
1 2 3

1

2

3

Beliefs and Conflicts in a Real World Multiagent System

mbnm@fe.up.pt

lvarga@lutra.sztaki.hu

eco@fe.up.pt

Benedita Malheiro , László Zsolt Varga , Eugénio Oliveira

Abstract

1 Introduction

DEE, ISEP, Rua de S. Tomé, 4200 Porto, Portugal, Email:
Informatics Department, MTA SZTAKI, POB 63, H-1518 Budapest, Hungary

Email:
DEEC, FEUP, Rua dos Bragas, 4099 Porto CODEX, Portugal

Email:

In a real world multiagent system, where the
agents are faced with partial, incomplete and
intrinsically dynamic knowledge, conflicts are
inevitable. Frequently, different agents have
goals or beliefs that cannot hold simultaneously.
Conflict resolution methodologies have to be
adopted to overcome such undesirable occur-
rences.

In this paper we investigate the application of
distributed belief revision techniques as the sup-
port for conflict resolution in the analysis of the
validity of the candidate beams to be produced
in the CERN particle accelerators.

This CERN multiagent system contains a higher
hierarchy agent, the Specialist agent, which
makes use of meta-knowledge (on how the con-
flicting beliefs have been produced by the other
agents) in order to detect which beliefs should be
abandoned. Upon solving a conflict, the Special-
ist instructs the involved agents to revise their
beliefs accordingly.

Conflicts in the problem domain are mapped into
conflicting beliefs of the distributed belief re-
vision system, where they can be handled by
proven formal methods. This technique builds
on well established concepts and combines them
in a new way to solve important problems. We
find this approach generally applicable in several
domains.

The complexity of real world problem domains often re-
sults in the development of multiagent systems where the
individual agents do not have complete knowledge about
the domain problem although the community of agents is
capable of solving the overall goal. Due to the lack of com-
plete knowledge, the individual agent may have beliefs
that are not coherent with the findings of other agents. As

long as the agent is alone, its inferred propositions and be-
liefs are based on its own local knowledge base. When the
agents form a community and try to solve common prob-
lems, then they exchange beliefs which have to be inte-
grated into their own local knowledge bases. To perform
this integration the agents must have mechanisms to deter-
mine whether the external beliefs and the local knowledge
bases are coherent and, if not, must know how to find the
best solution to achieve the common goals.

As a result, there is a need for conflict detection and con-
flict resolution methods within the knowledge base of a
single agent. The conflict detection can be solved by ex-
tending the inference mechanism of the single agent with
general integrity rules. The integrity rules state the condi-
tion of a conflict by specifying the beliefs that cannot hold
simultaneously in the knowledge base of an agent. These
integrity rules can be either domain independent or specific
to the given application. When an integrity rule is fired,
the inference mechanism of the agent activates the belief
revision system to retrieve all the beliefs related with the
conflicting beliefs and, thus, resolving the conflict within
a single agent.

In order to achieve the common goal in an optimal way, it
may not be enough to restore the integrity of the knowledge
base in the agents, but it may also be necessary to mod-
ify the plans and actions of the agents. One possible solu-
tion is to use a supervisor or specialist agent containing the
necessary meta-knowledge to resolve the conflict between
the plans and actions of the agents. Every time a conflict is
detected by the integrity rules, the involved agents notify
the specialist agent, who, in turn, instructs the conflicting
agents on how to revise their plans.

In this paper we investigate these issues in a real multiagent
system by proposing a distributed belief revision system
as a model for conflict detection and resolution. Section
2 briefly overviews the CERN multiagent system applica-
tion, Sections 3 and 4 introduce the reader to distributed
belief revision, Section 5 discusses a real world scenario
showing conflicting beliefs and the way they are resolved,

�

�

2 Problem Domain

3 Distributed Belief Revision

et al.
et al.

et al.

be-
lieved a unbelieved a a

NOT a

Acceptance of External Beliefs

Accommodation of Different Perspectives

Section 6 analyses the specific scenario and abstracts the
generic method of adapting distributed belief revision to
conflict resolution, in Section 7 conclusions are drawn.

CERN is an European research institute and its particle ac-
celerator compound is one of the world’s most sophisti-
cated high energy research centers. The accelerator op-
eration and the maintenance of the underlying computing
control system are complex tasks, difficult to survey, and
where the necessary knowledge and the control system are
naturally distributed.

Because these facts suggested the application of DAI
methods, CERN joined the ARCHON project [Jennings
and Wittig, 1992], [Wittig, 1992] as an application partner
providing a large accelerator control system and two expert
systems as a test-bed for the development and evaluation
of the methodologies and software produced within this
project. Problems, insights and experiences gained whilst
deploying ARCHON technology in real applications are
described in [Jennings , 1996]. These investigations
[Jennings , 1993] were among the first experiences in
creating operational DAI systems by transforming existing
intelligent systems of a real world application into mem-
bers of a multi-agent community. Several possibilities for
cooperation were detected at CERN including the cooper-
ation between accelerator setup and diagnosis, as well as
the cooperation between the different aspects of timing di-
agnosis [Skarek and Varga, 1996a].

In this paper we will use a new cooperation scenario cen-
tered around an expert system developed at CERN us-
ing database technology [Lewis , 1995], [Skarek and
Varga, 1996b] and mentioned in this paper later as BCD
Checker. This scenario is particularly well suited for the
investigation of conflict resolution because conflicts and
conflict resolution are inherent and necessary for the ev-
eryday operation of the accelerators. If the agent that cre-
ates the beam schedule for the accelerators had complete
knowledge about the physical constraints of the accelera-
tors and their control system, then it would be too complex.
As a result, the BCD Editor agent has incomplete knowl-
edge - when it creates plans to achieve its goals, it creates
beliefs that may be inconsistent with the beliefs of the BCD
Checker agent. The BCD Checker agent incorporates the
knowledge about the accelerators and control system con-
straints. In order to create an executable beam schedule for
the accelerators, the agents may have to revise their beliefs
and create new plans. In this paper we will apply the dis-
tributed belief revision model to solve these problems and
we will study the relationship between belief revision and
conflict resolution.

Reasoning with incomplete, inaccurate knowledge can be
achieved by performing belief revision, i.e., abandoning
some of the existing beliefs in order to accommodate new
evidences or recent findings.

Standard knowledge representations do not handle beliefs
adequately. Beliefs are intrinsically non-monotonic: their
belief status may change according to newly perceived
world changes, received beliefs, or inferred propositions.

The approach we use for modelling belief is based on justi-
fications, also referred as foundations theory of belief. Ac-
cording to this theory, belief revision consists, first, in giv-
ing up all beliefs that no longer have a satisfactory justifi-
cation and, second, in adding new beliefs that have become
justified [Gärdenfors, 1992].

An agent with belief revision skills which becomes aware
of the existence of counterparts with whom to exchange
beliefs relevant to the undergoing activity is said to per-
form distributed belief revision.

The ability of sending and receiving beliefs poses an im-
portant set of questions to agents: in which circumstances
should an external belief be accepted? how to represent
an external belief locally? should an external belief be al-
lowed to trigger the revision of internal beliefs? how to ac-
commodate different belief status regarding the same data
item?

When should an external belief be added to an agent
knowledge base? The two fundamental approaches con-
cerning the inclusion of communicated beliefs are [Mal-
heiro and Oliveira, 1996a]:

local consistency of the shared propositions - inter-
nal beliefs prevail over external beliefs. An external
belief is only used in the absence of an internal be-
lief regarding the same proposition. As soon as an
agent infers a justification for a previously communi-
cated proposition, only the locally inferred belief will
be used by the agent.

global consistency of the shared propositions - every
existing belief (internal or external) is uncondition-
ally used.

We chose global consistency for the shared propositions.

Upon accepting an external belief, an agent may find itself
with conflicting belief status for the same proposition (

and) or with contradictory beliefs (
and). Although there is no guarantee of solving ev-
ery conflict, different methodologies can be adopted: they

Beliefs

Propositions

 Justifications

Problem Solver

Knowledge Base

Scheduler

Assumption Nodes

Inferred Nodes
Nogoods

ATMS

Intelligent System Layer

Cooperation Layer

Self Model Acquaintances Model

Cooperation and Communication Module

�

�

4 The Agent Architecture

4.1 Assumption based Belief Revision

4.2 Knowledge Representation

AND

AND

BEL or believed
UBEL or

unbelieved
UKNO or unknown

nogood INCONSISTENT
unbe-

lieved

CONSISTENT
believed

range, among others, from the adoption of static synthe-
sis criteria [Malheiro and Oliveira, 1996b] to dynamic ap-
proaches such as argumentation [Verheij, 1995] or negoti-
ation [Sycara, 1989].

The synthesis criteria we adopted is static. The assign-
ment of an unique belief status to every shared proposition
is achieved trough the application of a conjunctive ()
synthesis criterion: a shared proposition is believed, if and
only if, it is believed by every agent that shares the propo-
sition. With this criterion only the consensus among
the involved agents makes a shared proposition believed
by the system.

The cooperating deliberative agents implemented have an
ARCHON-like architecture [Wittig, 1992] made of a do-
main level layer and a cooperation layer. In our case, the

Figure 1: Agent Architecture

domain level system, containing the domain expertise, is
an assumption based belief revision system with a prob-
lem solver and an assumption based truth maintenance sys-
tem (ATMS) [de Kleer, 1986]. The problem solver is a data
driven production rule based system which works in tight
connection with the ATMS.

The functionality related to cooperation is represented as
a distinct layer, the cooperation layer. The cooperation
layer has the following components [Wittig, 1992]: (i) a
cooperation module responsible for engaging in coopera-
tive actions (mostly result sharing); (ii) a communications
module responsible for sending/receiving asynchronous
messages; (iii) a self model representing the information
about the intelligent system layer; and (iv) an acquain-
tances model containing the relevant information regard-
ing the acquaintances with whom the agent is expected to
interact. Based on the self and acquaintances models each
agent divides its knowledge base in two separate sets, the
set of private beliefs - beliefs for exclusive internal agent
use, and the set of shared beliefs - beliefs shared with at
least one acquaintance. Private beliefs are revised auto-
matically by the local ATMS and shared beliefs are revised
according to methodology adopted for the shared proposi-

tions belief revision.

The operation of any ATMS is based on a special type of
propositions – the system assumptions. Assumptions rep-
resent knowledge that is assumed to be compliant with the
current system state and, therefore, believed. The assump-
tions are dynamic beliefs which may have to be dropped in
face of new findings. Propositionsare inferred from the ex-
isting assumptions, facts and rules. As a result, when an as-
sumption is abandoned the propositions depending on the
assumption have to be revise accordingly. Internally, the
ATMS handles nodes and justifications. Nodes represent
information (propositions and rules) and justifications rep-
resent inferences relating existing nodes. The ATMS com-
putes and keeps updated every set of assumptions (support
set) from which the registered propositions were inferred.
This way the system is able to attribute justified belief sta-
tus to each proposition: (i) – when the
proposition has at least one valid support set; (ii)

– when the proposition has no support set what-
soever; (iii) – when the proposition is
not represented in the ATMS.

In an assumption based belief revision system the prob-
lem solver contains two sets of rules: (i) inference rules
– which, once fired, provide justifications for believing in
the consequent propositions, and (ii) integrity rules – that
detect the existence of integrity violations implying, as a
result, abandoning previously adopted beliefs. The infer-
ence engine is a two step data driven engine: the arrival of
a new input triggers first the integrity rules and last the in-
ference rules.

Before firing any rule (integrity or inference rule) the prob-
lem solver queries the ATMS about the belief status of the
rule antecedents. If the rule antecedents are currently be-
lieved then the rule is fired and the rule outcome is com-
municated to the ATMS:

If the rule is an integrity rule, the ATMS receives the
detected inconsistency or (
with the agent’s knowledge base, and therefore

). The ATMS records the nogood and removes
the inconsistent set of assumptions from every sup-
port set;

If the rule is an inference rule, the ATMS receives
the new proposition together with its justification (the
rule and rule antecedents) and computes the proposi-
tion new support set (with the agent’s
knowledge base, and therefore).

The node structure is defined through the following BNF
grammar:

5.1 Agents

a

b

a

b

a b

a

b

a a

a

b a

a

b

j

j j

j j

ffgg j f g

j

j

j

j

j j

j

j

j

5 The Scenario with Conflict

Agent 1: BCD Editor

Agent 2: BCD Checker

< > < > < >< >

< >

< > < >

< >

< >

< > < >

< > < > < >

< >

< > < > < >

< > < > < >

< > < > < >

< >

< > < > < > < >

< >

< > < >

< > < >

< > < >

< >

< >

< >

NodeDef ::= Proposition Type Status Scope
Label OwnerAgent

Type ::= Belief Fact
Scope ::= SharedInternal SharedExternal Private
Status ::= Believed Unbelieved Unknown
Label ::= NodeSet
NodeSet ::= NodeDef NodeSet
Belief ::= Assumption InferBelief

Proposition
Type

Scope

Status

Label

OwnerAgent

InferRule ::= RuleId IF Cond THEN Cons
IntegRule ::= RuleId IF Cond THEN InCons
Cond ::= OperTerm OperTerm AND

Cond
OperTerm ::= Operator Term Term
Operator ::= BEL UBEL UKNO
Cons ::= CONSISTENT Term CONSISTENT

Term AND Cons
InCons ::= INCONSISTENT Term

INCONSISTENT Term AND
InCons

Term ::= Predicate NOT Predicate

RU1:
IF BEL cycle(Cycle , lepton)
AND BEL cycle(Cycle , lepton)
AND member(Cycle , BCD)
AND member(Cycle , BCD)

THEN CONSISTENT ok(BCD)

RC1:
IF BEL consecutive(Cycle , Cycle)
AND BEL destination(Cycle , X)
AND BEL destination(Cycle , X)
AND BEL duration(Cycle , D)
AND smallerThan(D , LongValue)
AND greaterThan(energy(Cycle),energy(Cycle))
AND member(Cycle , BCD)
AND member(Cycle , BCD)

THEN CONSISTENT NOT ok(BCD)

RC2:

The node structure slots have the following meaning:
- the identifier of the proposition;

- the type of the proposition (assumption, fact or in-
ferred node);

- the scope of the proposition (private, shared inter-
nal or shared external);

- the belief status of the proposition (believed or un-
believed);

- the sets of assumptions from which the proposition
was inferred (the support sets);

- the agent that owns the node.
The inference and integrity rules are defined by the follow-
ing BNF grammar:

The adequate management of a critical resource such as
the CERN particle accelerator compound needs a multia-
gent system capable of setting up valid beam schedules.
This scenario introduces a multiagent system made of 3
coarse grain deliberative agents: the BCD Editor, the BCD
Checker and the Specialist agents. The common goal of
the BCD Editor and BCD Checker agents is to create a
valid BCD (a BCD is a beam schedule diagram described
later). The BCD Editor creates preliminary plans for the
creation of the BCD, while the BCD Checker validates
these BCDs. A conflict occurs whenever the BCD created
by the BCD Editor is not accepted by the BCD Checker.
It is the Specialist agent who has the knowledge of what
to remove from the preliminary BCD in order to solve the
conflict.

The actual multiagent system consists of the following
agents:

– This agent represents the oper-
ator setting up a beam schedule on the BCD Editor.
A beam schedule is a sequence of beam acceleration
cycles executed by the interconnected accelerators in
a time sharing manner. Beam schedules are called
BCDs, meaning Beam Coordination Diagrams. The
aim of the operator in this scenario is to create, ac-
cording to the physicists request, a BCD containing
two machine cycles which produce lepton particles.
The operator creates the BCD with the BCD Edi-
tor and stores it in the Oracle database. In order to
achieve this goal, the operator has to keep to the fol-
lowing rule:

– The role of the BCD Checker
is to verify if the BCD created by the BCD Editor
satisfies the constraints posed by the accelerators and
their control systems. These constraints are repre-
sented by several rules defined by specialists of the
different parts of the accelerator system.

One of the rules relevant for our scenario states that if
a cycle is preceded by a higher energy cycle, and the
higher energy cycle is not long enough (the magnets
have hysteresis and enough time must be provided to
set them to the right value by driving them through a
so called up-min-max transition) then the BCD is not
executed correctly. The formal representation of this
rule is the following:

The other constraint relevant for our scenario is re-
lated to the optimal operation of the accelerators.
During each lepton cycle a costly operation, the ac-
tivation of the 114 MHz cavities, occurs. To min-
imize the number of activation/deactivation opera-
tions within a BCD, lepton cycles must be positioned
consecutively – with consecutive lepton cycles only
one activation and one deactivation is executed within
a BCD. This constraint is represented in the BCD
Checker by the following rule:

5.2 Steps of the Scenario
6 Belief Revision as Conflict Resolution

a

b

c

a c

c b

a

b

X

a b

X

X

X

X

X

X X

X

X

X

Y c a

b

c b

Y

Y Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Agent 3: Specialist

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

IF BEL cycle(Cycle , lepton)
AND BEL cycle(Cycle , lepton)
AND BEL cycle(Cycle , not lepton)
AND BEL consecutive(Cycle , Cycle)
AND BEL consecutive(Cycle , Cycle)
AND member(Cycle , BCD)
AND member(Cycle , BCD)

THEN CONSISTENT NOT ok(BCD)

Meta-R1: IF fired(RC1, BCD)
THEN INCONSISTENT ok(BCD)

Meta-R2: IF fired(RC2, BCD)
THEN INCONSISTENT NOT ok(BCD)

Meta-R3: IF NOT fired(RC2, BCD)
THEN CONSISTENT NOT finantialLoss

Meta-R4: IF fired(RC2, BCD)
THEN CONSISTENT finantialLoss

Meta-R5: IF BEL ok(BCD)
THEN CONSISTENT produceBeam

Meta-R6: IF BEL produceBeam
AND BEL finantialLoss
THEN CONSISTENT satisfiedUsers

Meta-R7: IF BEL produceBeam
AND BEL NOT finantialLoss
THEN CONSISTENT verySatisfiedUsers

AND

BCD
cycle cycle

BCD

ok(BCD)
BCD

NOT ok(BCD)
NOT ok(BCD)

NOT ok(BCD) ok(BCD)

ok(BCD)

ok(BCD)

BCD
BCD cycle cycle
cycle

cycle cycle

ok(BCD)

BCD ok(BCD)

NOT ok(BCD) NOT
ok(BCD)

BCD
NOT ok(BCD)

ok(BCD)

NOT ok(BCD)

NOT ok(BCD)
ok(BCD)

produceBeam
BCD

– The specialist has meta-knowledge
about the meaning and importance of the rules of the
BCD Checker, establishing a rule preference order.
For example it knows that the RC1 rule of the BCD
Checker always has to be satisfied, otherwise the ac-
celerators will not produce the necessary beams, but
- if necessary - the RC2 rule of the BCD Checker can
be ignored, because even if the accelerators do not op-
erate optimally, then they still produce the necessary
beams. This knowledge is represented by the follow-
ing meta-rules:

The multiagent system presented exhibits the following
features: (i) the agents are benevolent and thus truthful
from their own point of view; (ii) a shared proposition is
represented by as many nodes as there are agents holding
a belief regarding it (multiple node representation); (iii)
a node can only be revised by the agent it belongs to or
by the Specialist agent; (iv) the existing beliefs (internal
and external) regarding any proposition are accommodated
through an synthesis criterion.

Now we are going to demonstrate with the help of the
scenario how the CERN multiagent system achieves its
goal of guaranteeing that only beam schedules compliant
with the existing constraints are executed. The scenario is
started when the BCD editor submits a new beam sched-
ule:

– The BCD Editor creates the new with
consecutive lepton cycles and . The de-

scription of will be represented in the Truth
Maintenance System of the BCD Editor by several as-
sumptions and facts.
Rule RU1 provides the BCD Editor with a justifica-
tion for believing in . The BCD Editor
communicates this finding and to the BCD
Checker and to the Specialist agents.

– The BCD Checker is able to fire RC1, concluding
that is believed. The BCD Checker
communicates its belief on both to
the Specialist and to the BCD Editor agents, and in-
forms the Specialist that rule RC1 has been fired. A
conflict between and has
been generated.

– Through Meta-R1 the Specialist agent concludes
that the belief in is inconsistent. The Spe-
cialist notifies the BCD Editor agent to revise its be-
lief on accordingly, and to create a BCD
for which RC1 won’t fire.

– The BCD Editor revises and creates
by inserting in between and

to satisfy the RC1 rule. Unfortunately the en-
ergies of and are such that RC2 is not
satisfied.
Based on RU1, the proposition becomes
believed by the BCD Editor. The BCD Editor com-
municates and its belief in to the
BCD Checker and to the Specialist agents.

– The BCD Checker fires rule RC2, and finds
that is believed. The belief in

is communicated to the Specialist and the
BCD Editor agents, and the Specialist is informed that
rule RC2 fired for . The conflict created by the
simultaneous belief on by the BCD
Checker and on by the BCD Editor can be
solved by the Specialist.

– From Meta-R2 the Specialist concludes that the
belief in is inconsistent with the cur-
rent context. This outcome of the conflict is com-
municated both to the BCD Editor and to the BCD
Checker. As a result becomes unbe-
lieved and remains believed. From Meta-
R3 the Specialist concludes that is be-
lieved. The Specialist accepts .

According to [Zlotkin and
Rosenschein, 1991] and [Zlotkin and Rosenschein, 1990],
a conflict exists when two agents cannot achieve their goals
simultaneously: only one of the agents, not both, is capa-
ble of achieving its goal. When both agents achieve their
goals simultaneously, optimally or not, then a cooperative
or compromise situation occurs.

�

�

�

�

X

X

Y Y

i

i

i

i

i

i

i

i

i

i

i

i

i

7 Conclusions

8 Acknowledgments

BEL a UBEL a
BEL a BEL NOT a

ok(BCD)

ok(BCD)

ok(BCD) NOT ok(BCD)

ok(BCD)

ok(BCD)
NOT ok(BCD)

ok(BCD)

ok(BCD)

ok(BCD)
NOT ok(BCD)

NOT
ok(BCD)

NOT ok(BCD)

ok(BCD)
NOT ok(BCD)

ok(BCD)
NOT ok(BCD)

In the distributed belief revision model used, a conflict oc-
curs, when the same proposition is assigned different be-
lief status by different agents (and) or when
contradictory beliefs coexist (and).

In the CERN scenario, the goal of the BCD Editor agent is
to guarantee the existence of two lepton cycles in the BCD.
This is possible in many different ways, so the goal of the
BCD Editor agent can be represented by a set of BCDs,
hereby called Editor Set. Any BCD that falls into the Edi-
tor Set is acceptable from the BCD Editor agent’s point of
view. If the BCD Editor agent achieves its goal, then it be-
lieves . The goal of the BCD Checker agent is to
test if the BCD is compliant with the constraints of the ac-
celerators and their control systems. This is represented by
the BCD checking rules RC1 and RC2. Only those BCDs
which fail to trigger both RC1 and RC2 are acceptable for
the BCD Checker and thus belong to the Checker Set. If
the BCD Checker agent achieves its goal without firing ei-
ther RC1 or RC2, then it also believes .

Fortunately, the Editor Set and the Checker Set are usually
not exclusive: there is at least one BCD which is mem-
ber of both sets. From the point of view of goals, this is
not a conflict situation, because both agents can achieve
their goals, but they have to cooperate to do so. However,
when the agents plan their actions, they sometimes gener-
ate plans which contain conflicting beliefs. The conflicting
belief, in this case, indicates that the goal state of the BCD
Editor agent is not in the intersection of the Editor Set and
the Checker Set. When conflicting beliefs are detected the
agents have to modify their plans. The absence of conflict-
ing beliefs in the modified plan means that the goal state of
the BCD Editor agent is in the intersection of the Editor Set
and the Checker Set.

At the starting point of the scenario presented, the agents
are in a situation where they have conflicting goal states,
indicated by conflicting beliefs. As a consequence, they try
to modify their plans, in order to resolve the conflicting be-
liefs. When the Specialist agent verifies that only the RC2
rule has been triggered in the BCD Checker, it concludes,
via meta-rules, that RC2 is not that important. By doing so,
the Specialist agent extends the Checker Set to include the
goal state of the BCD Editor agent into it. With this proce-
dure the Specialist agent turns the conflicting situation into
a compromise situation.

In the CERN scenario the conflict occurred between the be-
lief in and the belief in . From
the analysis of the set of possible situations we can verify
that belief revision acts as a conflict resolution methodol-
ogy:

If neither RC1 nor RC2 were fired then is
believed by the BCD Editor agent and there is no con-
flict;

If only RC1 was triggered then is believed
by the BCD Editor agent and is be-
lieved by the BCD Checker agent. Meta-R1 from the
Specialist agent is fired, and, as a result, be-
comes unbelieved. The Specialist communicates this
outcome to the BCD Editor. The BCD Editor revises
its belief in accordingly;

If only RC2 was fired then is believed
by the BCD Editor agent and is be-
lieved by the BCD Checker agent. meta-R2 from the
Specialist agent is triggered, and, as a result,

becomes unbelieved. The Specialist com-
municates this outcome to the BCD Checker, who re-
vises its belief in accordingly;

If both RC1 and RC2 were triggered then is
believed by the BCD Editor agent and
is believed by the BCD Checker agent. Both meta-R1
and meta-R2 fire. Consequently, both and

become unbelieved. The BCD Editor
and the BCD Checker revise their beliefs accordingly.

We investigated conflict resolution in a real multiagent sys-
tem by applying distributed belief revision techniques. We
combined existing concepts and techniques in a new way
to resolve conflicts. The key factors of conflict resolu-
tion in this approach are the distributed belief revision sys-
tem and the meta-knowledge of the Specialist agent. The
distributed belief revision system detects the occurrence
of conflicting beliefs or belief statuses in the plans of the
agents and initiates the modification of their plans towards
a jointly acceptable goal state. The meta-knowledge of the
Specialist agent (how the conflicting beliefs have been pro-
duced) is used to extend the set of goal states of one of the
agents and to choose which belief status to change.

The investigations also showed that, although in a strict
theoretical sense there can be no conflict between the
agents, because in the end they find a common goal state,
in practice, conflicting plans and beliefs do occur due to
the incomplete knowledge of the agents. Distributed belief
revision system and meta-rules help the agents coordinate
their actions and overcome this problem.

This work has been partially funded by JNICT and OMFB
under contracts 423/OMFB and P-5/95, respectively. We
are thankful to Paul Skarek from CERN for identifying and
providing the valuable real world scenario on which the in-
vestigations of the paper are based.

References

Artificial Intelligence

Belief Revision

Distributed Artificial Intelligence:
Theory and Praxis

et al.

Engineering Applications of Artificial Intelli-
gence

et al.

IEEE Expert

et al.

International
Conference on Accelerator and Large Experimental
Physics Control Systems, ICALEPS’95, Chicago, USA

In-
telligent Agents Volume II — Proceedings of the 1995
Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL-95)

Advances in Artificial In-
telligence (SBIA’96)

Expert Systems With Applications

Proceed-
ings of the Conference on Artificial Intelligence Ap-
plications (EXPERSYS-96)

Dis-

tributed Artificial Intelligence Research
Notes in Artificial Intelligence

Porgress in Artifi-
cial Intelligence (SBIA’96)

ARCHON: An Architec-
ture for Multi-agent Systems

Proceedings of
the AAAI

Proceedings of the IJCAI

[de Kleer, 1986] J. de Kleer. An assumption-based TMS.
, 28(2):127–162, 1986.

[Gärdenfors, 1992] P. Gärdenfors. Belief revision: An
introduction. In , Cambridge Tracts in
Theoretical Computer Science, pages 1–28. Cambridge
University Press, 1992.

[Jennings and Wittig, 1992] N. R. Jennings and T. Wittig.
ARCHON: Theory and practice. In N. M. Avouris and
L. Gasser, editors,

. Kluwer Academic Publishers, 1992.

[Jennings , 1993] N. R. Jennings, L. Z. Varga, R. P.
Aarnts, J. Fuchs, and P. Skarek. Transforming stan-
dalone expert systems into a community of cooperating
agents.

, 6(4):317–331, 1993.

[Jennings , 1996] N. R. Jennings, E. H. Mamdani,
J. M. Corera, I. Laresgoiti, F. Perriollat, P. Skarek, and
L. Z. Varga. Using ARCHON to develop real-world
DAI applications. , 11(6):64–86, 1996.

[Lewis , 1995] J. Lewis, P. Skarek, and L. Z. Varga.
A rule-based consultant for accelerator beam schedul-
ing used in the CERN PS complex. In

,
pages 703–707, 1995.

[Malheiro and Oliveira, 1996a]
B. Malheiro and E. Oliveira. Consistency and context
management in a multi-agent belief revision testbed. In
M. Wooldridge, J. P. Müller, and M. Tambe, editors,

, Lecture Notes in Artificial Intelli-
gence, pages 361–375. Springer-Verlag, 1996.

[Malheiro and Oliveira, 1996b]
B. Malheiro and E. Oliveira. Intelligent distributed en-
vironmental decision support system. In D. L. Borges
and C. A. A. Kaestner, editors,

, Lecture Notes in Artificial Intelli-
gence, pages 171–180. Springer-Verlag, 1996.

[Skarek and Varga, 1996a] P. Skarek and L. Z. Varga.
Multi-agent cooperation for particle accelerator con-
trol. , 11(4):481–487,
1996.

[Skarek and Varga, 1996b] P. Skarek
and L. Z. Varga. Rule-Based Knowledge Representa-
tion Using a Database. In J. Zarka, editor,

, IITT Technology Transfer
Guide Book Series, pages 199–206, 1996.

[Sycara, 1989] K. P. Sycara. Multiagent compromise via
negotiation. In L. Gasser and M. N. Huhns, editors,

, volume II of
, pages 119–137. Morgan

Kaufmann, 1989.

[Verheij, 1995] B. Verheij. Arguments and defeat in
argument-based nonmonotonic reasoning. In C. Pinto-
Ferreira and N. J. Mamede, editors,

, Lecture Notes in Artificial
Intelligence, pages 213–224. Springer-Verlag, 1995.

[Wittig, 1992] T. Wittig, editor.
. Ellis Horwood Series In

Artificial Intelligence. Ellis Horwood, 1992.

[Zlotkin and Rosenschein, 1990] G. Zlotkin
and J. S. Rosenschein. Negotiation and conflict reso-
lution in non-cooperative domains. In

, 1990.

[Zlotkin and Rosenschein, 1991] G. Zlotkin and J. S.
Rosenschein. Incomplete information and deception in
multi-agent negotiation. In ,
pages 225–231, 1991.

