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 Abstract: The main objective of this paper is to classify the techniques of parametric design, 
and to make the existing classification system more exact. The previously created classification 
was based on shape and logical aspects, which granted a good approach for parametric design 
techniques and helped providing an overview. However this system, for the sake of scientific 
precision, needed further darification at points. In this paper a more precise classification is 
shown, which is based on the interpretation of patterns as graphs. This enables their topology to 
be studied in a more exact, mathematical way. 
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1. Introduction 

 In order to understand and learn how to use parametric design to shape a 
building it is very useful to understand the possible and usable forms and patterns. 
These parametric structures are generated by commands of the design program, which is 
very similar to a programming language. This results in the design of structures, which 
are based on geometry and mathematics. Using a classification system that is based on 
the mathematical properties of these structures it is easier to understand how they were 
made and easier to learn, how other similar structures can be designed and how many 
possibilities are available. There is also a need in this new field of architecture to 
explore and describe the generative process of design, also called as Parametric Design 
Thinking (PDT) [1]. This paper is a part of a possible answer to this and the question, 
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whether the pattern of a structure is a tiling or a subdivision is one of the first questions 
when classifying a structure in this way.  
 In a previous research [2] the classification was based on shape and logical aspects, 
where mathematically similar structures made up a class. It was based on many different 
sources [3]-[8] and as a result of these, the geometric properties provided the most basic 
selection rules. The previously published method is similar to the present classification 
system, but it requires further refinement. This paper shows how the refinement of the 
surfaces group of the previous classification system is represented. 
 In the previous paper [2] two elementary categories of parametric design techniques 
were differentiated: surfaces and formations. Surfaces were defined as structures, which 
consist of a pattern on a planar or curved surface. Formations were defined as structures 
that occupy a more extensive part of space. Since a clear borderline between the groups 
is absent, the deciding rule is that if the parametric structure has a structural role then it 
is a formation. Modifiers were mentioned as a third group, which modify the members 
of the previous two groups. This paper focuses solely on the surfaces as other parts of 
the group that need further clarification. 
 The sources used to this paper also deal with the part of the parametric design, 
which cover the tiling-subdivision-packing theme, because of its importance. In the 
work of Jane and Mark Burry [3] packing and tiling are mentioned and in the book of 
Jabi [4] both tiling, packing and subdivision are distinguished, where packing is defined 
as “the placement of many objects in space, in a way that little or nothing of it is left 
over” and subdivision is referred as a division of surfaces and generation of meshes in a 
way, that the results are suitable for Computer Numerical Control (CNC) machines.

2. Classification of surfaces 

 The two properties of surfaces described in [2] are also used here, namely form and 
pattern. The classification of the form of surfaces has a full mathematical foundation, 
and a surface can be parabolic, elliptic, hyperbolic and complex in form. However the 
definitions of the grouping of the types of patterns should be changed as follows. 

• Patterns remaining on the surface: 
o tiling; 
o subdivision; 
o packing - the content of this group didn't change, but it will be called 

lacunary pattern in future for the sake of clarity; 
• Tridimensional patterns: 

o open; 
o closed. 

 The classification remained unchanged from the aspect that tridimensional patterns 
are considered as a three dimensional extension in the aspect of patterns remaining on 
the surface. The significant changes concern tiling, subdivision and lacunary patterns. 
Two pattern types, tiling and subdivision will be the principal topologies while in the 
future the lacunary pattern will be a modification of these two. 
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 The main difference between tiling and subdivision is that tiling focuses on making 
identical or analogue tiles while subdivision means dividing the surface at random tiles 
by applying some rules. In other words the purpose of the first one is the creation of 
tiles, while the second is the division of the surface, as it is indicated by the name. To 
accurately define the difference mathematically it is needed to interpret these patterns as 
graphs. Using graphs to construe difficult models and patterns of the real world is a 
good working method, which can be seen in a wide range of scientific research [9]-[13]. 
 Another modification can be made in the classification, that the mesh, which will be 
mentioned as the foundation of making the pattern instead of a type of subdivision as in 
paper [2], because the pattern is created by a mesh in every instance. This is a transition 
between the physical appearance of the pattern and the full theoretical graph-like 
interpretation.

3. Topology of patterns 

 The patterns are interpreted as undirected simple planar graphs. This means that 
edges have no orientation, both multiple edges and loops are disallowed and vertices 
and edges can be drawn in a plane as long as no edge intersects with any other edge. 
 This means that subdivision is a pattern, for which - interpreted as a graph - one of 
the following is true: 

• the number of neighbors inside vertices varies; or 
• the number of vertices and edges of inner cycles varies, 

where a cycle is a continuous series of vertices and edges, where each member 
participates only once and the point of origin is identical to the point of arrival. 
 Tiling is a pattern, for which - interpreted as a graph - the following conditions are  
both true: 

• the number of neighbors of inside vertices are equal; and 
• the number of vertices and edges of inner cycles are equal. 

 The side vertices and edges of the graphs do not obey this law. 
 A pattern is called lacunary pattern, when the interpretation of the graph can be 
tiling or subdivision; however the surface contains uncovered areas. 
 Two examples are presented for this thesis, which provide a better contrast between 
the groups.

4. Example 1

4.1. Subdivision 

 The main idea of the Voronoi-diagram is that the surface is divided into cells based 
on a predefined set of points, where every point of the surface belongs to the cell of that 
predefined point to which it is closest. In this example the set of points is taken at 
random, therefore the cells will be irregular. It is possible for a vertex to have more than 
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three edges, for example when the points of the set, which were the base points of the 
Voronoi-diagram, are the points of a square mesh, the Voronoi-diagram is also a square 
mesh, and each of its vertices have four edges. However, when the set of points are truly 
random, three edges in a vertex are guaranteed, as it is demonstrated in Fig. 1c. Though 
some vertices can be seen as it has four edges at first glance, there are actually two 
points connected by a tiny edge, which cannot be seen at this magnification. However 
the cells, which create the cycles in the graph, are different polygons, which consist of a 
variable amount of vertices and edges. So the Voronoi-diagram - when it is made of 
random points - can be considered as a subdivision. 
 An interesting phenomenon is that when the points of the set, which were the base 
points of the Voronoi-diagram, are connected with their neighbors then it forms a 
triangle mesh. Those points are considered neighbor points when Voronoi-cells have a 
common edge. On a graph of this mesh the cycles always contain three vertices; 
however the number of neighboring vertices of a vertex is variable. This is the dual of 
the Voronoi subdivision and it is called the Delaunay triangulation, as it is shown  
in Fig. 1b. 

 

 a) b) c) 

Fig. 1. a) Voronoi-diagram; b) Voronoi-diagram with the mesh made from its initial points;  
c) Number of neighbors of vertices and number of vertices of cycles in the Voronoi-diagram  

and in the mesh 

4.2. Tiling 

 In the case of hexagonal tiling the Voronoi division is also applied through the initial 
points of the cells are set to provide regular hexagonal tiling. If a plane is to be divided 
into regular hexagons with Voronoi division, then the vertices have to be taken of a 
regular triangular mesh as the initial points of cells. The cells created in this way are all 
regular hexagons, then the initial points of cells have to be the vertices of a regular 
triangular mesh, so in the case of the graph interpretation of the pattern the inside 
vertices belong to the same amount of edges and the inside cycles consist of the same 
number of edges and vertices, as shown in Fig. 2. Therefore this method is considered 
as tiling. 
 In the case when a similar pattern is applied on a hyperbolic - or any non-planar - 
surface, then the hexagons are projected to the surface, but the topology remains 
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unchanged. As it shown in Fig. 2d, the hexagons are not perfectly equal, but it still 
remains as tiling.

 

 a) b) c) d) 

Fig. 2. a) Hexagonal tiling; b) Hexagonal tiling with the regular triangular mesh made  
from its initial points; c) Number of neighbors of vertices and number of vertices 

of cycles in the hexagonal tiling; d) Hexagonal tiling on hyperbolic surface 

4.3. Lacunary pattern 

 The third example is circle packing. This is created by taking the triangular mesh 
used at the Voronoi division then this mesh is optimized so that tangent circles can be 
created [14]. This optimization does not concern the topology of the mesh; it merely 
changes the position of points and the length of the edges. So far the mesh, which 
helped to create the circles makes the statement that the inside cycles have the same 
number of edges and vertices (three) true. But not the same number of edges belong to 
the inside vertices, as it is shown in Fig. 3e. So this lacunary pattern is derived from 
subdivision. 

 
 a) b) 

 
 c) d) e) f) 

Fig. 3. a) Circle packing; b) Circle packing with the mesh made from its initial points; c) Mesh of 
the original Voronoi-diagram; d) Optimized mesh used to circle packing; e) Number of neighbors 
of vertices in the mesh of the circle packing; f) Number of vertices of cycles in the mesh of circle 

packing 
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 The original name ‘packing’ comes from ‘circle packing’ [14], which means that 
most circles try to squeeze (pack) into a rectangle ‘box’. That is why the ‘packing’ term 
is a good match with reality in this case, but as the second example shows it is not 
suitable in every instance. The term ‘packing’ in general is used for geometric 
problems, when a rectangle or a box is be to filled in the densest way with certain planar 
shapes or bodies. That is why we changed the name of the group to a lacunary pattern. 
 In every case the base of these patterns was the Voronoi-diagram or its initial points. 
Patterns are created by dividing rectangles in the second example. 

5. Example 2

5.1. Subdivision 

 In this case the starting point contains five identical rectangles, which are divided 
into two with a vertical line. The position of these lines is random; therefore the five 
rectangles are divided at different positions. The resulting ten different rectangles are 
divided into two again, horizontally this time and again at random. Then those from the 
newest rectangles whose area exceeds a certain size are divided again vertically, 
similarly to the previous divisions. The result is a surface consisting of rectangles of 
different areas and ratios, which appears as a surface covered with totally random 
rectangles. It can be seen from the transition of the pattern to a graph that every inner 
vertex has three neighbors, but a cycle can consist of four, five, six, even eight vertices. 
This subdivision is shown in Fig. 4. Theoretically it is possible for the vertices to have 
four neighbors, in common with the Voronoi division, if the neighboring rectangles are 
divided at the same place similar to the Voronoi division. 

 

 a)  b) c) d) e) 

Fig. 4. a) Subdivision of rectangles; b) Numeration of vertices of rectangles;  
c) Tiling converted to a graph with the same numeration; d) Number of neighbors of vertices in 

the graph; e) Number of vertices of cycles in the graph 
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5.2. Tiling 

 If the base rectangles are divided with the previous set of rules, but always at the 
half of the edges, the result will be a pattern consisting of identical rectangles, where 
every vertex has four neighbors and every cycle has four vertices, as it is shown in 
Fig. 5a and Fig. 5b. If this pattern is applied on a non-planar surface, the rectangles may 
not be identical but the topology will not change, as in the case of the hexagonal tiling. 

5.3. Lacunary pattern 

 In the case of a lacunary pattern the tiling is modified by pulling certain vertices 
apart, which result in rhombuses. In this case it can be seen in Fig. 5c and Fig. 5d, that 
every cycle consists of four vertices but one vertex has three or six neighbors. However 
it is a tiling as well if there are different types of vertices and cycles, but this difference 
comes from the decision of the designer and is not due to randomness. Because these 
types of vertices are predefined it is also tiling made up of two tiles. When one type of 
tile is not used, it results in a lacunary pattern. Most historical architectural patterns are 
tilings, which consist of more than one type of tile [15], [16]. 

 a) b) c) d) 

Fig. 5. a) Rectangle tiling; b) Number of neighbors of vertices and number of vertices of cycles of 
the tiling; c) Lacunary pattern made from rectangle tiling; d) Number of neighbors of vertices and 

number of vertices of cycles of the lacunary pattern 

6. Conclusion 

 By representing the patterns as graphs, it helps to construct a clear and simple to use 
topological classification for patterns of parametric design techniques. Because the 
surface modifying patterns are derived from the patterns remaining on the surfaces their 
topology is identical. A final question that may come up is whether this classification 
could be extended to formations as well. This question is subject to further research 
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because while some formations have a clear, easy to see topology, others need to be 
further reflected upon. 
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