REAL

Comparison of the performance of several recent hydrogen combustion mechanisms

Olm, Carsten and Zsély, István Gy. and Pálvölgyi, Róbert and Varga, Tamás and Nagy, Tibor and Curran, Henry J. and Turányi, Tamás (2014) Comparison of the performance of several recent hydrogen combustion mechanisms. Combustion and Flame, 161 (9). pp. 2219-2234. ISSN 0010-2180

[img] Text
Olm_CombustFlame_161_2219-2234_2014.pdf
Restricted to Registered users only

Download (7MB) | Request a copy

Abstract

A large set of experimental data was accumulated for hydrogen combustion: ignition measurements in shock tubes (770 data points in 53 datasets) and rapid compression machines (229/20), concentra- tion–time profiles in flow reactors (389/17), outlet concentrations in jet-stirred reactors (152/9) and flame velocity measurements (631/73) covering wide ranges of temperature, pressure and equivalence ratio. The performance of 19 recently published hydrogen combustion mechanisms was tested against these experimental data, and the dependence of accuracy on the types of experiment and the experimen- tal conditions was investigated. The best mechanism for the reproduction of ignition delay times and flame velocities is Kéromnès-2013, while jet-stirred reactor (JSR) experiments and flow reactor profiles are reproduced best by GRI3.0-1999 and Starik-2009, respectively. According to the reproduction of all experimental data, the Kéromnès-2013 mechanism is currently the best, but the mechanisms NUIG- NGM-2010, ÓConaire-2004, Konnov-2008 and Li-2007 have similarly good overall performances. Several clear trends were found when the performance of the best mechanisms was investigated in various cat- egories of experimental data. Low-temperature ignition delay times measured in shock tubes (below 1000 K) and in RCMs (below 960 K) could not be well-predicted. The accuracy of the reproduction of an ignition delay time did not change significantly with pressure and equivalence ratio. Measured H 2 and O 2 concentrations in JSRs could be better reproduced than the corresponding H 2 O profiles. Large dif- ferences were found between the mechanisms in their capability to predict flow reactor data. The repro- duction of the measured laminar flame velocities improved with increasing pressure and total diluent concentration, and with decreasing equivalence ratio. Reproduction of the flame velocities measured using the flame cone method, the outwardly propagating spherical flame method, the counterflow twin-flame technique, and the heat flux burner method improved in this order. Flame cone method data were especially poorly reproduced. The investigation of the correlation of the simulation results revealed similarities of mechanisms that were published by the same research groups. Also, simulation results cal- culated by the best-performing mechanisms are more strongly correlated with each other than those of the weakly performing ones, indicating a convergence of mechanism development. An analysis of sensi- tivity coefficients was carried out to identify reactions and ranges of conditions that require more atten- tion in future development of hydrogen combustion models. The influence of poorly reproduced experiments on the overall performance was also investigated.

Item Type: Article
Subjects: Q Science / természettudomány > QD Chemistry / kémia > QD02 Physical chemistry / fizikai kémia
Depositing User: Prof. Tamás Turányi
Date Deposited: 25 Jul 2017 08:16
Last Modified: 25 Jul 2017 08:16
URI: http://real.mtak.hu/id/eprint/57241

Actions (login required)

Edit Item Edit Item