it forms a group with four other defectors. Last,
ε describes the additional cost of the exclusion strategy which
should always be considered in the presence of defectors.
Equation (4) indicates that our model considers peer exclusion.
Consequently, a player who considers exclusion strategy pays
an extra cost that is proportional to the number of defectors
in the group. It also means that an E player should not bear
this cost in the absence of defectors. An alternative way to
include social exclusion would be the so-called pool exclusion
when E’s strategy has to pay a fixed but permanent extra cost
independent of how many defectors are in the group.

In the simplest case of a structured population the players
are arranged on a square lattice with periodic boundary
conditions where L2 players are assigned to overlapping
groups of size G = 5 such that everyone is connected to
its G − 1 = 4 nearest neighbors [34]. Accordingly, each
individual i belongs to g = 1, . . . ,G different groups, and
the total payoff is the sum of all the payoffs �i acquired in
each individual group. We should stress, however, that our
most important observations are robust and remain valid if
we apply other interaction topologies as will be illustrated
in the next section. The only essential criterion is to have a
limited number of neighbors who are fixed, at least, for a
reasonable time of interaction comparing to the strategy update
time scale [35–38].

To model the selection process during the evolution we
apply an imitation dynamics [39,40]. More precisely, during
an elementary Monte Carlo step we select a player x and
one of its neighbors y randomly. The total payoffs �sy

and
�sx

are calculated for both players. After player y adopts the
strategy from player x with a probability given by the Fermi
function w(sx → sy) = 1/{1 + exp[(�sy

− �sx
)/K]}, where

K = 0.5 quantifies the uncertainty by strategy adoptions [41].
This formula helps to avoid trapped artificial states [42] and
ensures that better performing players are adopted readily,
although it is not impossible to adopt the strategy of a player
performing worse. Each full Monte Carlo step (MCS) gives
every player a chance to change its strategy once on average.

Note that in the absence of exclusion our model becomes
equivalent with the previously studied the PGG model with
peer punishment [26,33,43]. It is also worth stressing that the
relations of C, P , and E strategies are neutral in the absence of
defectors because neither P nor E has to bear an extra cost. In
the latter case the trajectory of evolution becomes equivalent
to a voter-model-like dynamics [44–46].

III. RESULTS

Previous studies in structured populations explored that
the value of the synergy factor could divide the parameter
space into two significantly different regions [5,26,33]. More
precisely, if the synergy factor is large enough, then network
reciprocity alone is capable of maintaining cooperation, and
cooperators coexist with defectors. (This critical value is
r ≈ 3.744 for a square lattice at K = 0.5 [41,47].) In the
latter case, when network reciprocity is functioning, the final
outcome depends practically on the cost of punishing strategy.
If the cost of punishment is moderate, then punishing players
can crowd out pure cooperators via an indirect territorial
competition because the former strategy is more effective
against defectors [26]. In the opposite case, when the cost
of punishment is too high, then we get back the outcome
of the simplified two-strategy model where pure cooperators
can coexist with defectors because C players form compact
islands in the sea of defectors and mutually support each other.
The other conceptually different parameter region is when the
synergy factor r is too low and network reciprocity cannot
really help to maintain cooperation. In the latter case neither
the C nor the P strategy is able to coexist with defectors. As
a result, D prevails or becomes extinct only if the punishment
fine β is large enough. The critical threshold of β depends on
the cost of punishment as is illustrated in Fig. 1(a) in Ref. [26].

Based on these observations we can distinguish three
conceptually different parameter regions where qualitatively
different behaviors are expected if we add a new E strategy of
social exclusion. In the following we will focus on these three
parameter regions and clarify whether the presence of the E

strategy will change the evolutionary outcome.

A. Behaviors in the high r-high γ region

We first start our presentation with the high synergy
factor-high punishment cost region where the simplified model
would predict the coexistence of C + D strategies. Note
that by adding strategy E into the system the number of
parameters also is increased. Therefore, for a more complete
view, we present the evolutionary outcomes in dependence of
the exclusion cost ε for a representative value of γ . Figure 1
shows that excluders die out if the cost of exclusion is too
high and cooperators and defectors coexist as in the classic
two-strategy model. By decreasing ε, however, we can observe
a stable coexistence of D, C, and E strategies where the
fraction of defectors decreases gradually with ε. This kind of
solution is a characteristic behavior in structured populations,
and it cannot be observed in well-mixed populations [29,30].
Below a threshold value of ε, marked by an arrow in the
plot, defectors die out, and only cooperator strategies remain.
As already noted, after the extinction of the last defector, a
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FIG. 1. The fraction of surviving strategies in dependence of the
cost of exclusion at r = 3.8, β = 0.2, and γ = 0.6. The high cost of
punishment prevents strategy P from surviving, and the remaining
three strategies coexist in an intermediate interval of the exclusion
cost. If ε is too high, then we get back the outcome of the classic
two-strategy model where D and C coexist for high synergy factor
values. Below a threshold value of ε, marked by an arrow, defectors
die out, and the system terminates into a defector-free state. To avoid
accidental die out of strategies due to fluctuation and to obtain the
proper stationary values of cyclically dominating strategies we needed
to use large system sizes (at least L = 1200 and 1600).

neutral drift starts among the surviving cooperating strategies
in agreement with Eqs. (2)–(4).

We would like to emphasize that the value of the critical
cost of exclusion εc = 9.442 is extremely high. It means
that defector behavior can be crowded out totally from the
population by means of an exclusion strategy, even if the latter
players have to bear such an irrationally high extra cost.

To evaluate this threshold value properly we now consider
a simplified model in which only D and E strategies compete
for space. In the latter case the system will always terminate
into a full-E or a full-D state. Interestingly, this evolution is
stochastic, and both destinations can be observed by using
identical parameter values. This serious finite-size effect is
demonstrated in Fig. 2 where we plotted the probability to
terminate to the full-E state (or alternatively, the probability
of strategy D becoming extinct is shown) in dependence of the
exclusion cost for different system sizes. Besides the random
initial state we also have used a so-called patchlike initial
state where competing strategies are forming homogeneous
domains from the beginning. (For clarity, an illustration of
a prepared patchlike starting state for four strategies can be
seen in the inset of Fig. 7.) The consequences of the random
initial state are plotted by dashed curves, whereas the results
of the patchlike starting state are marked by solid lines. The
first interesting observation is that the final destination of
the evolution depends sensitively on the total size of the
population. For example, at ε ≈ 6.15 both full-E and full-D
states are equally likely for L = 60, but by using the same
cost, the system always arrives at the full-E state if the system
size exceeds L = 200. As we increase the system size the
related curves become steeper, and the final outcome becomes
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FIG. 2. Fixation probability to a full-E state at r = 3.8 in
dependence of the cost of exclusion in the two-strategy (D − E)
model. The alternative outcome of evolution is always the full-D
state, hence the plotted probability determines how likely defection
dies out. This quantity shows a serious finite-size effect (linear sizes
of systems are denoted by the legend). Furthermore, the character of
the initial state also will determine the speed of convergence to the
large-size limit. In particular, the symbols with the dashed lines show
the results when the system was launched from a random initial state,
whereas the symbols with the solid lines denote the results when the
evolution was launched from a patchlike pattern. Simulations were
averaged over 10 000 independent runs for small sizes, whereas 100
runs were used for the largest system sizes.

less ambiguous. Simultaneously, the critical cost shifts toward
higher values. Interestingly, the convergence to the large-size
limit behavior is much faster if we apply the patchlike initial
state to launch the evolution.

This finite-size effect can be explained by the fact that
the emerging size of a cluster containing E players is
strongly limited by the whole system size. If the latter is too
small, then only small E islands can emerge after the initial
transient period, and their possible growth is determined by
the curvature of the interface separating competing E and D

strategies. This effect can be measured systematically if we
monitor the growth of the E islands with different sizes in the
sea of defector players. For clarity, the initial state is shown in
the inset of Fig. 3. If we launch the evolution from this state,
then the island will grow or shrink depending on the value of
ε. This critical ε value increases as we decrease the curvature
of the separating wall and converges to εc = 6.749 in the limit
when strategies compete for space along a straight domain
wall. The latter can only emerge spontaneously if the system
size is large enough, which explains the critical threshold value
we obtained in Fig. 2. To close our discussion about the origin
of finite-size effects we should note that it is always a potential
danger in multistrategy spatial systems which is frequently
ignored by agent-based simulations. Besides inappropriate
initial states the system size also may limit the largest emerging
characteristic length of the patterns, which can also be a
source of misleading conclusions. These problems can only be
avoided by applying systematic finite-size analysis [48–50].
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FIG. 3. Curvature dependence of the critical cost of exclusion
when E competes with D at r = 3.8. Initially, E players, marked by
blue (dark gray), are arranged into a circle-shape island with radius R

in the sea of defectors, marked by red (light gray). If ε < εc, the island
grows, otherwise it shrinks. This behavior shows a sharp change at a
fixed R. The border values of this change were determined from 100
independent runs for each R value.

Interestingly, the critical cost value for the two-strategy
system is significantly smaller than the threshold value (ε =
9.442) we obtained in Fig. 1 when all possible strategies were
present during the evolution. The difference in critical cost
values highlights that there is a kind of synergy between C

and E strategies and they can sweep out all defectors together
but strategy E alone would not be able to fight against D

efficiently at such a high cost. This synergy is especially
interesting because in general pure cooperators are believed
to be “second-order free riders” who do not bear the extra
cost of punishment or exclusion, hence they just utilize the
positive consequence of the latter acts [4,23]. Our observation
suggests that the presence of the “less cooperative” C strategy
could be vital because without it the largely unselfish excluder
strategy would not function properly. This alliance could be
effective even if strategy E has to bear an unrealistically high
individual cost and may explain why we can find that examples
of selfless behavior abound in human societies [51]. As we
will illustrate later the formation of a conceptually similar
alliance with a punisher strategy is also possible, and this effect
strongly utilizes the limited interactions of players provided
by a structured population.

B. Behaviors in the high r-low γ region

In the following we turn back to the four-strategy model
and focus on the second conceptually different parameter
region where the synergy factor is still high enough to ensure
coexistence with defectors but the cost of punishment is small
enough to reveal the advantage of the P strategy. To illustrate
the typical behavior in this region we chose the representative
parameter values r = 3.8, β = 0.2, and γ = 0.01 where in the
absence of exclusion P players would crowd out C players. In
the absence of the latter strategy punisher players can control
a defector more efficiently, which provides a significantly
higher cooperation level compared to the C + D solution [33].
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FIG. 4. The probability of the defector’s extinction when all four
strategies are present in the initial state in a patchlike distribution
is illustrated in the inset of Fig. 7. The alternative outcome of the
evolution is when strategy E dies out and the system terminates to
the well-known D + P state. The parameters are r = 3.8, β = 0.2,
and γ = 0.01. The system sizes are marked in the legend.

Interestingly, here the outcomes of evolution are conceptually
similar to the behavior we observed for the two-strategy
D − E model. Namely, either D or E players die out during
the evolution, and the final destination is highly ambiguous
especially at small system sizes. Our results are summarized
in Fig. 4 where we plotted the probability of the defector’s
extinction in dependence of the cost of exclusion. As we
already noted, if defectors die out, all other strategies become
equivalent because neither P nor E have to bear any additional
cost anymore. In the alternative case of evolution, E dies out
first after C, who is not as efficient against D as the P strategy,
and finally D and P coexist in the stationary state similar
to the behavior we observed for the simplified three-strategy
(D,C,P ) model [33].

The serious finite-size dependence of the final outcome
has a similar origin as we observed for the simplified D − E

model. Namely, if the system size is too small, then it
is unlikely that the sufficiently large island of cooperator
strategies emerges during the initial transient, which will keep
defectors alive. Figure 4 suggests that the defector-free state is
very likely even at the very high cost of exclusion. Note that
the threshold value in the large-size limit is almost two times
higher than the εc = 6.749 value we obtained when E fought
against D alone at this value of the synergy factor. Bearing
almost a double high cost of exclusion seems impossible at
first glance, but here the individual viability of strategy E is
based on its common success with a punishing strategy.

To emphasize the general importance of the alliance of
excluders with other cooperator strategies we monitor how
fractions of strategies change in time when the system is
started from a random initial state. Initially, when defectors
are distributed randomly, cooperator strategies are unable to
fight efficiently against defectors. This effect is especially
remarkable at small r values when network reciprocity
alone cannot provide the proper help for cooperators. As a
consequence, almost all cooperative players die out, but just a
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FIG. 5. Panel (a): The time evolution of the frequencies of competing strategies starting from a random initial state on a square lattice.
The parameters are r = 2, β = 0.6, γ = 0.01, ε = 2.56, and L = 6000. The time courses suggest that cooperating strategies are weak alone
against defection and they can only survive if they form an effective alliance. When such an island containing E and P players emerges, then it
can sweep out all defectors gradually. To present the initial evolution clearly, a logarithmic time scale was used. Panel (b) illustrates that similar
behavior can be observed in a random graph but the whole evolution is much faster due to short-cut links between players. The parameter
values are r = 1.44, β = 0.7, γ = 0.05, and ε = 0.97 for the latter case where we have N = 106 players.

little portion of the E and P players survive who could form
the necessary large island. When this alliance emerges, then
it can beat defectors who will die out eventually. It is worth
stressing that this effect is not limited to lattice topology but
can also be observed when an interaction graph is random.
This is illustrated in the right panel of Fig. 5 where a random
regular graph is used in which players still have k = 4 nearest

neighbors but their connections are rewired randomly [52]. In
the latter case defectors start growing first, but their victory is
just temporary because the emerging alliance of the P and E

strategies will crowd out all D players.
In the next plot we present some characteristic snapshots

of pattern formation which illustrate how the alliance with
excluder players works. For comparison we also plotted

FIG. 6. The spatial pattern formation explains the evolutionary advantage of an alliance with an excluder strategy. Every row illustrates
different evolutionary trajectories depending on which strategies are present at the beginning. In panels (a)–(f) only green C (light gray) and
black P strategies fight against red (middle gray) defectors. In panels (g)–(l) only C and blue (dark gray) E strategies compete with D players
for space. In both mentioned cases defection prevails because neither punishment nor exclusion alone is able to compete efficiently against
defection. However, when both P and E are present, shown in panels (m)–(r), then they can form a powerful alliance which can crowd out
defectors. The parameters are r = 2, β = 0.6, γ = 0.01, ε = 2.4, and L = 100 for all three cases. Note that the triumph of defection is very
fast and takes only 100 MCSs for the first two rows but the spread of the P + E alliance is relatively slow and 4000 MCSs are needed to reach
a defector-free state.
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evolutions which were taken at identical parameter values but
one of the alliance members was missing. In the first row
of Fig. 6, C and P players try to compete against defectors.
In agreement with a previous observation for the simplified
(D,C,P ) model, their fight is fruitless because the very low
value of r and the moderate value of fine β prevent them from
surviving and the system will terminate into a full defection
state. In the middle row of Fig. 6, C and E strategies fight
against D, but they lose again: The value of the synergy factor
is really small, whereas the cost of exclusion is significant.
Finally, in the last row we allow all cooperator strategies to
be present simultaneously. As in the previous cases C dies out
very soon due to the small value of r , but some surviving P

and E players can form a viable alliance, and their mixture can
gradually crowd out defectors. It is important to stress that the
mixture of these cooperative strategies is necessary to beat D.
Otherwise, when they fight individually, defectors revive. This
temporary success of the defectors can be observed between
panels (p) and (q) where some surviving defectors enter a
relatively large homogeneous island of punisher strategies. As
a result, a compact D spot starts growing immediately, and its
propagation is blocked only when its frontier meets with the
mixture of the P and E players again after the mixed P + E

formation becomes successful and eliminates all defectors.
The above described pattern formation gives a deeper

insight into why the alliance with an excluder strategy can
be successful against defection even if both members of the
alliance are weaker than the D players. When a defector is
neighboring with a punisher, then the latter could be weak, but
the presence of an excluder in the group makes the P player
successful because E provides the necessary information to
exclude the exploiter. Interestingly, if D is neighboring an
excluder, then the latter can be weaker due to the extremely
high exclusion cost which involves the extinction of E.
Therefore, P (or C if r is large enough as in the case discussed
regarding Fig. 1) is always the one who beats D, but the success
of the fighter always is based on the support of the excluder
who is just behind the fighter and provides a competitive payoff
for the cooperator mates within the group. It is important
to stress that a similar mechanism cannot be observed in a
well-mixed system which is modeled by a mean-field theory.
In the latter approach the “hiding” of a vulnerable E player
from a direct invasion of a defector is not possible because
all group members can be reached with equal probabilities
within the group. Consequently, the viability of an E strategy
is limited strongly by the individual cost ε. In a spatial system,
however, the range of strategy interaction is limited, which
offers a slight symmetry breaking, and the chance of P (or C

at certain conditions) beating D is higher than the frequency
that D beats E. This is why strategy E can survive for the
benefit of the whole community even if such a player has to
bear an enormously high individual cost.

C. Behaviors in the low r region

We close the Results section by presenting representative
solutions in the third previously mentioned parameter region
where the simplified model predicts qualitatively different
behaviors [33]. Here network reciprocity alone is unable to
maintain pure cooperation due to the very small synergy factor.
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FIG. 7. The probability of the defector strategy dying out when all
four strategies are present in the initial state in a patchlike distribution.
An example of this kind of starting state is shown in the inset where
colors (different ranges of shades of gray in the printed version)
mark homogeneous spots of competing strategies. The alternative
destination of the evolution is the full-D state. The system sizes
are marked in the legend. The parameters are r = 2, β = 0.6, and
γ = 0.01. The results were averaged over 5000 independent runs for
small sizes, whereas data for the largest size were averaged over 200
runs.

As previous studies emphasized, in this case only a very strong
punishment can help, and when it is fulfilled, then the system
will terminate into a completely D-free state. Otherwise, when
the fine is not strong enough, the full-D final destination is
inevitable even in the presence of the P strategy. The β − γ

dependence of a critical fine is illustrated in Ref. [26]. In the
present case, when we add strategy E, the possible solutions
are very similar, but strategy E takes the decisive role of P .
Namely, either D prevails or dies out and leaves a neutral drift
among the remaining strategies. But the coexistence of D with
other strategies is not possible. More specifically, if the cost
of exclusion is low, then defection will be eliminated leaving
other cooperator strategies alive. Otherwise, when the cost ε

is high, defectors will prevail, and all other strategies die out.
As for a higher r value, here we also can observe a serious
finite-size effect around the threshold value of ε, which has a
similar origin as explained above. As Fig. 7 illustrates, both
mentioned destinations are possible in a wide interval of ε

when the system is not large enough and the solution becomes
unambiguous only in the large-size limit.

IV. SUMMARY AND CONCLUSION

It is in our everyday life experience that some members of
human societies take extra effort for the community [53,54].
From an evolutionary viewpoint these group members should
be unsuccessful individually, and their sacrifice cannot be
maintained in the long term. A particular example for such
selfless behavior could be an exclusion strategy when a
player invests effort into not only detecting defection, but also
alarming group members about the possible danger. Needless
to say, the latter players happily utilize this information and
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can avoid being exploited by D players. This phenomenon
already was studied from an evolutionary aspect in a well-
mixed populations, and it was found that the viability of
social exclusion is limited strongly by its additional cost ε

[29–32].
The goal of the present paper was to explore what specific

outcomes may be found in structured populations which model
the limited number of our interactions more realistically. The
first different behavior we can observe in a spatial system is
the stable coexistence of defectors and an exclusion strategy
at specific parameter values, but this solution also requires
the presence of pure cooperators. Otherwise, when only
defectors meet excluders, then only one of them survives,
which depends sensitively on the cost of exclusion and the
synergy factor r . Interestingly, the final outcome is rather
ambiguous in a broad cost interval around the threshold value
of ε and becomes determined only in the large-size limit.
This is a rather unusual behavior in spatial systems where the
final destination of evolution is robust and remains largely
independent of the initial state even at relatively small system
sizes. This behavior can be explained by the fact that the final
outcome depends sensitively on whether a critical size of a
homogeneous excluder domain may emerge, which is a vital
condition for their triumph. Evidently, if the system size is
too small, then the requested domain cannot emerge, which
leads to a misleading prediction of evolutionary outcome. To
clarify this curvature-dependent growth we have performed
a systematic study and demonstrated that the limit threshold
value of the exclusion cost obtained from this specific setup
agrees with the prediction of the large-size limit. This analysis
revealed that a specific initial state where competing strategies
already form homogeneous clusters could be more efficient to
converge faster toward the large-size limit solution.

Our most surprising observation was to reveal that exclusion
can be viable and useful to the community even if the E

excluder strategy has to bear an enormously high individual
cost. Such a huge sacrifice would be pointless in a well-mixed

population because it would involve the fast extinction of the
E strategy and the system evolves to an exclusion-free state. In
structured populations, however, we can observe the opposite
trajectory because defection can be swept out for a very
high exclusion cost. This behavior is based on a mechanism
where exclusion forms an effective defense alliance with other
cooperator strategies who do not have to bear the mentioned
high cost. When this alliance works, then the latter strategy
can beat defectors because the simultaneous presence of an
excluder in the group helps them to avoid being exploited.
As we argued, an excluder would be vulnerable when she
meets directly with a defector, but this unfortunate meeting
happens less frequently than the interaction of D and P (or C)
players. This is a straightforward consequence of the limited
range of interactions which is an essential feature of all spatial
systems. The latter also explains why conceptually similar
behavior may be obtained for other interaction topologies that
also were demonstrated for the random graph.

Our main results, which cannot be observed in well-
mixed populations, highlight that individual efforts should
not necessarily be harmful if an effective alliance can be
formed where the personal effort is compensated by some
protection, hence the seemingly trivial individual failure can
be avoided via the well being of the whole society. This paper
also depicts that the viability of an individual strategy should
not be evaluated by pair comparison of competing strategies
only because spatial systems always offer the chance for a
new formation of alliances that can only be discussed when
the whole system is on the stage.
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