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Abstract

Non-linearity in Makyoh (magic-mirror) imaging is analyzed using a

geometrical optical approach. The sources of non-linearity are identified

as (1) a topological mapping of the imaged surface due to surface

gradients, (2) the hyperbolic-like dependence of the image intensity on

the local curvatures, and (3) the quadratic dependence of the intensity

due to local Gaussian surface curvatures. Criteria for an approximate

linear imaging are given and the relevance to Makyoh-topography image

evaluation is discussed.
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1. Introduction

Oriental magic mirrors (‘Makyoh’, after their Japanese name) [1] have

received much interest from the optics community since the 19th century [2-

5]. Such a mirror is an essentially flat or slightly convex mirror with a

backside relief pattern, which pattern translates to the polished front

face as a nearly invisible surface relief during the machining of the

mirror. Projecting a parallel beam onto the front surface, a reflected

pattern corresponding to the back pattern appears on a distant screen due

to the focusing/defocusing action of the surface relief pattern (Fig. 1)

giving the illusion of transparency. An increased interest in the

phenomenon arose in the 1990s because of the principle’s application as a

powerful topographic tool (Makyoh topography) for the qualitative

visualization of the surface relief of semiconductor wafers and other

nearly flat, mirror-like surfaces [2, 6-9].

Although the basic properties of Makyoh imaging are well understood

through ray-tracing simulations [2, 10] and geometrical optical [3, 4]

models, the interpretation of the obtained images is not straightforward.

In this paper, a pivoting issue of many physical phenomena and

metrology tools, the linearity aspects of Makyoh imaging is analysed based

on a geometrical optical model. In particular, the sources of non-

linearity are identified, their influences are quantified, and criteria

for the approximate linear imaging are given. The relevance for the visual

evaluation of Makyoh-topography imaging is discussed.

2. Background

The geometrical optical model of Makyoh imaging has been described in Ref.

[4]. The model is based on the works of Burkhard and Shealy who derived

the illuminance of a general surface illuminated by an arbitrary extended

source in a general form [11]. The Makyoh case is special because of the
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closely planar surface, the nearly paraxial ray paths, the planar screen

and the parallel illuminating beam. The model consists of two equations

which follow directly for applying the paraxial approximation to the

formulae derived in Ref. [11]:
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where h(r) is the surface height profile, r is the spatial co-ordinate in

the mirror plane, f is the same in the screen plane, and L is the distance

between screen and the reflecting surface; I is the image intensity

relative to that produced by a flat surface, H and K are the mean and

Gaussian curvatures, respectively, and Cmin,max are the two principal

curvatures at the point r. Unity surface reflectivity is assumed. The

intensity becomes infinite if L equals either (2Cmin)–1 or (2Cmax)–1, that is,

if the screen is in the focus of a surface area element. These infinite-

intensity points of the screen constitute the caustic curve. In the

present work, we exclude the caustic region, as it is not a favoured

region of imaging. This also means that the absolute signs can be dropped

from Eq. (2).

These equations have a physical meaning: Eq. (1) represents a

mapping of the surface plane onto the image plane according to the
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gradient field of the surface, while Eq. (2) gives the intensity of the

image points in terms of the local curvatures of the surface. Note that

the intensities are given in the image plane points f as mapped by Eq.

(1), but are expressed with the curvatures in the surface plane points r.

It can be shown using a geometrical optical analysis [3] that if the

surface curvatures are negligible compared to L all over the surface, the

image intensity can be approximated as:
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that is, the image intensity variation (as compared to unity) is

proportional to the Laplacian of the surface relief. Such Laplacian

contrast appears in many imaging-related areas of optics and physics, such

as in the shadowgraph technique [13] and mirror electron microscopy [14];

the Laplacian filter is also a common tool used in digital image

processing for edge detection [15].

3. Analysis

3.1 Basic considerations

When analysing the non-linearity, h(r) is considered as the input. It is

reasonable to regard I(f) - 1 as the output, that is the intensity

difference compared to that of a flat surface, thus h(r) = const. (for all

r) yields a zero output. (Since only the derivatives of h are contained in

Eqs. (1) and (2), any added constant is removed from h.) It is evident

based on Eqs. (1) and (2) that in the general case, the imaging is non-

linear. It is important to note that Eqs. (1) and (2) scale as hL = const.

[4], that is, the same statements regarding the linearity will refer to

both h and L.

The curvatures H and K are given in a Cartesian frame (x, y) [16] as:
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A main approximation of the Makyoh imaging model is that the intensity

variation in the screen plane is determined by the surface curvature

variations, and the influence of the local gradients on the intensities is

neglected [4, 17]. Thus, p and q are dropped from Eq. (4), that is, we

arrive at

H(r) = (r + t)/2 = 2h(r) and K(r) = rt – s2. (6)

As r and t, as well as H are linear in h(r), the non-linearity of

imaging stems from (i) the mapping represented by Eq. (1), (ii) the

nonlinear nature of Eq. (2) manifested by the quadratic term containing

the Gaussian curvature K(r), and (iii) the reciprocal expression of the

intensity in Eq. (2).

The approximated version of Eq. (3) is linear. Indeed, Eq. (3) can

alternatively be derived from Eqs. (1) and (2) by approximating Eq. (1) as

f(r) = r and neglecting all higher-than-first-order terms in Eq. (2) [12].

That is, Eq. (3) can be regarded as the “small-signal” linear

approximation of the system of Eqs. (1) and (2).

3.2 Topological mapping
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The gradient-related topological mapping represents a distortion of the

object’s image (see figure 2). It can be quantified as the degree of image

point shifts over a certain distance. A criterion of the acceptable degree

of distortion can be given by fixing a lateral distance dL over which we

accept gradient changes; in other words, the image distortion (in terms of

lateral shift of image points) should everywhere be smaller than dL. That

is, based on Eq. (1), the gradient | h(r)| should everywhere be smaller

than dL/(2L). This criterion can also be translated to image contrast for

simple surfaces on a local level by combining Eqs. (1) and (2). For

instance, consider a one-dimensional sine surface with spatial period k,

and peak-to–peak amplitude A. The modulation M characterizing the contrast

of the Makyoh image will then be M = 4π2LA/k2 as follows from Eq. (2b)

[18]. On the other hand, the maximum value of the gradient of the sine

surface is 2πA/k. Equating this to dL/(2L) yields M = πdL/k, which

represents a simple approximate formula linking the topological distortion

to the image contrast. A modulation of 0.1 can be regarded a safe value

for contrast discrimination [18], which translates to dL/k ratio of ≈0.03,

implying a low level of distortion. Nevertheless, this analysis is valid

only on the local level, and cannot be extended to superimposed sine

surfaces in the general case.

Note that this mapping is not always perceived visually as a

distortion: for example, for a surface with a uniform overall curvature,

the image distortion appears as a magnification. Similarly, simple cases

of distortion caused by a slowly changing gradient can be removed by a

mental process.

Another global feature should also be noted. In the Fourier domain,

differentiation is equivalent to multiplication by the (spatial)

frequency, and second differentiation to multiplication by the frequency

squared. This implies a general trend: the low-spatial-frequency features

(that is, global shape) will have higher effect on the slopes, causing

mainly topological distortion, while, as the image intensity is related to
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the second derivatives (curvatures), high-spatial-frequency features will

appear with amplified intensities in the image. (In relation to this

feature, we note that the height spectrum of a random surface is usually a

smoothly falling monotonic curve, often following a power rule with

exponent of roughly –1 to -3 [19].)

It should also be noted that, in the practice, the large-period slope

changes can be easily visualized by inserting a sparse grid in the path of

the illuminating beam [4] (see also figure 2).

3.3 Overall hyperbolic-like dependence

Equations (2a) and (3) reveal a fundamental property of the imaging: an

overall hyperbolic-like dependence of the intensity on the curvatures.

These equations follow a general form I = 1/(1-P(r)), where P(r) is the

term containing the curvatures and L (cf. Eq. (2a)). P has two terms: the

mean-curvature term is linear in h as well as in L, while the Gaussian

term is quadratic. P is zero for a perfectly flat surface. P is thus the

simplest representation of the surface curvatures and L. The hyperbolic-

like nature in the general case means a steeply increasing relationship,

reaching the caustic limit at P = 1. It means that the images of higher-

curvature surface features are amplified further.

Figure 3 shows the I - 1 versus P curve. The curve is linear around the

origo (if P is much smaller than unity).

3.4 The effects of the Gaussian curvature

The non-linearity in P is caused by the Gaussian term in Eq. (2a) through

its higher-power components. This term is quadratic also in L.

To quantify this effect in Makyoh imaging, consider a light pencil

reflected from a given surface point r. Based on Eq. (2a), P can be

written in a normalized form as follows:
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P(r) = LC(1 + e – eLc), (7)

where LC stands for 2LCmax. That is, Lc is a normalized L parameter, LC = 1

corresponding to the caustic limit. The quantity e equals Cmin/Cmax,

characterising the degree of the ellipticity of the local curvatures at

the given point. The value of e is between –1 to 1; e < 0 represents

saddle shape, -1 corresponding to a pure saddle shape, e = 0 to

cylindrical and 1 to the spherical shape [20]. Note that at e = -1, the

sign of LC is ambiguous, since here -Cmin = Cmax. At e = 0, the Gaussian term

vanishes, indicated by the linear dependence according to the discussion

in Sec. 3.1. If e = 0 holds all over the surface, than it has

translational symmetry. To directly assess the effect of the Gaussian

curvature, it is also worth to look at P as a function of L normalized

using the mean curvature as LH = 2L(Cmax + Cmin) = LC(1 + e) (here, e = -1 is

meaningless since the mean curvature would be zero). Both LC and LH are

linear in h, not only in L, that is, the behaviour they show also reflects

that of h.

Figure 4 shows P as a function of LC and LH, parametrized with e. The

transition from linear to quadratic dependence of P is clearly displayed

as L and │e│ increases.

The following main conclusions can be drawn:

(1) The interpretation of the images is the most straightforward in the

e = 0..1 range (that is, cylindrical to sphere-like surface areas), or for

saddle-like areas (e < 0) if L is small. In this regime, the intensity

versus height dependence is monotonous.

(2) The non-linearity is the weakest for cylindrical surfaces and the

strongest for saddle-shaped areas.

(3) In contrary to intuition, small image intensities (that is, I - 1

around zero) do not necessarily imply linear imaging, since P has an

additional zero value for a non-zero Lc (or LH) for saddle surfaces.
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However, these can be distinguished from the small-signal region around

zero as a small change of L induces an image intensity change of an

opposite sense.

Summarizing this section, Gaussian curvature is the main source of

nonlinearity, and saddle-like surfaces are less straightforward to

analyze. Changing L is an efficient way of assessing the local surface

shape, as saddle surface areas cause a non-monotonic I versus L

relationship. A criterion for the monotonic region can be written as

follows (from the differentiation of Eq. (7)):

Lc < sgn(e)(1 + e)/(2e). (8)

As the maximum of Lc is one (caustic limit, see above), this criterion is

automatically fulfilled for all Lc if e > -1/3. Equation (8) can be

regarded as a very loose condition of a quasi-linear behaviour, useful for

the rough visual interpretation of Makyoh images. Namely, human vision

perceives shapes and patterns in an image through intensity changes rather

than absolute intensity values [21]. In this region, the superposition

principle applies but with nonlinear intensity additions, but the

intensity relations, thus, cues for pattern identification, are preserved.

4. Conclusions

Makyoh imaging is non-linear by nature. Basically, it can be regarded as a

Laplacian operator with some added non-linearities. Changing the screen-

sample distance gives a powerful tool for assessing the non-linear

features; however, it should be kept as low as possible for linear and

small-distortion imaging; the minimum is determined by well observable

contrast. The most problematic surface areas are those of saddle-like. The

gradient-related topological distortion is pronounced at low-spatial
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frequency surface shapes; in the general case, this effect is difficult to

handle.
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Figure captions

Figure 1. The rough scheme of Makyoh image formation.

Figure 2. Schematic representation of the gradient-related image

distortion in Makyoh imaging.

Figure 3. The image intensity versus P(r) curve (see text for further

explanations).

Figure 4. P(r) as a function of (a) LC and (b) LH, parametrized with e (see

text for details).
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