
POLLACK PERIODICA
An International Journal for Engineering and Information Sciences

DOI: 10.1556/606.2017.12.2.1
Vol. 12, No. 2, pp. 3–15 (2017)

www.akademiai.com

HU ISSN 1788–1994 © 2017 Akadémiai Kiadó, Budapest

A NOVEL PROGRAM SYNTHESIS APPROACH IN
TEST DRIVEN SOFTWARE DEVELOPMENT

1Endre FERENCZ, 2Balázs GOLDSCHMIDT

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics, M�egyetem rkp. 3, H-1111 Budapest

Hungary, e-mail: 1eferencz@iit.bme.hu, 2balage@iit.bme.hu

Received 30 December 2016; accepted 2 April 2017

 Abstract: It is a viable alternative to automatically generate Java source code based on the
specification provided by the associated unit tests. This possibility may seem far-fetched in the
general case, but after considering the most common restrictions, which are applied nowadays as
best practice, it turns out that a significant part of the production code can be generated
automatically. The goal is to generate viable implementations, which fulfill the requirements
imposed by unit tests. According to the presented vision the modern test frameworks,
development guidelines and computational capacities make it possible to reach this goal.

 Keywords: Test-driven development, Mocking, Java, Synthesis

1. Introduction

 The traditional approach in software development suggests applying test phases after
the implementation steps. With the evolution of modern methodologies, these test
phases became more and more important in order to reach better software quality.
Countless studies confirmed the benefits [1].
 Despite the fact that the unit tests are considered so important, they are sometimes
neglected, because it is an additional task to keep them up-to-date with the current state
of the production code. It is unequivocal that it is possible to generate unit tests from the
finished source code [2], but in this way the possible benefits are lost. The most
important value comes from the fact that the developer has to think through the
requirements from a different point of view.

4 E. FERENCZ, B. GOLDSCHMIDT

Pollack Periodica 12, 2017, 2

 Hereby, the other way around is promoted: make it possible to generate the
production code from the test code by adhering to a few basic guidelines, most
importantly to mock the dependencies.
 Most of the time there is an unlimited number of possible solutions, out of which the
suitable ones can be selected by using heuristics. Showing possible implementations
might significantly speed up the development process.
 This approach promises other possible advantages, which include full test coverage,
mutation-based testing techniques, better code quality, another form of documentation
and code re-use.

2. Related work

 The concept of automatic programming has a long history. In 1954 the term was
used to describe (Fortran) compilers [3]. In the early ages of computer programming,
even a simple compiler could improve significantly the productivity of a software
engineer. The currently available hardware makes it possible to use high level
programming languages, which abstract away the prosaic concerns of software
development, like garbage collection or pointer handling.
 Automatic programming aims to provide a higher-level approach than the one which
is currently available for the programmer [4]. At present, an extended form of this
concept is used. It covers the synthesis of an algorithm based on various models. It
might provide a correctness proof for the algorithm. The main target of using these
formal methods for program synthesis is the embedded systems and safety-critical
systems [5]. It is expensive and time consuming to formalize a specification, but it has
huge benefits. Upon using a certified tool for program synthesis, the source code
development and verification happens almost instantly.
 There are several techniques for program synthesis. Traditionally they use a form of
theorem proving [6]. In these cases, the input of the process is a specification in a
standard equation form. Another approach is to implement the specification as a
simpler, but less efficient program [7]. These have the advantage of completeness of
specification and proven verification, but these specifications are often hard to write and
difficult to check with an automated formal verification technique.
 The characteristics of the domain (of the software under development) in a
significant part of the cases make it unfeasible to use formal methods [8]. Sometimes it
is worth to decompose the task based on these characteristics. There are several agile
methodologies, which aim to embrace formal methods in a modern software
development project [9], [10].
 Automatic program synthesis has many practical applications [11], [12]: automating
repetitive programming tasks [13], reaching optimal code sequences [7], unfolding
high-level specifications [14], [15] or reverse-engineering obfuscated software
components [11]. These are very specific goals, which may be helpful in the targeted
situation, but they do not provide aid in a software development process in an
unobtrusive manner.

 A NOVEL PROGRAM SYNTHESIS APPROACH 5

Pollack Periodica 12, 2017, 2

 It is not uncommon to use a component-based approach in program synthesis [11].
Modern enterprise applications frequently use the abstraction level of components [16]
in order to reach the appropriate level of maintainability and flexibility.
 Most of the program synthesis tools aim to handle a limited part of the codebase: a
few instructions, a method or an algorithm. For example, the peephole optimizers [17]
work with a limited number of instructions. There are approaches, which target a top-
down strategy [18]. These create a decomposition of the initial specification into a
hierarchy of specifications for sub-problems.

3. Restrictions

 A widespread solution for managing complexity [19] is to apply strict regulations
regarding the size of different source entities. For example, classes should have one
responsibility (one reason to change) or functions should do one thing, [20]. If the
software engineers follow these conventions, methods with just a few lines of code
become quite typical. In these cases, the number of conceptually similar methods is
higher and it makes the pattern recognition algorithms much more feasible. This
research is narrowed to methods with a few loops (maximum two) and a limited number
of lines (maximum 20).
 The strong restriction of statelessness was chosen. Stateless components are very
common because of the simplicity and inherent thread safety. This restriction might be
bypassed by treating the actual state as a parameter. These stateless components operate
on data objects, which contain only minimal behavior: getters-setters, hash code
calculation, equality test and possible serialization algorithm.
 Another important presumption is that the tests should be as specific as possible.
The output of the operations should be verified extensively, preferably with equality
assertions.
 According to this methodology, the units (the classes) are tested in isolation without
dependencies. This is achievable by using a mocking framework [2]. The used test
doubles may contain the minimal amount of logic, which is needed for proper testing,
but the boundaries between the components under development should be specific in
regards of the parameters and return values.

4. Importance of mocking

 In everyday software development - upon unit testing - it is appropriate to use a
mocking framework in order to test a class in isolation, independently from its
dependencies. Generally, this approach is inevitable in situations like: unavailability of
dependencies (e.g. unfinished software components), high cost of invoking/testing
dependencies (e.g. web service, database connection), strict isolated testing (e.g. avoid
the effects of deficient dependencies), nondeterministic behavior (e.g. random), special
interactions (e.g. test callbacks) [2].
 In the examples from Listing 1 and Listing 2 the strong relationship between the
production code and the test code is demonstrated. The behavior of the dependencies is

6 E. FERENCZ, B. GOLDSCHMIDT

Pollack Periodica 12, 2017, 2

specified in Listing 2. These mocked methods represent valuable information for the
process of source code generation, because - when used in this specific form - show a
snapshot of their parameters from the data flow and specify additional input data for the
subsequent operations. In this way the additional complexity of the dependencies is
completely avoided and the flow of the executed business logic is specified with more
details.

Listing 1

Example of a business method with external dependencies
(productStore and categoryStore)

BigDecimal getVatFraction(Long productId) {
 Product product = productStore.loadProduct(productId);
 Category category =
 categoryStore.loadCategory(product.getCategoryId());
 return category.getVatFraction();
}

Listing 2

Test code for isolated testing of business method from Listing 1

void testGetVatFraction() {
 // Setup
 Long productId = 73L;
 Long categoryId = 93L;
 BigDecimal vatFraction = new BigDecimal("0.27");
 Product dummyProduct = new Product();
 Category dummyCategory = new Category();
 dummyProduct.setCategoryId(categoryId);
 dummyCategory.setVatFraction(vatFraction);
 when(productStore.loadProduct(productId))
 .thenReturn(dummyProduct);
 when(categoryStore.loadCategory(categoryId))
 .thenReturn(dummyCategory);
 // Exercise
 BigDecimal result = vatCalculator
 .getVatFraction(productId);
 // Verify
 assertSame(vatFraction, result);
}

 The previously described code snippet represents a straightforward situation,
because the test method abides by the previously described guidelines. To generate the
source (Listing 1) based on the test (Listing 2), first the data dependencies between the
return value, the two mocked methods and the input parameters have to be analyzed.

 A NOVEL PROGRAM SYNTHESIS APPROACH 7

Pollack Periodica 12, 2017, 2

 The analysis in this case results in a straightforward process, because the input-
output pairs can be clearly identified. The process involves a basic transformation in the
form of calling getter methods of data classes (Product and Category). The illustration
of the result (Fig. 1) for the source from Listing 1 shows the basic data flow of the input
parameters and how they are derived from the available variables. It demonstrates a
clear path of calculations.

Fig. 1. Data dependency analysis

 Some pragmatic cases manifest algorithms and transformations that are more
sophisticated. These might be addressed by using different techniques, but even the
coverage of the simplest situations - like the example before - results in a great benefit
in day-to-day development tasks.

5. The source generation process

 Three different approaches are proposed to generate the source code from the test
methods. These use the following information, which are available from the test
methods:

• Signature of the method;
• Input and assertions of the output test data;
• Parameters (optional) and the results of the invoked external dependency

methods from mocks;
• Number of invocations to the different external dependency methods.

8 E. FERENCZ, B. GOLDSCHMIDT

Pollack Periodica 12, 2017, 2

5.1. Naive approach

 The naive approach is suitable to decide whether the provided test data and
behavioral information is theoretically possible to be fulfilled with a stateless method,
tested in isolation. An example for such unrealizable situation is expecting different
outcomes from the same input data and environment, because these un-deterministic
fragments should be isolated for reliable unit testing.
 The naive approach implements separate branches (if statements) based upon the
input data, then it invokes the external dependency methods with the predefined
parameters and finally decides the result of the method.
 Irresolvable situations might appear if the algorithm cannot decide between the
different external dependency method calls, specified by the different test cases. This
situation is only possible if the input data specified by two test cases are identical, but
these test cases provide incompatible external method calls.
 After the successful invocation of external methods, the input data expands with the
results of these calls and then the same decision has to be made, but now the goal is to
determine the result of the business method.
 To demonstrate the naive approach more pragmatically a simple method is targeted
(without external dependencies) from an open source library. The source code with
minor refactoring is visible in Listing 3. This method might be tested thoroughly by
using the test cases from Table I.

Listing 3

Moderately complex business logic from the PagedListHolder class
of the Spring framework

int getPageCount(int nrOfElements, int pageSize) {
 float nrOfPages = (float) nrOfElements / pageSize;
 boolean plusOne =
 nrOfPages > (int) nrOfPages || nrOfPages == 0.0;
 return (int) (plusOne ? nrOfPages + 1 : nrOfPages);
}

Table I

Test data used for the sample code from Listing 3

nrOfElements pageSize result
1 1 1
5 3 2

13 2 7
8 7 2
0 5 1

 This mechanism would generate the control flow from Fig. 2. For each tested input
the output is available, so a branch is generated for each input pair. The unspecified

 A NOVEL PROGRAM SYNTHESIS APPROACH 9

Pollack Periodica 12, 2017, 2

inputs in this case can only be covered with an exception, because the other results
cannot be predicted.

5.2. Constructive approach

 The Constructive approach is a form of program synthesis where the specification is
not a precise formula, just input and output data pairs. Of course, this gives space to
multiple or even an unlimited number of possible method implementations. According
to the herby presented vision, this is even desirable, because showing multiple -
significantly different - solutions to the same problem (which give diverse results for the
unspecified inputs) demonstrates that the provided test cases does not provide enough
certainty.

Fig. 2. The generated control flow of the naive approach

 The implementation of this approach (Listing 4) starts from the input parameters and
then traces the possible calculations to the output values. Possible calculation steps may
come from: data transformations, mocked methods and control structures (branch,
loop). The algorithm generates every possible output value given the inputs and the
calculation steps. If the output values match the expected test results, the path method
retraces the executed calculation steps for reproduction. The alternatives collection
might be used to demonstrate alternative implementations for the developer, because it
stores alternative ways to reach some of the values.
 It is possible to manage the cases where the data output of the targeted method is
unknown. The different calls to mocked methods and their parameters are considered to
be assertions, which should be fulfilled as well.
 The algorithmic complexity may get out of hand upon chaining multiple
transformations and applying multiple control structures. In practice the number of

10 E. FERENCZ, B. GOLDSCHMIDT

Pollack Periodica 12, 2017, 2

possible transformations is limited by the data type in use, so an extensive search is
possible in this manner. Generally, the synthesis is hindered by the control statements,
which increase the method complexity.
 There are multiple metrics [21], which are targeted to measure the complexity of a
method. The most notable ones are the cyclomatic complexity [22] and the NPath
complexity [23]. Generally, these are limited on a software development project to
ensure the maintainability, so - from an algorithmic complexity point of view – these
are considered as small constant values.

Listing 4

Algorithm of the constructive approach

Input:
 tests: test data (input-output pairs)
 mockCalls: test data (input-output pairs)
 operations: allowed operations

Algorithm:
 interimStates = empty set;
 interimStates.add(input(tests));
 alternatives = empty set;
 while (not interimStates contain output(tests)) {
 for (each (op, s[]) from
 (operations union mockCalls, interimStates)) {
 if (typeMatch(op, s)) {
 newState = (op(s), s, op);
 if (not interimStates contains newState) {
 interimStates.add(newState)
 } else {
 alternatives.add(newState)
 }
 }
 }
 }
 match = find(interimStates, output(tests))
 code = path(match)

 Branches can also be synthesized if their usage implies shorter execution paths. A
sufficient amount of test data is needed, because branches can only be generated if
complete branch coverage is achieved.
 The most insecure part of the process is the consolidation of conditional expressions.
Generally, it is recommended to use boundary testing in order to ensure the best output
of the classification process.
 Mechanism for solving the general case of re-engineering a loop has not been found.
Some common cases can be easily detected (for example an iteration over a collection),
but even a simple prime check seems impossible to reproduce using automatic

 A NOVEL PROGRAM SYNTHESIS APPROACH 11

Pollack Periodica 12, 2017, 2

programming without further hints. The detection of these types of algorithms can be
implemented explicitly in the source generator engine.
 Multiple optimizations are applied in order to reduce the number of combinations in
the program synthesis. The primary goal is to produce one possible implementation, but
showing multiple possibilities is also desired.
 It is common that two or more simple calculation fragments result in the same
outcome when used with the same input test data. In this case, only one should be kept
for further work, the other ones just make it possible to produce more than one solution.
 Generally, the type of the input data imposes strict constraints upon the possible
transformations, which makes it possible to retrace longer calculation flows. Other data
types might provide a multitude of possible operations, which makes unfeasible the
synthesis process. In such cases, it is advisable to provide hints to the engine in order to
avoid unnecessary calculations with irrelevant steps.
 In general, the best approach for effective synthesis is to design short methods,
which are only meant to do one thing. Multiple well-known patterns suggest such
solution; the most notable one is the composed method pattern [24] from Kent Beck.

5.3. Abstract search based approach

 Software engineers re-implement well-known algorithms or code snippets
frequently. An example for this situation is presented in Listing 3. Certainly this page-
count method appears in almost every user interface framework. On one hand despite of
this certainty it might seem strange to use the common way of dealing with duplication
and to provide a library with these methods. On the other hand, if there were a library
with this method, it would be time consuming to find it.
 The abstract search based approach suggests a solution to this problem. The
implementations are stored and indexed in order to make them available for source code
synthesis. Developers may search between these predefined implementations by using
the provided information from the tests.
 Several code duplication detection methods are already available for use [25].
Generally, they use some kind of abstraction in order to reveal repetitions, which are not
line-by-line equivalent, but logically identical. These techniques are good candidates for
further improvement.
 During the abstraction process, the reproducible parts of the source code should be
suppressed. For example, in case of a parameter, which is a simple data class, it is
irrelevant what the concrete type is, the used primitive data types and their constraints
should be kept only.
 The methods from external dependencies should be omitted too, because according
to the previously assumed restrictions, they will be mocked out during the testing phase.
 Finally, the most relevant parts are the control structures and most importantly the
loops, because they cannot be reproduced based upon the tests.
 The number of stored algorithms grows quickly, so these should be indexed using a
B+ tree, which guarantees logarithmic time complexity upon query operations. The
actual indexed values should consist of the test data. As new searches with appropriate
data types are started, these indexes should be supplemented with the newly tested
values.

12 E. FERENCZ, B. GOLDSCHMIDT

Pollack Periodica 12, 2017, 2

5.4. Effectiveness of the abstract search based approach

 The abstract search based approach is effective for frequently used well known
algorithms. The most common challenges are most likely to be even covered by
multiple algorithms. Generating the business method demonstrated in Listing 3 with the
constructive approach is a computationally intensive task, because of the long and
complex transformation chain demonstrated in Fig. 3. In this figure the nodes represent
calculation steps, the arrows show where the input values come from.

Fig. 3. The transformation chain of the algorithm from Listing 3

 The longest transformation chain in the process has five transformations/
combinations and a branch. Upon producing long transformation chains the size of the
search space grows exponentially. The implemented tool managed to reproduce
similarly complex algorithms in a short time frame (less than one minute) on
commodity hardware by limiting the number of possible instructions to the ones, which
appear in this calculation.
 Even with a large number of stored algorithms and test data, the lookup is generally
much faster than the constructive approach, because it has a logarithmic complexity
instead of the exponential complexity of the constructive approach.

6. Advantages

6.1. Benefits for software development

 A source code generator cannot substitute the work of the software engineer,
because the generated code has to be interpreted and reviewed to ensure that enough test

 A NOVEL PROGRAM SYNTHESIS APPROACH 13

Pollack Periodica 12, 2017, 2

cases are provided to reach the goals. This tool may be useful to present alternative
implementations, which might be the base of the final source code.
 A recurring issue in everyday software development is to obey the coding
guidelines, apply the usual patterns in the source code. Automatic program synthesis
may contribute significantly to reach these goals, because these aspects might be easily
preconfigured.
 In order to provide these benefits a test driven development technique should be in
use.

6.2. Benefits for unit testing

 Upon testing the algorithm from Listing 3 with the test data from Table I code
coverage tools report 100% instruction and branch coverage.
 The constructive approach was used to reproduce the same logic from the test data.
The number of possible instructions was limited to the few relevant ones: type
conversions between integer and float, division, zero equality check, or Boolean
operator and greater than relational operator.
 The shortest solution provided by the generator tool (Listing 5) was very similar, but
with a minor difference. The condition of the branch has changed, so the transformation
chain is shorter by one transformation.

Listing 5

Reproduced version of the method from Listing 3

int getPageCount(int nrOfElements, int pageSize) {
 float nrOfPages = (float) nrOfElements / pageSize;
 boolean plusOne =
 nrOfElements > pageSize || nrOfElements == 0;
 return (int) (plusOne ? nrOfPages + 1 : nrOfPages);
}

 This is a mutation of the original code, which is not covered by the provided unit
tests. Adding the (12, 2) test to the test suite provides the necessary test coverage for the
tool to generate the same logic as the original method.
 Mutation testing tools contain a predefined set of mutators and the goal is to produce
non-equivalent mutations. The proposed approach is to generate test-equivalent, but
shorter mutations. In this way, those parts of the source code can be highlighted, which
are not justified by the associated unit tests.

7. Conclusions

 In this article a novel approach in test driven software development was presented. It
started with describing the state of the art techniques in enterprise software
development, which are essential for the feasibility of the approach. Experimental

14 E. FERENCZ, B. GOLDSCHMIDT

Pollack Periodica 12, 2017, 2

source code generation techniques were described and demonstrated on common code
snippets. Finally, the possible benefits and usages of the tool were discussed.
 Currently the project is in a prototyping state, which means that the usage is
cumbersome, it is time consuming to analyze a larger codebase. The next goal is to
measure the amount of source code, which could have been generated with this
methodology on a modern software development project.
 The long-term goal is to increase this coverage and to present a tool, which can
automatically process the provided unit tests in order to suggest viable implementations
based on its configuration.

References

[1] Bertolino A. Software testing research, Achievements, challenges, dreams, Proceedings on
Future of Software Engineering, FOSE '07, IEEE Computer Society Washington, DC,
USA, 23-25 May 2007, pp. 85−103.

[2] Saff D., Artzi S., Perkins J. H., Ernst M. D. Automatic test factoring for Java, Proceedings
of the 20th IEEE/ACM International Conference on Automated Software Engineering, ASE
'05, Long Beach, CA, USA, 7-11 November 2005, pp. 114−123.

[3] Balzer R. A 15 year perspective on automatic programming, IEEE Trans. Software Eng.
Vol. SE-11, No. 11, 1985, pp. 1257−268.

[4] Parnas D. L. Software aspects of strategic defense systems, Communications of the ACM,
Vol. 28, No. 12, 1985, pp. 1326−1335.

[5] Woodcock J., Larsen P. G., Bicarregui J., Fitzgerald J. Formal methods: practice and
experience, ACM Computing Surveys, Vol. 41, No. 4, 2009, pp. 1−40.

[6] Madden P., Hesketh J., Green I., Bundy A. A general technique for automatically
generating efficient programs through the use of proof planning, Proceedings of LOPSTR
93, International Workshop on Logic Program Synthesis and Transformation, Louvain-la-
Neuve, Belgium, 7–9 July 1993, pp. 64−66.

[7] Massalin H. Superoptimizer, a look at the smallest program, Proceedings of the Second
International Conference on Architectual Support for Programming Languages and
Operating Systems, ASPLOS II, Palo Alto, California, USA, 1987, pp. 122−126.

[8] Liu S., Adams R. Limitations of formal methods and an approach to improvement,
Proceedings 1995 Asia Pacific Software Engineering Conference, 6-9 December 1995,
pp. 498−507.

[9] Shafiq S., Minhas N. M. Integrating formal methods in XP, A conceptual solution, Journal
of Software Engineering and Applications, Vol. 7, No. 4, 2014, pp. 299−310.

[10] Marciniak R. Role of new IT solutions in the future of shared service model. Pollack
Periodica, Vol. 8, No. 2, 2013, pp. 187−194.

[11] Jha S., Gulwani S., Seshia S. A., Tiwari A. Oracle-guided component-based program
synthesis, Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - ICSE '10, Cape Town, South Africa, 2-8 May 2010, Vol. 1, pp. 215−224.

[12] Cao X., Kui Y., Qiaoyu X.. A deep study to reuse of processing instructions in automatic
programming techniques, 2016 IEEE International Conference on Mechatronics and
Automation, 7-10 August 2016.

[13] Lau T., Domingos P., Weld D. S. Version space algebra and its application to programming
by demonstration, Proceedings of the Seventeenth International Conference on Machine
Learning, ICML '00, 29 June - 2 July 2000, pp. 527–534.

 A NOVEL PROGRAM SYNTHESIS APPROACH 15

Pollack Periodica 12, 2017, 2

[14] Solar-Lezama A., Tancau L., Bodik R., Seshia S., Saraswat V. Combinatorial sketching for
finite programs, Proceedings of the 12th international conference on Architectural support
for programming languages and operating systems, ASPLOS XII, San Jose, California,
USA, 21-25 October 2006, pp. 404−415.

[15] Kilián I. When the snake bites its own tail... Messing up and solving meta-levels in
informatics and in everyday problems, Pollack Periodica, Vol. 5, No. 2, 2010, pp. 69−79.

[16] Herzum P., Sims O. Business component factory, A comprehensive overview of component-
based development for the enterprise, New York, John Wiley, 2000.

[17] Bansal S., Aiken A. Automatic generation of peephole super-optimizers, Proceedings of the
12th International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, California, USA, 21-25 October 2006, ACM SIGARCH
Computer Architecture News, Vol. 34, No. 5, 2006, pp. 394−4023.

[18] Smith D. R. Top-down synthesis of divide-and-conquer algorithms, Artificial Intelligence,
Vol. 27. No. 1, 1985, pp. 43−96.

[19] Vasileva A., Schmedding D. How to improve code quality by measurement and refactoring,
2016 10th International Conference on the Quality of Information and Communications
Technology, 6-9 September 2016.

[20] Martin R. C. Clean code, A handbook of agile software craftsmanship, Upper Saddle River,
NY, Prentice Hall, 2009.

[21] Wallace L. G., Sheetz S. D. The adoption of software measures: A technology acceptance
model (TAM) perspective, Information & Management, Vol. 51, No. 2, 2014,
pp. 249−259.

[22] McCabe T. J. A complexity measure, IEEE Trans. Software Eng. Vol. SE-2, No. 4, 1976,
pp. 308−320.

[23] Nejmeh B. A. NPATH: A measure of execution path complexity and its applications,
Communications of the ACM, Vol. 31, No. 2, 1988, pp. 188−200.

[24] Beck K. Implementation patterns, Upper Saddle River, NY, Addison-Wesley, 2008.
[25] Roy C. K., Cordy J. R., Koschke R. Comparison and evaluation of code clone detection

techniques and tools: A qualitative approach, Science of Computer Programming, Vol. 74,
No. 7, 2009, pp. 470−495.

