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In this study, outer membrane proteins (OMPs) of colistin-resistant Klebsiella
pneumoniae and Enterobacter asburiae were analyzed. One colistin-susceptible and
three colistin-resistant K. pneumoniae sequence type 258 strains as well as one
colistin-susceptible E. asburiae and its colistin-heteroresistant counterpart strain were
involved in the study. OMP analysis of each strain was performed by microchip
method. Matrix-assisted laser desorption ionization time of flight/mass spectrometry
(MALDI-TOF/MS) investigation was carried out after separation of OMPs by two-
dimensional gel electrophoresis and in-gel digestion. The MALDI-TOF/MS analysis
of OMPs in the colistin-susceptible K. pneumoniae found 16 kDa proteins belonging
to the LysM domain/BON superfamily, as well as DNA starvation proteins, whereas
OmpX and OmpW were detected in the colistin-resistant counterpart strains. OmpC
and OmpW were detected in the colistin-susceptible E. asburiae, whereas OmpA and
OmpX were identified in the colistin-resistant counterpart. This study demonstrated
that OMP differences were between colistin-susceptible and -resistant counterpart
strains. The altered Gram-negative cell wall may contribute to acquired colistin
resistance in Enterobacteriaceae.
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Introduction

Klebsiella pneumoniae and Enterobacter spp. are frequently identified
nosocomial Gram-negative pathogens and both are found to be resistant to
multiple classes of antibiotics, including extended-spectrum cephalosporins,
carbapenems, aminoglycosides, and fluoroquinolones [1–3].

The emergence of colistin resistance inK. pneumoniaewas reported in several
countries, and the sequence type (ST) 258 clone was most frequently identified,
although strains from numerous clones (ST14, ST15, ST70, ST101, ST273, ST512,
and ST1271) were also detected as colistin-resistant ones. Colistin resistance also
appeared in Enterobacter spp.; however, it has been detected less frequently [4–9].

The main mechanism of resistance to colistin in Gram-negative bacteria is
explained by the modification of lipopolysaccharide (LPS), the target molecule of
polymyxins. The addition of phosphoethanolamine and 4-deoxyaminoarabinose to
the target molecule reduces its affinity to positively charged agents like polymyxins.
The pmrCAB operon encodes the PmrC phosphoethanolamine transferase, the
PmrA response regulator (also named as BasR), and the PmrB sensor kinase (also
named as BasS), whereas the arn operon encodes the enzymes and transports
proteins responsible for 4-deoxyaminoarabinose substitution [10–14].

The outer membrane bound two-component regulatory systems PmrA/
PmrB and PhoP/PhoQ were identified as major contributing factors in resistance
to polymyxins. The insertional inactivation of the mgrB gene encoding another
outer membrane protein (OMP) regulating PhoQ/PhoP has also recently been
associated with colistin resistance [15–17].

In Hungary, the first colistin-resistant K. pneumoniae strains were detected
between 2008 and 2009 during an outbreak of a K. pneumoniae carbapenemase-2
(KPC-2) producing ST258 clone. Later, increasing number of acquired colistin-
resistant Enterobacteriaceae clinical isolates was observed. The aim of this study was
to analyze one colistin-susceptible and three colistin-resistant clinical K. pneumoniae
ST258 strains originating from the first Hungarian outbreak. This study also involved
one colistin-susceptible Enterobacter asburiae and its colistin-heteroresistant coun-
terpart strain. The specific aim of this study was the analysis of OMPs [18].

Materials and Methods

Bacterial strains

Three colistin-resistant and one colistin-susceptible KPC-2 producing
K. pneumoniae ST258 strains were included in this study. All investigated strains
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were identified in 2008–2009 during an outbreak in Hungary. One E. asburiae
strain identified from clinical urine sample and its colistin-heteroresistant coun-
terpart were also analyzed [18].

Isolation of OMPs

The strains were inoculated into 500 ml Mueller–Hinton Broth (Oxoid Ltd.,
Basingstoke, UK) and were incubated in a shaker at 37 °C overnight. The cultures
were centrifugalized (6,000g, 20 min, 4 °C), then the sediments were resuspended
in physiological saline solution. The suspensions were again centrifugalized and
this washing step was repeated once more. The sediments were subsequently taken
into 15 ml 20 mM Tris-HCl (pH 7.5) solution, then the bacterial cells in ice bath
were disrupted with 500W ultrasound (MSE Soniprep 150 Ultrasonic Disintegrator,
MSE Ltd., London, UK) twice for 2 min. Hereupon, the samples were again
centrifugalized (6,000g, 20 min, 4 °C), and after that, the supernatants were poured
off for ultracentrifugation (100,000g, 60 min, 4 °C). Thereafter, the sediments were
resuspended in 5 ml 0.5% N-laurylsarcosine (Sigma-Aldrich, Budapest, Hungary)
solution and incubated at room temperature for 30 min, and then they were again
ultracentrifugalized with same parameters. Finally, the sarcosine-insoluble OMPs
were located in the sediment [19].

OMP analysis by microchip (Agilent 2100 Bioanalyzer)

Electrophoresis in microchips was performed in the commercially available
Agilent 2100 Bioanalyzer system (Agilent Technologies, Santa Clara, CA, USA)
equipped with a diode laser for fluorescence detection with 630 and 650 nm as
excitation and emission wavelengths, respectively. OMP samples were diluted
10 times with standard labeling buffer. For the fluorescent labeling, 0.5 μL of
fluorescent dye/dimethyl sulfoxide solution was added to 5 μL of diluted sample and
incubated for 10 min at room temperature. The excess dye (i.e., the unbound dye) in
the solutions of labeled OMPs was quenched by adding 0.5 μL of ethanolamine
following the reaction time. The labeled samples were diluted five times by adding
24 μL of distilled water, then incubated at 100 °C for 5 min. The samples were
centrifugalized and the supernatant was used for the electrophoretic analysis, where
the microchip channels were hydrodynamically filled (with pressure) with the gel
matrix, the sample wells were loaded with 6 μL of samples, and the respective wells
were loaded with the destaining solution. The injection was made with 1,000 V for
80 s and the separation was continued at 1,000 V for 60 s. The sample components
migrated toward the anode. The temperature was maintained at 30 °C.
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Two-dimensional gel electrophoresis (2DE) of OMPs

OMPs ofK. pneumoniae strains were separated by 2DE. A portion of 100 μg
of the total protein content of the OMPs were supplemented with 2DE sample
buffer 8 M urea (Bio-Rad, Budapest, Hungary), 2% CHAPS (Bio-Rad), 50 mM
dithiothreitol (DTT) (Bio-Rad), 0.2% Biolyte 3/10 ampholytes (Bio-Rad), and a
trace of bromophenol blue (Bio-Rad) to a total volume of 125 μl, then the
immobilized pH gradient strips of length 7 cm, pH 3–10, (Bio-Rad) were
incubated for rehydration overnight. Isoelectric focusing (IEF) of the OMPs was
performed on an IEF cell (Bio-Rad) using the following program: 250 V, 2 h,
linear, 500 V, 2 h, linear, 4,000 V, 10,000 Vh, rapid. After the IEF, the strips were
equilibrated twice for 10 min in equilibration buffer containing 6 M urea, 2%
sodium dodecyl sulfate (SDS), 20% glycerol, a trace of bromophenol blue, and 2%
DTT (Bio-Rad). During the second equilibration step, 2.5% IAA was used instead
of DTT. After the equilibration, the strips were applied to the second dimension
[12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE),
8 × 6 cm (Bio-Rad)]. The separation of the proteins according to their masses was
performed at 80 V for 20 min and 120 V until the end of the run. After the SDS-
PAGE, the gels were stained with Coomassie blue R-250. Protein marker (ladder,
Bio-Rad Precision Plus ProteinTM KaleidoscopeTM, Bio-Rad) was used as a
molecular standard. The gels were scanned on Pharos FX laser scanner (Bio-
Rad). For the identification of the OMPs and the mass spectrometric analysis, the
spots of interest were excised from the gels.

In-gel digestion

Protein bands were excised from gels and were cut to small pieces and
digested using modified version of the protocol developed by Shevchenko et al.
[20]. Coomassie blue and SDS were removed with 100 mM ammonium bicar-
bonate (Bio-Rad), then the gel slabs were dehydrated with acetonitrile (ACN).
Disulfide bridges were reduced with 10 mM DTT (Bio-Rad), then the free
sulfhydryl (SH) groups were alkylated with 55 mM iodacetamide solution
(Bio-Rad). The modified proteins were in-gel digested with side-chain-protected
trypsin (Promega, Madison, WI, USA) in 50 mM ammonium bicarbonate
overnight at 37 °C. The digested peptides were extracted from the gel with
5% formic acid solution (Sigma-Aldrich) in a 2:1 mixture of ACN (Sigma-
Aldrich) and water. The extracted peptides were evaporated to dryness and
redissolved in 5 μL of 0.1% trifluoroacetic acid (TFA) in water before the mass
spectrometric measurement [20, 21].
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Matrix-assisted laser desorption ionization time of flight/mass spectrometry
(MALDI-TOF/MS)

Mass analysis was performed on an Autoflex II MALDI-TOF/MS
instrument (Bruker Daltonics, Bremen, Germany). During MS analysis of the
digested proteins, 8 mg of α-cyano-4-hydroxycinnamic acid (Bruker Daltonics,
Bremen, Germany) was dissolved in 1 mL of 50% ACN and 0.1% TFA
(Scharlau Chemie, Barcelona, Spain) in water. In each case, 1 μL of the matrix
was deposited on a stainless steel target together with 1 μL of the sample with
dried droplet method.

All mass spectra were monitored in positive mode with pulsed ionization
[l= 337 nm; nitrogen laser (MNL 106 PD)] with a maximum pulse rate of 50 Hz.
Peptides of the digests were measured in positive reflectron mode using a delayed
extraction of 120 ns. The accelerating voltage was set to +19 kV and the reflectron
voltage was set to +20 kV. The spectra of peptides were the sum of 1,000 shots;
external calibration has been implemented. Data processing was executed with
flexAnalysis software packages (version: 3.1; Bruker Daltonics, Bremen,
Germany). Sequence Editor software (Bruker Daltonics) was used for the analysis
with the following criteria: (i) all cysteines were supposed to be treated with
iodoacetamide, (ii) monoisotopic masses were allowed, and (iii) the maximum
number of missed cleavage sites was two [22, 23]. Data analysis was performed
and protein identification was achieved using the MASCOT algorithm (http://
www.matrixscience.com) and the Swiss-Prot entries database (Swiss Institute of
Bioinformatics, Geneva, Switzerland), where (i) carbamidomethyl cysteine as
fixed modification and (ii) oxidation of methionine were allowed as variable
modifications. Mass accuracy was considered within 150 ppm for MS and
0.8 Da for MS/MS. Only proteins with at least two matching sequences were
considered [20, 24].

Results and Discussion

Our investigations regarding the colistin resistance mechanisms found OMP
change in the colistin-resistant strains compared with the colistin-susceptible ones.
The Agilent 2100 Bioanalyzer showed a distinct lack of protein fraction in the
colistin-resistant K. pneumoniae and E. asburiae isolates during the runs of OMPs,
whereas the same fraction was present in the colistin-susceptible ones (Figures 1
and 2).

Various OMPs were detected by MALDI-TOF/MS after 2DE separation of
OMPs (Table I). In the colistin-susceptible K. pneumoniae strain, 15–16 kDa

COLISTIN RESISTANCE OF KLEBSIELLA PNEUMONIAE AND ENTEROBACTER ASBURIAE 221

Acta Microbiologica et Immunologica Hungarica 64, 2017

http://www.matrixscience.com
http://www.matrixscience.com


Figure 1.OMP analysis of colistin-susceptible and colistin-resistant K. pneumoniae strains (colistin-
susceptible strain: blue line; colistin-resistant strain: red line)

Figure 2. OMP analysis of colistin-susceptible E. asburiae strain and its heteroresistant counterpart
(colistin-susceptible strain: blue line; colistin-resistant strain: red line)
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proteins of the LysM domain /BON superfamily and DNA starvation/stationary
phase protection proteins were detected, whereas in the colistin-resistant counter-
part strain, these proteins were absent, but OmpX (19 kDa) and OmpW (24 kDa)
were present. In the colistin-susceptible E. asburiae, OmpC (40 kDa) and OmpW
(23 kDa) were identified, whereas in the colistin-heteroresistant counterpart strain,
OmpA (38 kDa) and OmpX (19 kDa) were detected.

DNA starvation proteins (Dps) were found in several bacteria, their main
function being the protection of bacteria during the stationary phase of cell
division. They bind to the bacterial chromosome in a non-specific way creating
a stable, condensed DNA starvation/stationary phase protection protein (Dps-
DNA) complex which is protected against harmful effects. Furthermore, they bind
intracellular Fe2+ ions and oxidize them into Fe3+ ions, then store them indirectly
decreasing the amount of intracellular reactive oxygen species [25, 26].

LysM and BON domains are the conserved sections found in many bacterial
proteins. These are mainly structural proteins and enzymes responsible for
maintaining cell membrane integrity, and they are present in the greatest amount
during the stationary cell division phase. The LysM domain specifically binds to
the N-acetylglucosamine molecules of peptidoglycan. As colistin resistance is
based on molecular changes in the cell wall, the alterations in the expression of
these structural proteins may contribute to its development [22, 27].

OmpC and its homologues (Omp36 and OmpK36) are porin-type transport
proteins found in the outer membrane of Enterobacteriaceae. They are responsible
for transporting several types of molecules into the cells, including antibiotics

Table I. OMPs detected in colistin-susceptible and colistin-resistant K. pneumoniae and E. asburiae

Strain Protein Protein ID Molecular weight (Da)

col S Kpn 11 LysM BON superfamily gi|152970277 15,899
DNA starvation protein gi|152969398 18,697

col R Kpn 12 OmpW gi|152969802 24,321
col R Kpn 97 OmpW, colicin S4 rec;

putative transport protein
A6T7W0 24,321

OmpX S5YR85 14,866
col R Kpn 105 OmpX F0JWH6 18,680

OmpW G0GLV0 22,969
col S Easb OmpC K4YC30 40,459

OmpW G0GLV0 22,969
col R Easb flagellin V3HNK5 28,529

OmpA V3PJ21 37,748
OmpX V3E259 18,654

Note: col S Kpn: colistin-susceptible K. pneumoniae; col R Kpn: colistin-resistant K. pneumoniae; col S
Easb: colistin-susceptible E. asburiae; col R Easb: colistin-resistant E. asburiae.
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(e.g., cephalosporins, carbapenems, and fluoroquinolones). Their loss or decreased
expression leads to antibiotic resistance and diminished susceptibility to serum
antimicrobial activity in Escherichia coli and Enterobacter spp. [23, 28].

OmpA is a multifunctional membrane protein: in addition to maintaining
integrity of the outer membrane, it is responsible for serum resistance in E. coli and
antimicrobial peptide resistance in K. pneumoniae [29, 30].

OmpX is a protein structurally similar to OmpA. Its overproduction was
observed in multiresistant Enterobacter aerogenes strains with the simultaneous
underproduction of OmpF and Omp36 porins, as well as structural changes of
LPS. Upregulation of ompX and downregulation of omp36 together cause the
decrease of outer membrane permeability [31–33].

The reports of OmpA and OmpX contributing to antimicrobial peptide
resistance and outer membrane structural changes in Enterobacteriaceae and
underproduction of OmpC leading to serum resistance in Enterobacter spp.
concur with our previous observation of colistin-resistant E. asburiae and
K. pneumoniae strains being tolerant to antimicrobial peptides [34].

This study identified OMP change as a possible mechanism for colistin
resistance in K. pneumoniae ST258 and E. asburiae. Protein assortment change in
the outer membrane may contribute to the stability and integrity of cell wall, thus
developing and maintaining colistin resistance. Further investigations are required
to explore the potentially elaborate regulatory system and the exact roles of the
different proteins.
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colistin-susceptible and colistin-resistant strains of Klebsiella pneumoniae and Enterobac-
ter asburiae. Acta Microbiol Immunol Hung 62, 501–508 (2015).

COLISTIN RESISTANCE OF KLEBSIELLA PNEUMONIAE AND ENTEROBACTER ASBURIAE 227

Acta Microbiologica et Immunologica Hungarica 64, 2017


