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Patch extensions and trajectory colorings of slim
rectangular lattices

Gábor Czédli

Abstract. With the help of our new tools in the title, we give an efficient represen-
tation of the congruence lattice of a slim rectangular lattice by an easy-to-visualize

quasiordering on the set of its meet-irreducible elements or, equivalently, on the set
of its trajectories.

1. Introduction

For the key definitions, see Section 2. Unless otherwise stated, all lattices

in this paper are finite.

In the paper, our first goal is to generalize the fork extensions of slim semi-

modular lattices, introduced by G. Czédli and E. T. Schmidt [12], to patch

extensions and in particular, multi-fork extensions. Multi-fork extensions lead

to a new structural description of slim rectangular lattices, see Theorem 3.7.

Based on multi-fork extensions, our the second goal is to associate an easy-

to-visualize quasi-coloring with a slim rectangular lattice L, which we call the

trajectory quasi-coloring of L. The trajectory quasi-coloring induces a color-

ing, called the trajectory coloring of L. This coloring gives the ordered set

of join-irreducible congruences of L and, therefore, determines the congruence

lattice of L. The main result, Theorem 7.3, describes the trajectory coloring

of L explicitely. This theorem will probably be useful in characterizing the

class of congruence lattices of slim semimodular (or slim patch) lattices; this

problem was raised in G. Grätzer [20].

1.1. Outline. Section 2 gives an overview of slim and rectangular semimod-

ular lattices, their trajectories, and their congruences. Section 3 defines patch

and multi-fork extensions, and points out in Theorem 3.7 that each rectangular
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11/1/KONV-2012-0073”, and by NFSR of Hungary (OTKA), grant number K83219.



2 G. Czédli Algebra univers.

lattice can be obtained from the direct product of two chains by multi-fork ex-

tensions at distributive 4-cells. Section 4 introduces trajectory quasi-colorings.

By Theorem 4.4 of this section, trajectory quasi-colorings of slim rectangular

lattices are quasi-colorings, that is, appropriate tools to describe the congru-

ence lattices of these lattices. Section 5 proves Theorem 4.4. Theorem 5.5,

also called the multi-fork theorem, is of separate interest. Section 6 general-

izes the multi-fork theorem and its auxiliary “retraction lemma” (Lemma 5.3)

from multi-fork extensions to patch extensions. The rest of the paper does not

rely on this section. In Section 7, we turn Theorem 4.4 into our main result,

Theorem 7.3, which describes a real coloring, the trajectory coloring (not just

a quasi-coloring) of a slim rectangular lattice. Finally, Section 8 contains some

comments on possible generalizations.

1.2. Historical background. A finite lattice L is slim, if JiL, the set of

nonzero join-irreducible elements of L, is included in the union of two chains

of L; see G. Czédli and E. T. Schmidt [11]. In the semimodular case, this

concept was first introduced by G. Grätzer and E. Knapp [21] in a different

way. The theory of slim semimodular lattices has developed a lot recently,

as witnessed by G. Czédli [1], [3], [4], [5], and [6], G. Czédli, T. Dékány, L.

Ozsvárt, N. Szakács, and B. Udvari [7], G. Czédli and G. Grätzer [8] and [9],

G. Czédli, L. Ozsvárt, and B. Udvari [10], G. Czédli and E.T. Schmidt [11],

[12], [13], and [14], G. Grätzer [18], [20], G. Grätzer and E. Knapp [21], [22],

[23], and [24], G. Grätzer and E. T. Schmidt [26], and E. T. Schmidt [29]. Note

that [11] gives an application of these lattices outside lattice theory. [1], [5],

[8], [12], [13], [14], [18], and [21], partly of fully, are devoted to their structural

descriptions. While [12] describes these lattices with fork extensions, [18] does

the same with patch lattices.

The present paper combines fork extensions and patch lattices to define

patch extensions and, in particular, multi-fork extensions.

Influenced by G. Grätzer [16] and E.T. Schmidt [29], quasi-coloring was

introduced in G. Czédli [3]. This is an efficient tool to describe the congruence

lattice of a finite lattice. Its advantage is explained in Subsection 4.1 here

and in the subsection “Method” of [3]. Here, we introduce a quasi-coloring,

called trajectory quasi-coloring, of a slim rectangular lattice. We use multi-fork

extensions to prove that it is a quasi-coloring.

1.3. Terminology. Unless otherwise stated, we follow the standard termi-

nology and notation of lattice theory; see, for example, G. Grätzer [17]. Or-

dered sets are nonempty sets equipped with orderings, that is, with reflexive,

transitive, antisymmetric relations. Note that an ordered set is often called a

partially ordered set, poset, or an order.
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2. Some basic concepts from lattice theory

For an overview of these concepts, see also G. Czédli and G. Grätzer [9].

2.1. Planar semimodular lattices. It is proved in G. Czédli and E. T.

Schmidt [11, Lemmas 5 and 6], or in G. Czédli and E. T. Schmidt [12, Propo-

sition 5], that slim lattices are planar; for slim semimodular lattices this was

proved earlier in G. Grätzer and E. Knapp [21]. In this paper, a lattice dia-

gram is a planar Hasse diagram of a finite lattice. Assume that D1 and D2 are

lattice diagrams. A bijection ϕ : D1 → D2 is a similarity map if it is a lattice

isomorphism preserving the left-right order of (upper) covers and lower covers

of an element of D1. If there is a similarity map D1 → D2, then these two

lattice diagrams are similar, and we will treat them as equal. Hence, a finite

planar lattice has only finitely many diagrams. If D is a lattice diagram of a

planar lattice L, then lattice theoretical concepts also apply to D. If a lattice

property is used for a lattice diagram, then we often say “diagram” instead of

“lattice diagram”.

The edges of a planar lattice diagram D divide the plane into regions. A

minimal (necessarily non-empty) region is called a cell, a four-element cell is

a 4-cell ; it is also a covering square, that is, cover-preserving four-element

Boolean sublattice of D. For example, the usual diagram of M3 has exactly

two 4-cells and three covering squares. A 4-cell H of D consists of its bottom,

0H , top, 1H , left corner, lc(H), and right corner, rc(H). If ↓1H = {x ∈ D :

x ≤ 1H} is slim or distributive, then H is a slim 4-cell or a distributive 4-

cell, respectively. The left boundary chain and the right boundary chain of L

are denoted by C`(D) and Cr(D), respectively, while their union, Bnd(D), is

the boundary of D. (Upper case acronyms define sets, lower case acronyms,

elements.) The set D \ Bnd(D) is the interior of D, and its members are the

interior elements.

For the sake of mathematical rigor, note that many visual concepts, such as

an element is on the left of another element, are exactly defined in D. Kelly and

I. Rival [28]; see also G. Czédli and G. Grätzer [9]. Also, we shall distinguish

lattice properties and concepts, which do not depend on the planar diagram

chosen, from diagram properties and concepts, which are diagram dependent.

For example, lc(H) is a diagram concept, a covering square is a lattice concept,

and a 4-cell is a diagram concept for M3 but it a lattice concept for every slim

semimodular lattice by G. Czédli and E. T. Schmidt [11, Lemma 2.3].

2.2. Trajectories. For a slim semimodular lattice L, let PrInt(L) denote the

set of edges, that is prime intervals, of L. Similarly, Int(L) denotes the set of

intervals of D. For p and q ∈ PrInt(L), p and q are consecutive if they are

opposite sides of a 4-cell. Following G. Czédli and E. T. Schmidt [11, Lemma

2.3], maximal sequences of consecutive prime intervals form a trajectory. In

other words, if ∼traj denotes the transitive reflexive closure of the relation of
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Figure 1. Some of the S
(n)
7 ; note that w` = s0 and wr = sn+1

being consecutive on PrInt(L), then a trajectory is a block of the equivalence

relation ∼traj. For example, a trajectory of S
(2)
7 and that of S

(5)
7 are indicated

in Figure 1 by thick edges.

Next, we fix a diagram D ∈ PrInt(L), and recall the basic properties of

trajectories from G. Czédli and E.T. Schmidt [11] with some new features.

Unless otherwise stated, a trajectory starts with an edge in the left boundary

chain C`(D), goes from left to right, and ends in Cr(D). Trajectories do not

branch out. Consecutive edges of a trajectory form 4-cells; these 4-cells are

the 4-cells of the trajectory. An up-trajectory goes up while a down-trajectory

goes down, making no turn. These two types of trajectories are called straight

trajectories. For example, the trajectory of S
(2)
7 in Figure 1 is a (straight)

down-trajectory. A hat-trajectory is a non-straight trajectory that goes up

first, at least one step, then turns to the lower right, and finally it goes down,

at least one step. For example, a hat trajectory of S
(5)
7 is depicted in Figure 1.

We know from [11] that there are no more types of trajectories; in particular,

a trajectory can make only one turn, a down turn. (2.1)

2.3. Rectangular lattices. The elements of Bnd(D)∩JiD∩MiD are called

the weak corners of D. For a ∈ JiL and b ∈ MiL, the unique upper cover

of a and the unique lower cover of b are denoted by a∗ and b∗, respectively.

A corner is defined as a weak corner d such that d∗ has exactly two lower

covers and d∗ has exactly two covers. Corners and weak corners of D are left

or right. Following G. Grätzer and E. Knapp [21], a planar lattice diagram

D is rectangular if it is semimodular, C`(D) has exactly one weak corner,

lc(D), Cr(D) has exactly one weak corner, rc(D), and these two elements

are complementary, that is, lc(D) ∧ rc(D) = 0 and lc(D) ∨ rc(D) = 1. If, in

addition, lc(D) and rc(D) are coatoms, thenD is a patch diagram, see G. Czédli

and E.T. Schmidt [14]. If a lattice L has a rectangular diagram or a patch
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diagram, then L is a rectangular lattice or a patch lattice, respectively. We

know from G. Czédli and E.T. Schmidt [14, Lemma 4.9] that if one diagram

of a planar semimodular lattice is rectangular or patch, then so are all of its

diagrams. For example, S7 = S
(1)
7 , S

(2)
7 , and S

(5)
7 in Figure 1 are slim patch

diagrams, and so are the S
(n)
7 for all n ∈ N = {1, 2, 3, . . .}. The definition of

S
(n)
7 should be clear from the examples: take the usual diagram of Cn+2×Cn+2

where Cn+2 denotes the (n + 2)-element chain, and, with the exception of 1,

delete all elements with height greater than n + 1.

For a rectangular lattice diagram D, the intervals C``(D) = [0, lc(D)],

C`r(D) = [0, rc(D)], Cu`(D) = [lc(D), 1], and Cur(D) = [rc(D), 1] are chains

and subsets of the boundary by G. Grätzer and E. Knapp [23]. These chains

are called the lower left boundary (chain), the lower right boundary, the upper

left boundary, and the upper right boundary of D, respectively.

2.4. Congruence spreading. By folklore, see G. Grätzer [16, Sect. I.3.2],

Ji (ConM) = {con(p) : p ∈ PrInt(M)} (2.2)

holds for every finite lattice M . Let p1 = [x1, y1] and p2 = [x2, y2] be intervals

ofM . Following the terminology and notation of G. Grätzer [17], if y1∨x2 = y2
and x1 ≤ x2, then we say that p1 is up congruence-perspective to p2, in notation

p1
up
→→ p2. Similarly, if x1 ∧ y2 = x2 and y1 ≥ y2, then p1 is down congruence

perspective to p2, in notation p1
dn
→→ p2. If p1

up
→→ p2 or p1

dn
→→ p2, then the interval

p1 is congruence-perspective to the interval p2; in formula, p1 � p2. The

transitive closure of congruence-perspectivity is called congruence-projectivity.

In this paper, it will be denoted by p ⇒⇒ q. Sometimes we will use subscripts

such as p1 �M p2 and p ⇒⇒M q to avoid ambiguity. We will often rely, usually

implicitly, on the fact that

for p, q ∈ Int(M), p ⇒⇒ q iff con(p) ⊇ con(q), (2.3)

see, e.g. G. Grätzer [16, Lemma I.3.6] or [17, Thm. 230], or see also G. Grätzer

[15, Sect. III.1]. In particular, we say that p and q are congruence-equivalent if

p ⇒⇒ q and q ⇒⇒ p. Note that (2.3) holds even if p or q is a singleton interval.

For p, q ∈ PrInt(L), we say that p transposes up to q, or that q transposes

down to p, if 1q = 1p∨0q and 0p = 1p∧0q. In this case, p and q are transposed

intervals. Obviously, transposed intervals are congruence-equivalent. Since

consecutive prime intervals are transposed, all prime intervals of a trajectory

in a slim semimodular lattice are congruence equivalent. This observation and

(2.2) lead to the following principle.

Remark 2.1. To understand the congruence lattices of a slim semimodular

lattice, it suffices to focus on its trajectories.

Since we often have to verify that an equivalence is actually a lattice con-

gruence, the following lemma of G. Grätzer [19] will be quite useful. It would

be hard to over-emphasize its importance. Since its proof is not difficult, it is

surprising that the lemma has not been discovered earlier.



6 G. Czédli Algebra univers.

Lemma 2.2 (G. Grätzer [19]). Assume that Θ is an equivalence on a lattice

L of finite length with intervals as equivalence blocks. Then Θ is a congruence

iff the following condition and its dual hold: for any x, y, z ∈ L, if 〈x, y〉 ∈ Θ,

y 6= z, x ≺ y, and x ≺ z, then 〈z, y ∨ z〉 ∈ Θ.

3. Patch extensions

Definition 3.1. Let P be a slim patch diagram, and assume that H is a

slim 4-cell of a slim semimodular lattice diagram D. We define a new lattice

diagram D[P;H ], the patch extension of D at the 4-cell H with the patch

diagram P as follows; see Figure 2. Let k = lengthP , and observe that

C``(P ) ∼= C`r(P ) ∼= Ck. Let A and B be the trajectories containing the edge

〈0H ,C`(H)〉 and the edge 〈0H ,Cr(H)〉, respectively. Let the set of 4-cells of A

on the left of 〈0H ,C`(H)〉 be denoted by �A. Similarly, let B� stand for the set

of 4-cells of B on the right of 〈0H ,Cr(H)〉. First, we replace H by P . Next, we

replace each edge of A on the left of 〈0H ,C`(H)〉 by Ck such that each 4-cell

in �A is replaced by C2 × Ck. Similarly, we replace each edge of B on the right

of 〈0H ,Cr(H)〉 by Ck such that each 4-cell in B� is replaced by C2 × Ck. The

diagram we have just obtained is D[P;H ]. In Figure 2, the new elements,

that is, the elements of D[P;H ] \ P , are black-filled.

Figure 2. A multi-fork extension, D[S
(3)
7 ;H ], and a patch

extension, D[P;H ]

For P = S7, D[S7;H ] is the (single) fork extension introduced in G. Czédli

and E. T. Schmidt [12]. For P = S
(n)
7 , we call D[S

(n)
7 ;H ] the n-fold fork

extension of D at the 4-cell H ; we speak of multi-fork extensions if n is not

specified. Fork extensions are the same as 1-fold fork extensions.

Remark 3.2. Since trajectories and 4-cells are lattice concepts for slim semi-

modular lattices, so is the multi-fork extension. However, the patch extension
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is not a lattice concept, because if we flip P with respect to a vertical axis and

keep D unchanged, then usually we obtain a different lattice.

Proposition 3.3. Patch extensions and, in particular, multi-fork extensions

of slim semimodular lattice diagrams are also slim semimodular lattice dia-

grams.

Proof. The particular case of (single) fork extensions is proved in G. Czédli and

E. T. Schmidt [12, Theorem 11]. We know from G. Czédli and E. T. Schmidt

[14, Theorem 3.4] that each slim patch diagram P is obtained from a single

4-cell by a sequence of fork extensions. Hence, D[P;H ] can be obtained from

D by a sequence of (single) fork extensions. Thus our statement follows from

this particular case. �

Since multi-fork extensions are lattice concepts, diagrams could be replaced

by lattices in Lemmas 3.4 and 3.6, Remark 3.5, and Theorem 3.7 below. In the

rest of the paper, we are mostly interested in multi-fork and patch extensions

at distributive 4-cells.

Lemma 3.4 (Commutativity of multi-fork extensions). Let D be a slim semi-

modular lattice diagram with distributive 4-cells H1 and H2 such that their

tops, t1 = 1H1 and t2 = 1H2 , are incomparable.

(i) For i ∈ {1, 2}, if we perform a multi-fork extension at Hi, then H3−i

remains a distributive 4-cell.

(ii) Let n1, n2 ∈ N, and let i ∈ {1, 2}. Then the n3−i-fold fork extension at

H3−i of the ni-fold fork extension of D at Hi does not depend on the

choice of i ∈ {1, 2}.

Figure 3. (D[S
(2)
7 ;H1])[S

(3)
7 ;H2] = (D[S

(3)
7 ;H2])[S

(2)
7 ;H1]
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Proof. The situation is illustrated in Figure 3, where D[S
(2)
7 );H1] consists of

the small empty circles, which are the elements of D, and of the somewhat

bigger empty pentagons, while D[S
(3)
7 );H2] consists of the little empty and

the little black circles. We know from G. Czédli and E. T. Schmidt [12, Lemma

15] that a slim semimodular diagram is distributive if and only if it contains

no cover-preserving S7 sublattice. This proves the first part. Hence, Figure 3

is sufficiently general to imply the rest of Lemma 3.4. �

Remark 3.5. It is straightforward to see that Part (ii) of Lemma 3.4 also

holds if t1 and t2 are comparable, but we will not use this fact.

The following lemma is evident. Note that H need not be distributive.

Lemma 3.6 (Transitivity of multi-fork extensions). Let D be a slim semi-

modular diagram with a 4-cell H with top t = 1H , and let m, n ∈ N. If

D′ = D[S
(m)
7 ;H ] and H ′ is a 4-cell of D′ whose top is t, then the equality

D′[S
(n)
7 ;H ′] = D[S

(m+n)
7 ;H ] holds.

The following statement does not have a “single fork” counterpart. Grids

are the usual planar diagrams of Cm × Cn for m, n ∈ {2, 3, . . .}.

Theorem 3.7. Each slim rectangular lattice diagram is obtained from a grid

by a sequence of multi-fork extensions at distributive 4-cells, and every diagram

obtained this way is a slim rectangular diagram.

Proof. By Lemma 3.6, a multi-fork extension can be replaced by a sequence

of single fork extensions. Hence, the second part of the statement follows from

G. Czédli and E.T. Schmidt [14, Proposition 2.3].

For the sake of contradiction, suppose that the (first part of the) statement

fails, and that D, a slim rectangular diagram, is a counterexample of mini-

mum size. By G. Czédli and E. T. Schmidt [14, Proposition 2.4(i)], D, like

every rectangular diagram, is obtained from a grid by a sequence of (single)

fork extensions. There is at least one single fork extension since D is a coun-

terexample. Hence, having an S7 sublattice, D is not distributive. Therefore,

we can choose an element t ∈ D such that ↓t is not distributive but ↓t′ is

distributive for all t′ < t. The combination of [12, Lemma 15] and [12, Proof

of Lemma 22] contains the statement that t is the top of a a cover-preserving

S7 sublattice and also the top of a strong fork; this concept is defined in [12]

but we do not need it. In our terminology, this statement says that there is a

rectangular diagram D′ containing t and a 4-cell H ′ of D′ with top t such that

D is obtained from D′ by a (single) fork extension at H ′. By the minimality

of |D|, D′ is obtained from a grid by a sequence of multi-fork extensions at

distributive 4-cells. If H ′ was a distributive 4-cell of D′, then D would not

be a counterexample since the above-mentioned single fork extension is also a

multi-fork extension.

Hence, H ′ is a non-distributive 4-cell of D′. By the minimality of |D|,

D′ is obtained from a grid by multi-fork extensions at distributive 4-cells
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H0, . . . , Hk−1 of rectangular diagrams D0, . . . , Dk−1, respectively, where D0

is a grid. We also denote D′ and D by Dk and Dk+1, respectively. Let ti ∈ Di

denote the top 1Hi
of Hi for i ∈ {0, . . . , k − 1}. Obviously (or by [12, Lemma

15]), ↓ti is not distributive in Dj for j > i. In particular, it is not distributive

in D. The choice of t implies that

ti 6< t for i = 0, . . . , k− 1. (3.1)

On the other hand, the non-distributivity of ↓t in D′ implies that ↓t contains

some cover-preserving S7 sublattices of D′. It is clear from definitions that

the only cover-preserving S7 sublattice the i-th multi-fork extension creates

contains ti−1 as its largest element, and the i-th multi-fork extension does not

change the tops of the previous S7’s. Therefore, there exists a j ∈ {0, . . . , k−1}

such that tj ≤ t. That is, by (3.1), tj = t. This j is unique since the

corresponding extension, which is the (j + 1)-th, destroys the distributivity of

any 4-cells with top t = tj . By the same reason, ti 6> t = tj holds for all i > j.

Combining this with (3.1), we obtain that tj ‖ ti for i ∈ {j + 1, . . . , k − 1}.

Hence, Lemma 3.4 allows us to assume that j = k − 1. But now Lemma 3.6

implies that D is a multi-fork extension of Dk−1 at its distributive 4-cell Hk−1,

which contradicts the assumption that D is a counterexample. �

The patch extention preserves slimness and semimodularity even if the 4-

cell in question is not distributive, see Proposition 3.3. Theorem 3.7 points out

that it is at distributive 4-cells where multi-fork extensions are most important

for slim rectangular lattices.

4. Trajectory quasi-colorings

The purpose of this section is turn the suggestion of Remark 2.1 into reality.

4.1. Quasi-colorings. Quasiordered sets, also called preordered sets, are rela-

tional structures 〈A; ν〉 such that ν ⊆ A2 is a quasiordering, that is, a reflexive,

transitive relation. Quite often, especially if we intend to use the transitivity

of ν , we write a ≤ν b or b ≥ν a for 〈a, b〉 ∈ ν . We recall some basic properties

from G. Grätzer [17]. Let ν∩∩∩ denote ν ∩ ν−1, the equivalence induced by ν .

The ordering and the ordered set associated with the quasiordering ν and the

quasiordered set 〈A; ν〉 are

ν• = {(a/ν∩∩∩, a/ν∩∩∩) : 〈a, b〉 ∈ ν} and 〈A/ν∩∩∩; ν•〉, (4.1)

respectively. This ordered set is used if we want to depict the quasi-ordered

set 〈A; ν〉: we draw the diagram of (A/ν∩∩∩; ν•), and label its elements by the

ν∩∩∩-blocks. Clearly, this diagram determines 〈A; ν〉 up to isomorphism.

For X ⊆ A2, the least quasiordering of A that includes X will be denoted

by quorA(X), or simply by quor(X) if there is no danger of confusion. We

will, of course, write quor(a, b) for quor
(
{〈a, b〉}

)
. The set of all quasiorderings

on A form a complete lattice QuoA under set inclusion. For ν, τ ∈ QuoA, the
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join ν ∨ τ is quor(ν ∪ τ ). Note that the congruence generated by X and that

generated by {〈a, b〉} are denoted by con(X) and con(a, b), respectively, and

con(a, b) = quor{〈a, b〉, 〈b, a〉}.

Following G. Czédli [3], a quasi-colored lattice is a lattice M of finite length

with a surjective map γ, called quasi-coloring, from PrInt(M) onto a qua-

siordered set (A; ν) such that γ satisfies the following two properties:

(C1) if γ(p) ≥ν γ(q), then con(p) ≥ con(q),

(C2) if con(p) ≥ con(q), then γ(p) ≥ν γ(q).

The importance of quasi-colorings is clear by the following lemma, which fol-

lows from G. Czédli [3, (2.6) and (2.7)]; note, however, that the lemma is an

easy translation of its counterpart in G. Grätzer and E. Knapp [23], where it

is attributed to J. Jakub́ık [27]. If p = [u, v], then we write γ(u, v) rather than

γ([u, v]) or γ(〈u, v〉). The congruence lattice of a lattice L is denoted by ConL.

Lemma 4.1. Let K be a finite distributive lattice, and let L be a finite lattice.

Then K ∼= ConL iff there exists a quasi-coloring γ from PrInt(L) onto a quasi-

ordered set 〈A; ν〉 such that the ordered set 〈A/ν∩∩∩; ν•〉 associated with 〈A; ν〉 is

isomorphic to 〈JiK;≤〉.

In the particular case where ν is an ordering, quasi-colorings are the tra-

ditional colorings introduced by G. Grätzer and E. Knapp [23]. The name

“coloring” was used for surjective maps onto antichains satisfying (C2) in

G. Grätzer, H. Lakser, and E.T. Schmidt [25], and for surjective maps onto

antichains satisfying (C1) in G. Grätzer [16, page 39]. Since Lemma 4.1 is also

true and valuable if only colorings are considered, one may ask the question:

Why trouble ourselves with quasi-colorings?

Remark 4.2. The first answer to this question is given in G. Czédli [3] as

follows: since we have joins in QuoA, quasi-colorings give insight into compli-

cated constructions by decomposing them into “elementary” steps and forming

the “join” of the corresponding quasi-colorings. The second answer will be soon

given in Theorem 4.4 and Remark 5.7; the point is that a quasi-coloring can

be defined, illustrated, and treated easier than a coloring. The simplest quasi-

coloring, the identity map, occurs already in G. Grätzer [17, Theorem 239].

The key definition of the paper, which we give below, is a lattice concept,

so it could be phrased for lattices instead of a diagrams. For its motivation,

take the hat-trajectory u containing [s1, t] and the up-trajectory v containing

[wr, t] of S7 in Figure 1. Observe that our definition describes a straightforward

reason for the inequality con(〈s1 , t〉) ≤ con(〈wr , t〉).

Definition 4.3. Let D be a slim semimodular lattice diagram.

(i) For a trajectory u of D, the top edge h = h(u) of u is defined by the

property h ∈ u and 1h > 1p holds for all p ∈ u.
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(ii) On the set Traj(D) of all trajectories of D, we define a relation σ as

follows. For u, v ∈ Traj(D), we let u ≤σ v iff u is a hat-trajectory,

1h(u) ≤ 1h(v), but 0h(u) 6≤ 0h(v).

(iii) We let τ = quor(σ), the reflexive transitive closure of σ on Traj(D).

(iv) The trajectory quasi-coloring of D is the quasi-coloring ξ from PrInt(D)

onto 〈Traj(D), τ 〉, defined by the rule p ∈ ξ(p).

Figure 4. Illustration for Theorems 4.4 and 7.3

The values of ξ will be called “colors” rather than “quasi-colors”. While the

existence of h(u) above follows from (2.1), we have to prove that ξ is a quasi-

coloring. Hence, we state the following proposition, but only for rectangular

lattice diagrams.

Theorem 4.4 (Trajectory quasi-coloring theorem). If D is a slim rectangular

lattice diagram, then the map ξ defined in Definition 4.3 is a quasi-coloring.

We illustrate Theorem 4.4 with the slim rectangular diagram D depicted in

Figure 4. In the diagram, sets are written in short forms; for instance, cde de-

notes {c, d, e}. We have that Traj(D) = {a, b, . . . , k, `}, and these trajectories

are labeled at their top edges. (The two lower right labels in the figure will be

defined in Section 7.)

5. The properties of multi-fork extensions and the proof of Theo-

rem 4.4

The proof of Theorem 4.4 needs several auxiliary statements. We will rely

on Lemma 2.2 without referencing it.
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Figure 5. The diagram of 〈Traj(S
(n)
7 ); τ 〉

Lemma 5.1. For every n ∈ N, 〈Traj(S
(n)
7 ); τ 〉 is the quasiordered set given

by Figure 5, which uses the notation of Figure 1. Furthermore, the trajectory

quasi-coloring ξ : PrInt(S
(n)
7 ) → 〈Traj(S

(n)
7 ); τ 〉 is a quasi-coloring.

Proof. For n = 1, the statement is obvious. Hence, with the notation of

Figure 1, the leftmost cover-preserving S7 sublattice gives that con(s1, t) ≤

con(s2 , t) if n ≥ 2, while the next S7 sublattice to the right yields that

con(s1 , t) ≥ con(s2, t). Thus con(s1 , t) = con(s2, t). Similarly, con(si, t) =

con(si+1 , t) for all i ≤ n. Since the equivalence with blocks {0}, [w`, w` ∧ sn ],

[s1 ∧ wr, wr], and [si ∧ sn, t] is a congruence, the rest of the lemma is obvi-

ous. �

In the following lemma, we use the notation given in Definition 3.1. The

relations “on the left” and “on the right” below are reflexive.

Lemma 5.2. Let n ∈ N, and let D be a slim semimodular diagram. If H is a

distributive 4-cell of D, then each x ∈ D[S
(n)
7 ;H ] \D can uniquely be written

into exactly one of the following forms (with unique i ∈ {1, . . . , n} and v ∈ D):

(i) x = v∧si, where [u, v] ∈ PrInt(D), [u, v] ∼traj [0H , lc(H)] in D, and [u, v]

is on the left of [0H , lc(H)] in the trajectory of D through [0H , lc(H)].

(ii) x = v∧si, where [u, v] ∈ PrInt(D), [u, v] ∼traj [0H , rc(H)] in D, and [u, v]

is on the right of [0H , rc(H)] in the trajectory of D through [0H , rc(H)].

(iii) x is in the interior of S
(n)
7 .

Proof. Clearly, each element of C``(S
(n)
7 ) \ {0, lc(S

(n)
7 )} is of the unique form

lc(S
(n)
7 )∧si, see Figure 1, and analogously for the lower right boundary. Hence,

the statement is an evident consequence of definitions, see also Figure 2. �

Next, we formulate an important auxiliary statement.

Lemma 5.3 (Retraction lemma). Let H be a distributive 4-cell of a slim

semimodular lattice diagram D, and let n ∈ N. Consider the retraction map

ψ : D[S
(n)
7 ;H ] → D, defined by

x 7→





x, if x ∈ D,

v, if x belongs to the scope of Lemma 5.2(i),

v, if x belongs to the scope of Lemma 5.2(ii),

1H , if x belongs to the scope of Lemma 5.2(iii).

Then ψ is a lattice homomorphism.
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Proof. Let D′ denote D[S
(n)
7 ;H ]. First we show that α := Ker (ψ) is a lattice

congruence. The non-singleton α-blocks are the following:

E = [s1 ∧ sn, 1H ] = [s1 ∧ · · · ∧ sn, 1H ],

Fv = [v ∧ sn, v] = {v, v ∧ s1, . . . , v ∧ sn} for v from Lemma 5.2(i),

Gv = [v ∧ s1, v] = {v, v ∧ s1, . . . , v ∧ sn} for v from Lemma 5.2(ii).

(5.1)

In Figure 2, these α-blocks are indicated by dotted closed curves. We know

from G. Czédli and E.T. Schmidt [12, Lemma 2] that every element in a

slim lattice has at most two covers. Hence, the condition on upper covers in

Lemma 2.2 follows easily from (5.1). On the other hand, ↓1H is clearly a planar

lattice, and it is distributive by the assumption on H . Planar distributive

lattices are always slim and dually slim by G. Czédli and E. T. Schmidt [12,

Lemma 16] and G. Grätzer and E. Knapp [21]. Hence, understanding ↓1H in

D, we have that

each x ∈ ↓1H has at most two lower covers in D). (5.2)

Therefore, an element in one of the non-singleton α-blocks (5.1) has only those

lower covers that are depicted in Figure 2. Hence, it is straightforward to see

that α satisfies the condition on lower covers in Lemma 2.2. Thus we conclude

that α is a lattice congruence on D′.

Since ψ is idempotent,

〈z, ψ(z)〉 ∈ Kerψ = α for all z ∈ D′. (5.3)

Let x, y ∈ D′. Since 〈x, ψ(x)〉 and 〈y, ψ(y)〉 belong to α by (5.3), we obtain

that 〈x ∨ y, ψ(x) ∨ ψ(y)〉 ∈ α. But 〈ψ(x ∨ y), x ∨ y〉 by (5.3), and transitivity

yields that

〈ψ(x ∨ y), ψ(x) ∨ ψ(y)〉 ∈ α. (5.4)

Clearly, both ψ(x ∨ y) and ψ(x) ∨ ψ(y) belong to D since ψ-images are in D

and D is a sublattice. The description (5.1) of α-blocks makes it clear that

each α-block intersects D in a singleton. Hence, (5.4) implies that ψ(x∨ y) =

ψ(x) ∨ ψ(y). This proves that ψ is a join-homomorphism. It follows similarly

that it is also a meet-homomorphism. �

Definition 5.4. Let H be a distributive 4-cell of a slim semimodular lattice

diagram D, and let n ∈ N. Let γ : PrInt(D) → 〈A; ν〉 be a quasi-coloring, and

let ξ : PrInt(S
(n)
7 ) → 〈Traj(S

(n)
7 ); τ 〉 be the trajectory quasi-coloring of S

(n)
7 ,

described by Lemma 5.1. We also write B = Traj(S
(n)
7 ) and D′ = D[S

(n)
7 ;H ].

Assume also that

γ(lc(H), 1H) = a = ξ(lc(S
(n)
7 ), 1

S
(n)
7

),

γ(rc(H), 1H) = b = ξ(rc(S
(n)
7 ), 1

S
(n)
7

), and A ∩B = {a, b}.
(5.5)



14 G. Czédli Algebra univers.

On the set C = A ∪ B, we define η = quor(ν ∪ τ ). Also, we define a map

δ : PrInt(D[S
(n)
7 ;H ]) → 〈C; η〉 by

δ(p) =





γ(p), if p ∈ PrInt(D),

ξ(p), if p ∈ PrInt(S
(n)
7 ),

γ(q), if p /∈ PrInt(D) ∪ PrInt(S
(n)
7 ), q ∈ PrInt(D), p ∼traj

D′ q.

ξ(r), if p /∈ PrInt(D) ∪ PrInt(S
(n)
7 ), r ∈ PrInt(S

(n)
7 ), p ∼traj

D′ r,

where we also stipulate that q is the edge of the trajectory of p nearest to p

such that 1q ≥ 1p. (The distance of two edges in a trajectory of D[S
(n)
7 ;H ] is

measured by the number of 4-cells of the trajectory between the two edges.)

Note that q is of the form [v∧ si, v
′ ∧ si], where v ≺ v′ and either we have that

[u, v] ∼traj
D [u′, v′] ∼traj

D [0H, lc(H)] according to Lemma 5.2(i), or we have

that [u, v] ∼traj
D [u′, v′] ∼traj

D [0H , rc(H)] according to 5.2(ii). As opposed to

q, the prime interval r above is not unique. However, ξ(r) is unique, because ξ is

the trajectory quasi-coloring on S
(n)
7 . Note also that, with the same notation

as above, r can always be chosen either as [v ∧ si, v ∧ si−1] for some i ∈

{1, . . . , n+1}, according to 5.2(i), or as [v∧si, v∧si+1] for some i ∈ {0, . . . , n},

according to 5.2(ii). Finally, we note that if both q and r above exist, then

(5.5) implies that they do not conflict and δ(p) ∈ {a, b}.

Besides serving as an auxiliary statement in the proof of Theorem 4.4, the

following theorem can be useful to construct slim semimodular lattices with

given congruence lattices.

Theorem 5.5 (Multi-fork theorem). With the assumptions of Definition 5.4,

δ is a quasi-coloring.

Corollary 5.6. If the 4-cell in question is distributive, then the (single) fork

lemma (that is, [3, Lemma 5.1]) holds.

Remark 5.7. Although the stipulation (5.5) seems to hold rarely, this is not a

real obstacle to the applicability of Theorem 5.5. First, because if we have that

γ(lc(H), 1H) 6= γ(rc(H), 1H), then (5.5) will hold after renaming the γ-colors.

Second, if we have that γ(lc(H), 1H) = γ(rc(H), 1H) = a, then we can modify

γ by adding a new color a′ to A, replacing ν by ν ′ = quor(ν ∪{〈a, a′〉, 〈a′, a〉}),

and changing γ(rc(H), 1H) to a′; after these changes, the previous case applies.

As an argument for quasi-colorings, note that we could not take ν ′ if we dealt

with colorings rather than quasi-colorings.

Proof of Theorem 5.5. To show that δ satisfies (C1), we assume that p, q ∈

PrInt(D′) such that δ(p) ≥η δ(q). We have a sequence δ(p) = a0, a1, . . . , ak =

δ(q) in C such that 〈ai−1, ai〉 ∈ ν ∪ τ for i ∈ {1, . . . , k}. (Note that if δ(p) =

δ(q), then we can let k = 1 since ν ∪ τ is reflexive.) Clearly, δ is surjective.

Moreover, even its restriction to PrInt(D) ∪ PrInt(S
(n)
7 ) is surjective. Hence,

we can pick ri ∈ PrInt(D)∪PrInt(S
(n)
7 ) such that ai = δ(ri) for i ∈ {1, . . . , k}.
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For r, r′ ∈ PrInt(D′), the inclusion conD′ (r) ⊇ conD′(r′) holds iff conD′(r)

collapses r′. Using (2.3) and the fact that D and S
(n)
7 are sublattices of D′,

it follows easily that if r, r′ ∈ PrInt(D) or r, r′ ∈ PrInt(S
(n)
7 ), then conD(r) ⊇

conD(r′) or con
S
(n)
7

(r) ⊇ con
S
(n)
7

(r′) implies that conD′(r) ⊇ conD′(r′). Thus,

since both γ and ξ are quasi-colorings and δ extends them, the containment

〈δ(ri−1), δ(ri)〉 = 〈ai−1, ai〉 ∈ ν ∪ τ implies that conD′ (ri−1) ⊇ conD′ (ri) for

i ∈ {1, . . . , k}. Hence, transitivity yields that conD′ (p) ⊇ conD′ (q), proving

that δ satisfies (C1).

Next, to show that δ satisfies (C2), we assume that p1, p2 ∈ PrInt(D′) such

that conD′ (p1) ⊇ conD′(p2). We want to show that δ(p1) ≥η δ(p2). We have

to deal with three cases.

Case 1. We assume that
{
δ(p1), δ(p2)

}
⊆ A. By (2.3), p1 ⇒⇒D′ p2. Hence,

there are intervals ri = [xi, yi] ∈ Int(D′) that form a sequence

p1 = r0 �D′ r1 �D′ · · · �D′ rk = p2. (5.6)

Note that {a, b}∩{c1, . . . , cn} = ∅ by Lemma 5.1. Hence, {c1, . . . , cn}∩A = ∅

by (5.5). Observe that if a prime interval q ∈ PrInt(D′) is collapsed by the

retraction homomorphism ψ from Lemma 5.3, then its δ-color is one of the ci,

i ∈ {1, . . . , n}. Therefore, we conclude that none of p1 and p2 is collapsed by

ψ. The map ψ sends (5.6) to a congruence-perspectivity sequence

ψ(p1) = ψ(r0) �D ψ(r1) �D · · · �D ψ(rk) = ψ(p2); (5.7)

however, we have to verify that the ψ(ri) are nontrivial intervals. If one of

the ri was collapsed by ψ, then the defining relations of �, together with

(5.7) and (2.3), would imply that conD(ψ(ri)) ⊇ conD(ψ(p2)). This would

be a contradiction, because then the equality relation would collapse ψ(p2),

which is a nontrivial interval since ψ does not collapse p2. Thus none of the

ri is collapsed by ψ. That is, the ψ(ri) are nontrivial intervals, as claimed.

Using (2.3) again, we obtain that conD

(
ψ(p1)

)
⊇ conD

(
ψ(p2)

)
. Since γ is

a quasi-coloring, we conclude that γ
(
ψ(p1)

)
≥ν γ

(
ψ(p2)

)
. This implies that

γ
(
ψ(p1)

)
≥η γ

(
ψ(p2)

)
. It follows from the definitions that,

δ(p) ∈ A =⇒ δ(p) = γ(ψ(p)) (5.8)

for every p ∈ PrInt(D′). Thus we obtain δ(p1) ≥η δ(p2), completing Case 1.

Case 2. We assume that δ(p1) /∈ A. This means that δ(p1) = ci for some

i ∈ {1, . . . , n}. Clearly,

p1 is congruence-equivalent to [si, 1H ] (5.9)

since they belong to the same trajectory. Let α denote Kerψ from Lemma 5.3,

see Figure 2. Clearly, conD′(p1) ⊆ α. It follows from Lemma 5.1 that the

restriction αe
S
(n)
7

of α to S
(n)
7 is an atom in ConS

(n)
7 . Therefore, Figure 2 shows

that α is an atom in ConD′. Thus conD′(p1) = α. Hence, the assumption

conD′ (p1) ⊇ conD′(p2) implies that p2 lies in an α-class. By definition, we
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obtain that δ(p2) = cj for some j ∈ {1, . . . , n}. Since ci ≥τ cj by Lemma 5.1,

we conclude that δ(p1) = ci ≥η cj = δ(p2), as claimed.

Case 3. We assume that δ(p1) ∈ A but δ(p2) /∈ A. We want to show that

δ(p1) ≥η δ(p2). By (5.8) and (with change of the subscript) (5.9), we can also

assume that p1 ∈ PrInt(D), p2 ∈ PrInt(S
(n)
7 ), the top of p2 is 1H , and its bot-

tom is in {s1, . . . , sn}, see Figure 2. Hence, δ(p2) ∈ {c1, . . . , cn}. Temporarily,

we adopt the following terminology. An interval [x, y] is old, if x, y ∈ D. (Note,

however, that an old interval, such as [0, 1], can contain new elements, that

is, elements from S
(n)
7 \D.) If {x, y} ∩ D = ∅, then [x, y] is new. The rest of

the intervals are mixed. A mixed [x, y] is an [old,new ] interval if x ∈ D and

y /∈ D, and it is a [new,old ] interval if x /∈ D and y ∈ D. For example, p2 is

a [new,old] interval. If x ≤ x′ ≤ y′ ≤ y, then [x′, y′] is a subinterval of [x, y].

Observe that it suffices to show that

conD′(p1) collapses an [old,new] interval. (5.10)

We can argue for (5.10) as follows. We easily obtain from definitions, see Fig-

ure 2, that for every [old,new] interval [x, y], conD′(x, y) contains 〈lc(H), 1H〉 =

〈w`, 1H〉 or 〈rc(H), 1H〉 = 〈wr, 1H〉 . Therefore, we have that conD′ (x, y) ≥

conD′ (w`, 1H) or conD′ (x, y) ≥ conD′(wr, 1H). Hence, (5.10) would imply

that conD′(p1) ≥ conD′(w`, 1H) or conD′(p1) ≥ conD′ (w`, 1H). Consequently,

Case 1 yields that (5.10) would imply that δ(p1) ≥η δ(w`, 1H) = a or δ(p1) ≥η

δ(wr, 1H) = b. Since δ(p2) ∈ {c1, . . . , cn} and we know that a ≥η ci and

b ≥η ci for i ∈ {1, . . . , n}, now it is clear by the transitivity of η that (5.10)

would imply the desired δ(p1) ≥η δ(p2). This verifies (5.10).

Observe that [w`, 1H ] is transposed to [0H , s1 ∧ wr], which is an [old,new]

interval. Similarly, [wr, 1H ] is transposed to the [old,new] interval [0H , sn∧w`].

Hence, by (5.10), it suffices to show that

conD′ (p1) collapses [w`, 1H ] or [wr, 1H ]. (5.11)

By (2.3), there exists a sequence of intervals ri = [xi, yi] ∈ Int(D′) such

that (5.6) holds. We assume that

the sequence (5.6) minimizes the number of new intervals (5.12)

it contains. It suffices to show that there exists an i ∈ {0, . . . , k} such that

conD′(ri) collapses or, in particular, contains an [old,new] interval, (5.13)

since this would clearly imply (5.10). The sequence (5.6) begins with an old

interval and terminates with a [new,old] one. Hence, there exists a smallest

i ∈ {1, . . . , k} such that ri is not an old interval. In virtue of (5.13), there are

only two subcases to consider.

Subcase 3a. We assume that ri is a new interval. We need the following

terminology. A chain of new elements outside the interior of S
(n)
7 is a parallel

chain on the left if it is of the form [v ∧ si, v
′ ∧ si] where [u, v] and [u′, v′]

belong to the trajectory of D through [0H, w`] and they are both on the left
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Figure 6. ri−1 � ri in Subcase 3a

of [0H , w`]. Similarly, a parallel chain on the right is of the form [v∧ si, v
′ ∧ si]

where [u, v] and [u′, v′] belong to the trajectory of D through [0H , wr] and

they are both on the right of [0H , wr]. If left or right is irrelevant, then the

chain above is called a parallel chain. We claim that, unless another argument

settles Subcase 3a,

ri is a parallel chain. (5.14)

To show this, assume first that ri−1
dn
→→ ri, see Figure 6. Let yi belong to

the interior of S
(n)
7 . Since the least element above yi in D is 1H , we obtain

yi−1 ≥ 1h. However, xi−1 6≥ 1h since otherwise xi = xi−1 ∧ yi would equal yi.

Hence, xi−1 ∧ 1H < 1H = yi−1 ∧ 1H , and conD′(ri−1) collapses the interval

[xi−1∧1H , 1H ]. We conclude from (5.2) that [w`, 1H ] or [wr, 1H ] is a subinterval

of [xi−1 ∧ 1H , 1H ]. Hence, (5.11) settles the case where yi is in the interior

of S
(n)
7 . Therefore, we can assume that yi is not in the interior of S

(n)
7 . By left-

right symmetry, we can also assume that yi is on the left of 0H or it belongs

to [0H , w`]. That is, yi belongs to a cover-preserving C2×Cn+2 sublattice that

we obtained from a 4-cell of �A in Definition 3.1. Since D is a sublattice of D′

for every element x ∈ D, we use the following notation:

x+ = D ∩ ↑x, x− = D ∩ ↓x. (5.15)

Note that x ∈ D iff x− = x = x+. Returning to yi, we have that yi−1 ≥ y+
i

and, since xi−1 ∧ yi = xi < yi, we also have that xi−1 6≥ y+
i . Using xi < x+

i ≤

xi−1, it follows that xi = x+
i ∧ yi. By the definition of multi-fork extensions,

see Figure 2, this clearly implies that ri is a parallel chain.

Next, we assume that ri−1
up
→→ ri, see Figure 6. Assume that xi ∈ ↑0H .

Since yi is new element, it also belongs to the filter ↑0H . But yi−1 is an

old element, whence yi−1 ≤ y−i = x−i = 0H < xi. This contradicts that

yi−1 ∨ xi = yi > xi. Thus, xi /∈ ↑0H . By left-right symmetry, we can assume

that xi is on the right of 0H . It follows from yi−1 ≤ y−i ≤ yi and yi = yi−1∨xi

that yi = y−i ∨ xi. Observe that yi is not in the interior of S
(n)
7 , because

otherwise yi = y−i ∨ xi = 0H ∨ xi, which is clearly not in the interior of S
(n)
7 .

Hence, the construction yields that ri is a parallel chain. This completes the

proof of (5.14).

We say that a parallel chain rj is on the left or on the right of 0H depending

on the position of xj with respect to 0H . Next, we prove that

if rj is a parallel chain, then either rj+1 is an old interval,

or it is a parallel chain on the same side of 0H as rj .
(5.16)
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To prove (5.16), assume that rj+1 is not an old interval. First, let rj
up
→→ rj+1.

By left-right symmetry (to harmonize with Figure 6), let rj be on the right.

We can assume that yj+1 6= yj , that is, xj+1 ‖ yj , since otherwise (5.16) clearly

holds. If xj+1 is a new element, then xj ≤ xj+1 ‖ yj yields that xj+1 is on

the right of yj, we also have that yj+1 = yj ∨ xj+1, and we clearly obtain that

rj+1 is a parallel chain on the same (right) side of 0H . Hence, we can assume

that xj+1 is an old element. Since xj ≤ xj+1 gives that x+
j ≤ xj+1, we obtain

that yj+1 = yj ∨ xj+1 = yj ∨ x
+
j ∨ xj+1 = y+

j ∨ xj+1 ∈ D, which contradicts

the assumption that rj+1 is not an old interval.

Second, let rj
dn
→→ rj+1. We can assume that xj+1 6= xj, that is, yj+1 ‖ xj,

since otherwise (5.16) clearly holds. By left-right symmetry, let rj be on the

left. If yj+1 is a new element, then yj ≥ yj+1 ‖ xj gives that yj+1 is on the

right xj but on the left of 0H , and rj+1 is also a parallel chain on the left.

Hence, we assume that yj+1 is an old element. Since yj ≥ yj+1 gives that

y−j ≥ yj+1, we obtain that xj+1 = xj ∧yj+1 = xj ∧y
−

j ∧yj+1 = x−j ∧yj+1 ∈ D.

This contradicts the assumption that rj+1 is not an old interval, completing

the proof of (5.16).

Now, we are in the position to complete Subcase 3a. We have assumed that

ri is a new interval. Let j be the smallest subscript such that j ≥ i and all the

intervals in the subsequence

ri �D′ ri+1 �D′ . . . �D′ rj (5.17)

are new but rj+1 is not new. The existence of this j (possibly j = i) follows

from the fact that rk = p2 is not new. It follows from (5.14) and (5.16) that

rj+1 is an old interval. We obtain from (5.14) that, for every m ∈ {i, . . . , j},

rm is an interval transposed to (and, therefore, congruence-equivalent to) both

[x−m, y
−

m] and [x+
m, y

+
m]. By (5.16), we can assume that, say, all these rm are on

the left of 0H . Since both the maps x 7→ x− and x 7→ x+, defined on the set

of new elements belonging to ↓w`, are lattice homomorphisms,

[x−i , y
−

i ] �D′ . . . �D′ [x−j , y
−

j ] and [x+
i , y

+
i ] �D′ . . . �D′ [x+

j , y
+
j ]. (5.18)

This implies easily that we can get rid of all the new intervals in (5.17) by

replacing them with appropriate old intervals from (5.18), and adding one of

the perspectivities

[x−i , y
−

i ]
up
→→ [x+

i , y
+
i ], [x+

i , y
+
i ]

dn
→→ [x−i , y−i ],

and the same with j instead of i, if necessary. For example, if both ri−1
up
→→ ri

and rj
up
→→ rj+1 are up congruence-perspectivities, then we replace (5.17) by

[x−i , y
−

i ]
up
→→ D′ [x+

i , y
+
i ] �D′ . . . �D′ [x+

j , y
+
j ].

This way, the number of new intervals in (5.6) decreases at least by one, which

is a contradiction. Thus, we have shown that Subcase 3a cannot occur, that

is, no new interval occurs in (5.6).
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Figure 7. Illustration for Subcase 3b

Subcase 3b. ri is a [new,old] interval. If ri−1
dn
→→ D′ri, then xi = xi−1 ∧ yi

implies that xi ∈ D, which contradicts the initial assumption of Subcase 3b.

Hence, ri−1
up
→→ D′ri. We take a maximal chain

xi ∧ yi−1 = z0 ≺ z1 ≺ · · · ≺ zm = yi−1

in the interval [xi ∧ yi−1, yi−1], see Figure 7. Define z′j := zj ∨ xi for j =

0, . . . , m. By semimodularity, xi = z′0 � z′1 � · · · � z′m = yi. Since z′0 = xi is a

new element but z′m = yi is an old one, there is a subscript s ∈ {1, . . . , m} such

that z′s−1 is new, z′s is old, and z′s−1 ≺ z′s. Since z′s = zs∨zs−1∨xi = zs∨z
′

s−1,

the covering relations imply that [zs−1, zs] and [z′s−1, z
′

s] are transposed (and,

therefore, congruence-equivalent) prime intervals and [zs−1, zs]
up
→→ D′ [z′s−1, z

′

s].

It follows from G. Czédli and E. T. Schmidt [11, Lemma 2.9] that [zs−1, zs] and

[z′s−1, z
′

s] belong to the same trajectory of D′. This implies easily, see Figure 2,

that zs−1 is new. Therefore, [xi−1, zs−1] is an [old,new] subinterval of ri−1.

Thus, we have reached (5.13), competing the proof of Theorem 5.5. �

Now, we are in the position to prove Theorem 4.4.

Proof of Theorem 4.4. By Theorem 3.7, it suffices to show that the statement

holds for distributive slim rectangular diagrams, and its validity is inherited

by multi-fork extensions at distributive 4-cells.

First, assume that D is a distributive slim diagram. (Rectangularity is

not needed in this paragraph.) We know from G. Czédli and E. T. Schmidt

[12, Lemma 15] that D contains no cover-preserving S7 sublattice. The ab-

sence of S7 sublattices implies that D has no hat-trajectory. Thus τ , given

in Definition 4.3, is the equality relation. Therefore, if n denotes the length

of D, then 〈Traj(D);≤τ 〉 is the n-element antichain. It is well-known that

〈Ji (ConD);≤〉 is also an n-element antichain; this is trivial for chains, and

the rest of slim distributive diagrams are reduced to chains by G. Czédli [3,

Lemma 5.4] and G. Czédli and E.T. Schmidt [12, Theorem 11]. (Note that the

main result of G. Grätzer and E. Knapp [22] also implies that 〈Ji (ConD);≤〉

is an antichain, but here we also need the equality |Ji (ConD)| = n.) Since

any two antichains of the same size are isomorphic, we can pick an order iso-

morphism ψ : 〈Ji (ConD);≤〉 → 〈Traj(D);≤τ 〉. Consider the surjective map

ϕ : PrInt(D) → Ji (ConD), defined by p 7→ con(p). Obviously, ϕ is a coloring,
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and its kernel extends the equivalence ∼traj. Since

|ϕ
(
PrInt(D)

)
| = |Ji (ConD)| = n = |Traj(D)| = |PrInt(D)/∼traj|,

we conclude that the kernel of ϕ equals ∼traj. This implies that ξ from Defini-

tion 4.3(iv) equals ψ ◦ ϕ, and we conclude that ξ is a quasi-coloring, in fact, a

coloring.

Next, assume that H is a distributive 4-cell of a slim rectangular diagram

D0, n ∈ N, D = D0[S
(n)
7 ;H ], and τ0 = quor(σ0) is the quasiordering on

Traj(D0) according to Definition 4.3, applied to D0, such that the trajec-

tory quasi-coloring ξ0 : PrInt(D0) → 〈Traj(D0); τ0〉, given in Definition 4.3, is

a quasi-coloring. We have to show that ξ : PrInt(D) → 〈Traj(D); τ 〉, given

in Definition 4.3 for D, is a quasi-coloring. To simplify the notation, let

D1 = S
(n)
7 , let τ1 be the quasiordering on Traj(D1) defined by Figure 5, and

let ξ1 : PrInt(D1) → 〈Traj(D1); τ1〉 be the trajectory quasi-coloring given in

Lemma 5.1; note that ξ1 is a quasi-coloring.

For i ∈ {0, 1}, we define a map ϕi : Traj(Di) → Traj(D) by the rule ϕi(u) =

v iff the trajectories u ∈ Traj(Di) and v ∈ Traj(D) have a prime interval p in

common. (We shall soon prove that ϕi is a map.) Let a0 and b0 denote the

trajectories of D0 containing [lc(H), 1H ] and [rc(H), 1H ], respectively. Also,

let a1 and b1 denote the trajectories of D1 containing the same prime intervals,

which are [lc(D1), 1D1 ] and [rc(D1), 1D1 ], respectively. Interrupting the proof

of Theorem 4.4, we formulate an auxiliary statement.

Claim 5.8. Both ϕ0 and ϕ1 are injective maps, ϕ0(a0) = ϕ1(a1), and ϕ0(b0) =

ϕ1(b1). Also, we have that ϕ0(Traj(D0))∩ϕ1(Traj(D1)) = {ϕi(ai), ϕi(bi)} for

i ∈ {0, 1}. Furthermore, ϕ0(Traj(D0)) ∪ ϕ1(Traj(D1)) = Traj(D), that is,

ϕ0 ∪ ϕ1 is surjective.

Proof. First, we prove that, for i ∈ {0, 1}, ϕi is a map. Assume that u ∈

Traj(Di), p1, p2 ∈ u, and v1, v2 ∈ Traj(D) such that pj ∈ vj for j ∈ {1, 2}.

We have that p1 ∼traj
Di

p2 in Di, and we want to conclude that p1 ∼traj
D p2.

(This is trivial for i = 1, and it would be trivial for i = 0 if D0 was a cover-

preserving sublattice of D, but this is not the case.) We know from G. Czédli

and E.T. Schmidt [11, Lemma 2.9] that there exists a prime interval q in Di

such that both p1 and p2 are transposed up to q in Di. Since they are also

transposed up to q in D and they belong to PrInt(D), because of pj ∈ vj ,

the semimodularity of D gives that q belongs to PrInt(D). Hence, applying

[11, Lemma 2.9] in the opposite direction, we obtain that p1 ∼traj
D p2, which

implies that v1 = v2. This proves that ϕi is a map from Traj(Di) to Traj(D),

for i ∈ {0, 1}.

Next, we prove the injectivity of ϕi. For the sake of contradiction, suppose

that u1, u2 ∈ Traj(Di), u1 6= u2, and ϕi(u1) = v = ϕi(u2). By definition, there

exist p1, p2 ∈ PrInt(D) ∩ PrInt(Di) such that pj ∈ uj ∩ v for j ∈ {1, 2}. Since

p1, p2 belong to the same trajectory v of D, [11, Lemma 2.9] gives a prime

interval q ∈ PrInt(D) such that both p1 and p2 are transposed up to q in D.
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If q ∈ PrInt(Di), then p1 and p2 are transposed up to the same prime interval

of Di, so p1 ∼traj
Di

p2 by [11, Lemma 2.9], which contradicts the equality

u1 = u2. Hence, q ∈ PrInt(D) \ PrInt(Di).

First, consider the case i = 0. It is clear by the construction of D =

D0[S
(n)
7 ;H ], see Figure 2, that if q ∈ PrInt(D) \PrInt(D0)) transposes down

to an old prime interval, then q is a parallel chain in the sense given right

before (5.14), [0−q , 1
−

q ] (see (5.15) for its definition) equals [0q ∧ 0H , 1q ∧ 0H ],

and [0−q , 1
−

q ] also transposes down to the old prime interval in question. In

particular, [0−q , 1
−

q ] transposes down to p1 and p2, whence p1 ∼traj
D0 p2 by [11,

Lemma 2.9]. This contradicts u1 6= u2 and proves that ϕ0 is injective.

Second, consider the case i = 1. Since p1, p2 ∈ PrInt(D) ∩ PrInt(D1) =

{[lc(H), 1H ], [rc(H), 1H ]} and u1 6= u2 gives p1 6= p2, we can assume that

p1 = [lc(H), 1H ] and p2 = [rc(H), 1H ]. Since v ∈ Traj(D) contains both p1 and

p2, [11, Lemma 2.9] yields an r ∈ PrInt(D) such that p1 and p2 are transposed

up to r in D. Since 0r ≥ 0p1 ∨ 0p2 = lc(H) ∨ rc(H) = 1H , we obtain that

r ∈ PrInt(D0). This, together with [11, Lemma 2.9], implies that [lc(H), 1H ]

and [rc(H), 1H ] belongs to the same trajectory v0 of D0. We know from (5.2)

that 1H has exactly two lower covers, lc(H) and rc(H), in D0. Therefore, the

trajectory v0, when leaving H to the right, goes upwards. Similarly, when it

arrives at H from the left, it goes downwards. This contradicts (2.1), which

proves the injectivity of ϕ1.

The surjectivity of ϕ0 ∪ ϕ1 is obvious by the construction of D. Clearly,

ϕ0(Traj(D0)) ∩ ϕ1(Traj(D1)) ⊇ {ϕ0(a0), ϕ0(b0)} = {ϕ1(a1), ϕ1(b1)}. (5.19)

Since each member of Traj(D) departs from the left boundary chain of D, we

have that |Traj(D)] = length (D). Similarly, |Traj(Di)] = length (Di) for i ∈

{0, 1}. Clearly, length (D) = length (D0) + length (D1) − 2. Thus |Traj(D)| =

|Traj(D0)| + |Traj(D1)| − 2. This, together with the injectivity of ϕ0 and ϕ1

and the surjectivity of ϕ0∪ϕ1, implies that |ϕ0(Traj(D0))∩ϕ1(Traj(D1))| = 2.

Consequently, the inclusion in (5.19) is an equality, proving our claim. �

Now, we return to the proof of Theorem 4.4. We are going to use Theo-

rem 5.5 as follows. Let ϕi(τi) = {〈ϕi(x), ϕi(y)〉 : x ≤τi
y} for i ∈ {0, 1}. We

have assumed that ξ0 : PrInt(D0) → 〈Traj(D0); τ0〉 is a quasi-coloring. Hence,

so is ϕ0 ◦ ξ0 : PrInt(D0) → 〈ϕ0(Traj(D0));ϕ0(τ0)〉, because ϕ0 is injective by

Claim 5.8. We let A = ϕ0(Traj(D0)), B = ϕ1(Traj(D1)), and C = Traj(D).

We know from Claim 5.8 that C = A ∪ B. Instead of the quasi-coloring

ξ1 : PrInt(S
(n)
7 ) = PrInt(D1) → 〈Traj(D1); τ1〉, the injectivity of ϕ1 allows us

to consider the quasi-coloring

ϕ1 ◦ ξ1 : PrInt(D1) → 〈ϕ1(Traj(D1));ϕ1(τ1〉).

With the new setting 〈ϕ0 ◦ξ0, ϕ1 ◦ξ1〉 instead of 〈γ, ξ〉, the satisfaction of (5.5)

follows from Claim 5.8. Therefore, all the stipulations of Definition 5.4 hold
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for the new setting. Hence, letting

η = quor(ϕ0(τ0) ∪ ϕ1(τ1)), (5.20)

Theorem 5.5 implies that δ : PrInt(D) → 〈Traj(D); η〉 is a quasi-coloring. Here

δ is determined by Definition 5.4, applied to the present situation. However, it

is easy to see that δ is the same as ξ. Therefore, our task is only to prove that

η = τ . As a preparation for this task, we claim that, for u 6= v ∈ Traj(D),

if u ≤ϕ1(τ1) v, then u ≤σ v and, consequently, u ≤τ v. (5.21)

To prove this, choose u1, v1 ∈ Traj(D1) such that u = ϕ1(u1), v = ϕ1(v1),

and u1 ≤τ1
v1. Clearly, u1 6= v1. Thus, since the structure of D1 = S

(n)
7 is

quite simple by Lemma 5.1 and Figure 1, we easily conclude that u1 ≤σ1
v1.

Also, the understanding of the structure of D1 implies that u1 = cm for some

m ∈ {1, . . . , n}. Hence, ϕ1 preserves the top edge [sm, 1D1 ] of u1, that is,

h(u) = h(ϕ1(u1)) = h(u1). If it also preserves the top edge of v1, then we

clearly obtain u ≤σ v, as desired. Hence, we assume that h(v1) 6= h(v). Up to

left-right symmetry, this is only possible if h(v1) = [rc(D1), 1D1 ] = [rc(H), 1H ].

Let v0 ∈ Traj(D0) denote the trajectory of D0 through [rc(H), 1H ]; note that

ϕ0(v0) = v. It follows from (5.2) that v0 goes upwards at [rc(H), 1H]. Thus,

by (2.1), it reaches its top edge on the right of [rc(H), 1H ]. Since D and D0

are different only in ↓1H and (2.1) also applies to v in D, we conclude that

h(v) = h(v0) and that the section of v ∈ Traj(D) from [rc(H), 1H] to h(v)

and that of v0 ∈ Traj(D0) from [rc(H), 1H ] to h(v0) are the same. In the

interval [rc(H), 1h(v)], this common section is an up-trajectory. Hence, we

easily conclude that 1H ∧ 0h(v) = rc(H) and 1H ∨ 0h(v) = 1h(v). In particular,

1h(u) = 1H ≤ 1h(v) and 1H 6≤ 0h(v). Consequently, we obtain that 0h(u) =

0h(u1) = sm 6≤ 0h(v). Consequently, u ≤σ v, which proves (5.21).

Next, we assert that, for u 6= v ∈ Traj(D),

if u ≤ϕ0(τ0) v, then u ≤τ v. (5.22)

Assume that u ≤ϕ0(τ0) v. Then there are u0, v0 ∈ Traj(D0) such that u =

ϕ0(u0), v = ϕ0(v0), and u0 ≤τ0
v0. This means that there is an e ∈ N

and there are pairwise distinct trajectories w0 = u0, w1, . . . , we = v0 of D0

such that wi−1 ≤σ0
wi for i ∈ {1, . . . , e}. It is clear from the construction of

D = D0[S
(n)
7 ;H ] that ϕ0 and, under a reasonable restriction, ϕ1 preserve the

top edges. It is also clear that ϕ0 preserves straightness and non-straightness.

We summarize this for further reference:

if w0 ∈ Traj(D0) and w1 ∈ Traj(D1) \ {a1, b1}, then

h(ϕ0(w0)) = h(w0), h(ϕ1(w1)) = h(w1), and w0 is a

straight trajectory iff so is ϕ0(w0).

(5.23)

In particular, h(wi) = h(ϕ0(wi)) for i ∈ {1, . . . , e}. Hence, since D0 is a

sublattice of D, it follows by 4.3(ii) that ϕ0(wi−1) ≤σ ϕ0(wi). Hence, u =

ϕ0(u0) = ϕ0(w0) ≤σ . . . ≤σ ϕ0(we) = ϕ0(v0) = v, which gives u ≤τ v, as

claimed. This proves (5.22).
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Now, from (5.20), (5.21), and (5.22), we conclude that η ⊆ τ .

By definition, τ = quor(σ). Therefore, in order to prove the converse inclu-

sion τ ⊆ η, it suffices to show that σ ⊆ η. Assume that u 6= v ∈ Traj(D) such

that u ≤σ v. We have to show that u ≤η v. The assumption u ≤σ v implies

that u is a hat-trajectory of D. By Claim 5.8, the trajectories u and v are

“ϕ0 ∪ ϕ1-images”, and there are four cases to consider.

First, assume that u = ϕ0(u0) and v = ϕ0(v0) for some u0, v0 ∈ Traj(D0).

It follows from (5.23) that u0 ≤σ0
v0. Hence u ≤ϕ0(σ0) v, which yields that

u ≤η v, as desired.

Second, assume that u = ϕ1(u1) and v = ϕ1(v1) for some trajectories

u1, v1 ∈ Traj(D1)\{a1, b1}. Note that u1, v1 ∈ {c1, . . . , cn}. Clearly, u1 ≤σ1
v1.

This gives that u ≤ϕ1(σ1) v, implying that u ≤η v.

Third, assume that u = ϕ0(u0) and v = ϕ1(v1) for some u0 = Traj(D0)

and v1 ∈ Traj(D1) \ {a1, b1}. Note that v1 ∈ {c1, . . . , cn}. Observe that u0

is a hat-trajectory by (5.23). We also know from (5.23) that h(u0) = h(u)

and h(v1) = h(v). This, together with u ≤σ v, yields that 1h(u0) = 1h(u) ≤

1h(v) = 1h(v1) = 1H . Thus ↓1H , taken in D0, contains the top edge h(u0) of the

hat-trajectory u0 ∈ Traj(D0). Therefore, 1h(u0) violates (5.2), and we obtain

that this case cannot occur.

Figure 8. Case of u = ϕ1(u1) and v = ϕ0(v0)

Fourth, assume that u = ϕ1(u1) and v = ϕ0(v0) for some trajectories u1 in

Traj(D1) \ {a1, b1} and v0 in Traj(D0). The situation is depicted in Figure 8,

where D0 = D \ {black-filled elements}, H is the light-grey 4-cell of D0, and

the trajectories are labeled at their top edges. We will use (5.23) implicitly.

Since u ≤σ v, we have that 1H = 1h(u1) = 1h(u) ≤ 1h(v). Therefore, again by

u ≤σ v, we obtain that 0h(u) 6≤ 0h(v). If we had 1H ≤ 0h(v), then we would

obtain a contradiction by 0h(u) ≤ 1h(u) = 1H ≤ 0h(v). Hence, 1H 6≤ 0h(v),
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which implies that 1H > 1H ∧ 0h(v) = 1H ∧ 0h(v0) ∈ D0. Consequently, it

follows from (5.2) that 1H ∧ 0h(v) ≤ lc(H) or 1H ∧ 0h(v) ≤ rc(H). By left-right

symmetry, we can assume that

1H ∧ 0h(v) ≤ rc(H). (5.24)

The trajectory of D containing [rc(H), 1H] is denoted by b = ϕ1(b1) =

ϕ0(b0). Since u1 ≤σ1
b1, we have that u ≤ϕ1(σ1) b. This, together with σ1 ⊆ τ1

gives that that u ≤ϕ1(τ1) b, which yields that u ≤η b. Since 0h(v) ≺ 1h(v) and

1H 6≤ 0h(v) but 1H ≤ 1h(v), we have that 1H ∨0h(v) = 1h(v). If the inequality in

(5.24) is an equality, then [rc(H), 1H ] and [0h(v), 1h(v)] are transposed intervals,

v = b, and we obtain u ≤η b = v, as desired.

Hence, we can assume that (5.24) is a strict inequality. However, even in this

case it is clear that 〈rc(H), 1H〉 ∈ conD0(0h(v), 1h(v)) = conD0(0h(v0), 1h(v0)),

that is, conD0 (rc(H), 1H) is a subset of conD0(0h(v0), 1h(v0)). Hence, using the

assumption that ξ0 is a quasi-coloring, we obtain that b0 = ξ0(rc(H), 1H) ≤τ0

ξ0(0h(v0), 1h(v0)) = v0. This gives that b ≤ϕ0(τ0) v, and we conclude that

b ≤η v. Combining this with u ≤η b, we obtain that u ≤η v, as claimed. This

completes the proof of Theorem 4.4. �

6. From multi-fork extensions to patch extensions

Recall that multi-fork extensions are special cases of patch extensions. Now,

we are in the position to generalize the two main lemmas from the previous

section. For a patch extension D[P;H ], define the retraction ψ : D[P;H ] →

D by the congruence α whose non-singleton blocks are depicted by dotted

closed curves in Figure 2. (Although the figure gives only a single example,

the general definition of α should be straightforward.) So, ψ(x) is defined as

the largest element in the α-block of x.

Lemma 6.1 (Patch version of the retraction lemma). If His a distributive

4-cell of a slim semimodular lattice diagram D and P is a patch diagram, then

the retraction map ψ : D[P;H ] → D defined above is a lattice homomorphism.

Proof. We prove the lemma by induction on the size of P . If |P | = 4, then

the statement is trivial since D[P;H ] = D and ψ is the identity map.

Next, assume that |P | > 4, and that the lemma is true for all patch dia-

grams of smaller size. By Theorem 3.7, P is of the form P = Q[S
(n)
7 ;G],

where Q is a patch diagram and G is a distributive 4-cell of Q. Clearly,

G is also a distributive 4-cell of D[P;H ]. It is straightforward to verify

that D[P;H ] = (D[Q;H ])[S
(n)
7 ;G]; the tedious details are omitted. By

the induction hypothesis, the retraction map ψ0 : D[Q;H ] → D is a lattice

homomorphism. We know from Lemma 5.3 that so is the retraction map

ψ1 : (D[Q;H ])[S
(n)
7 ;G] → D[Q;H ]. Hence, the composite map ψ0 ◦ ψ1,

from D[P;H ] = (D[Q;H ])[S
(n)
7 ;G] to D, is also a lattice homomorphism.

Finally, it is straightforward to see that ψ = ψ0 ◦ ψ1. �
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Next, we generalize the multi-fork theorem. Let H be a distributive 4-cell

of a slim semimodular lattice diagram D, and let P be a patch lattice diagram.

We denote by D′ the patch extension D[P;H ]. Let γ : PrInt(D) → 〈A; ν〉 be

a quasi-coloring, and let ξ : PrInt(P ) → 〈Traj(P );≤τ〉 be the trajectory quasi-

coloring of P . (We know from Theorem 4.4 that ξ is a quasi-coloring.) Let B =

Traj(P ), and assume that γ(lc(H), 1H) = a = ξ(lc(P ), 1P ), γ(rc(H), 1H) =

b = ξ(rc(P ), 1P ), and A ∩ B = {a, b}. On the set C = A ∪ B, we define

η = quor(ν ∪ τ ). Also, we define a map δ : PrInt(D′) → 〈C; η〉 by the following

two obvious rules. First, δ should extend γ∪ξ. Second, if δ(p) is not determined

by the first rule, then take a q ∈ PrInt(D′), nearest to p with 1q ≥ 1p, such

that p ∼traj
D′ q in D′ and δ(q) is defined, and let δ(p) = δ(q). (Note at this

point that if dropped the stipulation that q is nearest to p in the trajectory of

p in D′, then δ would not be uniquely defined but the following lemma would

still hold for every choice of δ.) For technical reasons, we denote δ by γ /· ξ.

Lemma 6.2 (Patch lemma). With the assumptions in the paragraph above, δ

is a quasi-coloring.

Proof. We adopt the notation, the assumptions, and the already established

facts of the proof of Lemma 6.1. In particular, |P | > 4, P = Q[S
(n)
7 ;G], and

D′ = D[P;H ] = (D[Q;H ])[S
(n)
7 ;G]. Let ξ0, ξ1, and ξ be the trajectory

quasi-colorings of S
(n)
7 , Q, and P , respectively. It is straightforward to check

that δ = γ /· ξ equals (γ /· ξ1) /· ξ0. Let δ1 = γ /· ξ1. It is a quasi-coloring by

the induction hypothesis. Hence, so is δ = δ1 /· ξ0 by Theorem 5.5. �

7. Trajectory colorings and the main result

Combining Theorem 4.4 and Lemma 4.1 for a slim rectangular lattice L, we

can obviously obtain a representation of 〈Ji (ConL);≤〉. If we take G. Czédli [3,

Lemma 2.1] into account, we can clearly obtain a coloring for L from its

trajectory quasi-coloring. Actually, we give the same coloring below; however,

we do it in a more explicite and useful way. We begin with a couple of “twin

definitions”; the coincidence of their notation is on purpose and will not cause

confusion.

Definition 7.1. Let D be a slim rectangular diagram.

(i) For u, v ∈ Traj(D), we let 〈u, v〉 ∈ Θ iff u = v, or both u and v are

hat trajectories such that 1h(u) = 1h(v). The quotient set Traj(D)/Θ

of Traj(D) by the equivalence Θ is denoted T̂raj(D). Its elements are

denoted by u/Θ, where u ∈ Traj(D).

(ii) On the set T̂raj(D), we define a relation σ̂ as follows. For u/Θ and

v/Θ in T̂raj(D), we let 〈u/Θ, v/Θ〉 ∈ σ̂ iff u/Θ 6= v/Θ and there exist

u′, v′ ∈ Traj(D) such that 〈u, u′〉, 〈v, v′〉 ∈ Θ and u′ ≤σ v
′. (Recall that

σ is given in Definition 4.3.)

(iii) We let τ̂ = quor(σ̂), the reflexive transitive closure of σ̂ on T̂raj(D).
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(iv) The trajectory coloring of D is the coloring ξ̂ from PrInt(D) onto the

ordered set 〈T̂raj(D); τ̂ 〉, defined by the rule that ξ̂(p) is the Θ-block of

the unique trajectory containing p.

We will soon prove that ξ̂ is a coloring. This definition determines a lattice

concept, that is, it does not matter which planar diagram of a given slim

rectangular lattice is considered. Its “twin brother” below is formulated for

lattices. Thus, we should note that if L is a slim rectangular lattice, then

G. Czédli and E.T. Schmidt [14, Lemma 4.7] implies that its planar diagram

is unique apart from reflection by a vertical axis. Hence, the interior of L is

uniquely defined. For x ∈ MiL, the unique cover of x is denoted by x∗.

Definition 7.2. Let L be slim a rectangular lattice.

(i) We define an equivalence relation on MiL as follows. For x, y ∈ MiL,

let 〈x, y〉 ∈ Θ mean that x = y, or both x and y are in the interior of L

and x∗ = y∗. The quotient set MiL/Θ is denoted M̂iL. For x ∈ MiL,

we denote the Θ-block of x by x/Θ.

(ii) We define a relation σ̂ on M̂iL by the rule 〈x/Θ, y/Θ〉 ∈ σ̂ iff x/Θ 6= y/Θ,

x is in the interior of L, x∗ ≤ y∗, but there are x′ ∈ x/Θ and y′ ∈ y/Θ

such that x′ 6≤ y′.

(iii) We let τ̂ = quor(σ̂), the reflexive transitive closure of σ̂ on M̂iL.

Now, we are in the position to formulate the main result of the paper. It

gives a structural description for the congruence lattice of a slim rectangular

lattice.

Theorem 7.3. Let L be a slim rectangular lattice, and let D be a planar

diagram of L.

(i) 〈T̂raj(D); τ̂ 〉 from Definition 7.1 is an ordered set, and it is isomorphic

to 〈Ji (ConL);≤〉. Furthermore, ξ̂ in Definition 7.1(iv) is a coloring.

(ii) 〈M̂iL; τ̂〉 from Definition 7.2 is an ordered set, and it is isomorphic to

〈Ji (ConL);≤〉.

We illustrate Theorem 7.3 with Figure 4, where MiD = {a, b, . . . , k, `}

consists of the black-filled elements, and L is the lattice determined by D.

Proof of Theorem 7.3. First, we prove (i). By Lemma 4.1, Theorem 4.4, and

G. Czédli [3, Lemma 2.1], it suffices to show that 〈T̂raj(D), τ̂ 〉 is the ordered

set associated with 〈Traj(D); τ 〉. Using Theorem 3.7 and Theorem 5.5, we

prove this by induction.

First, assume that D is a slim distributive diagram of length n. The second

paragraph in the proof of Theorem 4.4 explicitely says that both 〈Ji (ConD);≤

〉 and 〈Traj(D); τ 〉 are n-element antichains. Since distributivity does not

permit hat-trajectories by, say, (5.2), we obtain that Θ is the equality relation,

σ = ∅, and τ̂ is the equality relation. Therefore, 〈T̂raj(; )τ̂〉 is also an n-element

antichain, and the statement for D follows trivially.
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Next, assume that the statement holds for a slim rectangular diagram D0,

H is a distributive 4-cell of D0, and D = D0[S
(n)
7 ;H ]. Let D1 stand for

S
(n)
7 . Let Ψ = τ ∩ τ−1 be the equivalence induced by τ , see also (4.1). The

relations associated with D0 and D1 are subscripted with 0 and 1. We adopt

the notation of Claim 5.8, and we shall use (the multi-fork) Theorem 5.5 for

the situation described in and right above (5.20). Note, however, that η in

(5.20) is actually τ ; this is what the second part of the proof of Theorem 4.4

after Claim 5.8 yields. The new trajectories ϕ1(c1), . . . , ϕ1(cn) that arrive with

S
(n)
7 are the trajectories through [s1, 1H ], . . . , [sn, 1H ]; see Figure 2. It follows

easily from Definition 5.4, Lemma 5.1, and Claim 5.8 that two trajectories

of D are rarely ϕ1(σ1)-related; in fact, the only possibilities are the follow-

ing: ϕ1(ci) ≤ϕ1(σ1) ϕ1(cj) with i 6= j, ϕ1(ci) ≤ϕ1(σ1) ϕ1(a1) = ϕ0(a0), and

ϕ1(ci) ≤ϕ1(σ1) ϕ1(b1) = ϕ0(b0). Hence, taking τ = quor(ϕ0(τ0) ∪ ϕ1(τ1)) =

quor(ϕ0(σ0)∪ϕ1(σ1)) and (5.5) (tailored to the present situation) into account,

it follows in a straightforward way that, for arbitrary u0, v0 ∈ Traj(D0),

ϕ0(u0) ≤τ ϕ0(v0) ⇐⇒ ϕ0(u0) ≤ϕ0(τ0) ϕ0(v0).

This implies that, for u0, v0 ∈ Traj(D0),

〈ϕ0(u0), ϕ0(v0)〉 ∈ Ψ ⇐⇒ 〈u0, v0〉 ∈ Ψ0 = τ0 ∩ τ
−1
0 . (7.1)

Next, to show that Ψ = Θ, assume that u, v ∈ Traj(D) such that 〈u, v〉 is

in Ψ. We obtain from (the multi-fork) Theorem 5.5 that either u, v belongs

to {ϕ1(c1), . . . , ϕ1(cn)}, or u = ϕ0(u0) and v = ϕ0(v0) for some u0, v0 ∈

Traj(D0). In the first case, 〈u, v〉 ∈ Θ is obvious. In the second case, 〈u0, v0〉 ∈

Ψ0 by (7.1). Thus the induction hypothesis gives that 〈u0, v0〉 ∈ Θ0. Hence,

we conclude that 〈u, v〉 ∈ Θ by (5.23). Therefore, Ψ ⊆ Θ.

To prove the converse inclusion, assume that 〈u, v〉 ∈ Θ but u 6= v. If

u = ϕ0(u0) and v = ϕ0(v0) for some u0, v0 ∈ Traj(D0), then 〈u0, v0〉 ∈ Θ0 by

(5.23). Thus the induction hypothesis gives that 〈u0, v0〉 ∈ Ψ0, and we obtain

the desired 〈u, v〉 ∈ Ψ from (7.1). Hence, we can assume that, say, u is not of

the form ϕ0(u0) with u0 ∈ Traj(D0). Thus u ∈ {ϕ1(c1), . . . , ϕ1(cn)}. Since

H is a distributive 4-cell of D0, there is no v0 ∈ Traj(D0) with 1h(v0) = 1H =

1h(u). Hence (5.23) yields that there is no v0 ∈ Traj(D0) with 〈ϕ0(v0), u〉 ∈ Θ.

Therefore, v also belongs to {ϕ1(c1), . . . , ϕn(cn)}, whence 〈u, v〉 and 〈v, u〉

belong to ϕ1(τ1) ⊆ τ , and thus 〈u, v〉 ∈ Ψ, as claimed. This completes the

argument proving that Ψ = Θ.

Therefore, T̂raj(D) is the underlying set of the ordered set associated with

〈Traj(D); τ 〉. From now on, we write Θ for Ψ. Let τ • denote the relation

that (4.1) associates with τ . That is, for u, v ∈ Traj(L), 〈u/Θ, v/Θ〉 ∈ τ •

iff u ≤τ v. To complete the proof of (i), we have to show that τ • = τ̂ .

Let u/Θ, v/Θ ∈ T̂raj(D), that is, let u, v ∈ Traj(D). We can assume that

u/Θ 6= v/Θ.

Assume first that 〈u/Θ, v/Θ〉 ∈ τ •. Then u ≤τ v, and we have a sequence

u = w0 ≤σ w1 ≤σ . . . ≤σ wk = v in Traj(D). Since 〈wi−1/Θ, wi−1/Θ〉 ∈ σ̂ or
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wi−1/Θ = wi−1/Θ for i ∈ {1, . . . , k}, we obtain that 〈u/Θ, v/Θ〉 ∈ τ̂ . That

is, τ • ⊆ τ̂ .

Next, to prove the converse inclusion, assume that 〈u/Θ, v/Θ〉 ∈ τ̂ . Then

there exists a sequence w0, . . . , wk ∈ Traj(D) such that u/Θ = w0/Θ, v/Θ =

wk/Θ, and 〈wi−1/Θ, wi/Θ〉 ∈ σ̂ for i ∈ {1, . . . , k}. By 7.1(ii), there are

appropriate w−

i and w+
i in Traj(D) such that

u Θ w0 Θ w+
0 ≤σ w

−

1 Θ w1 Θ w+
1 ≤σ w

−

2 Θ w2 Θ w+
2 ≤σ · · · Θ wk Θ v. (7.2)

Since both σ and Θ = Ψ are included in τ , which is transitive, (7.2) yields

that u ≤τ v. Hence, 〈u/Θ, v/Θ〉 ∈ τ •. This proves the equality τ̂ = τ • and

statement (i) of the theorem.

In order to prove statement (ii), it suffices to show that it is just a re-

formulation of statement (i). To do so, observe that if x ∈ MiL, then the

trajectory containing [x, x∗] arrives upwards at [x, x∗] from the left, and leaves

[x, x∗] downwards to the right. This easy fact, together with (2.1), implies that

[x, x∗] is the top edge of its trajectory. Conversely, the presence of a cover-

preserving S7 and planarity imply that if [x, y] is the top edge of a trajectory,

then x ∈ MiL. Thus the map ζ : Traj(L) → MiL, defined by ζ(u) = 0h(u), is

a bijection. Furthermore,

u is a hat-trajectory iff ζ(u) is in the interior of L. (7.3)

Hence, it follows by comparing the twin definitions, 7.1 and 7.2, that ζ trans-

lates (i) into (ii). �

8. Remarks and generalizations

Remark 8.1. Unfortunately, the counterpart of Lemma 5.3 and that of The-

orem 5.5, that is, [3, Lemma 4.5] and [3, Lemma 5.1], are incorrect statements

in G. Czédli [3], since the distributivity of the 4-cells in question was not as-

sumed. However, this does not affect the main result of [3], because [3, Lemma

5.1] is only used at distributive 4-cells, where we can replace it by Theorem 5.5,

and [3, Lemma 4.5] is only used to prove [3, Lemma 5.1].

Next, to point out that the scope of Theorem 4.4 is much larger than the

class of slim rectangular lattices, we need the following definition. The middle

element s1 of S7 is defined by Figure 1.

Definition 8.2. Let K denote the class of finite slim semimodular lattices L

with the following property: for every x, s ∈ L, if s is the middle element s1
of a cover-preserving S7 sublattice, x < s, and [x, s] is a chain, then x /∈ MiL.

A straightforward induction based on Theorem 3.7 yields that every slim

rectangular lattice belongs to K. The smallest slim semimodular lattice not in

K is obtained from S
(2)
7 , see Figure 1, by deleting s0 = w` and w` ∧ s1. The

single-fork variant of the following statement can be extracted from G. Czédli
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and E. T. Schmidt [12], because a lattice in K cannot contain weak forks (de-

fined there). Therefore, the proof of Theorem 3.7 applies, and we obtain the

following result.

Proposition 8.3. Each lattice in K can be obtained from a slim distributive

lattice by a sequence of multi-fork extensions at distributive 4-cells. Moreover,

every lattice obtained this way belongs to K.

The proof of Theorem 4.4 only uses rectangularity once, where it recalls

Theorem 3.7; now we can recall Claim 8.3. Thus, we obtain the following

proposition. Remember that Theorem 4.4 is a “lattice statement”, that is, the

choice of the diagram of a given lattice is irrelevant. Therefore, Definition 4.3

is also meaningful for lattices instead of diagrams.

Proposition 8.4. If L ∈ K, then ξ from Definition 4.3 is a quasi-coloring

of L.

Remark 8.5. There is another way to extend the scope of Theorem 4.4,

which is motivated by G. Grätzer and E. Knapp [23, Theorem 7] and its

proof. We know from G. Czédli and E. T. Schmidt [12, Lemma 21] that each

slim semimodular lattice can be obtained from a slim rectangular lattice by

deleting (strong) corners. The deletion of a corner does not really change

the quasi-coloring by the corner lemma in G. Czédli [3, Lemma 5.4], and

does not change the trajectories too much. Hence, in principle, arbitrary slim

semimodular lattices can be traced back to the scope of Theorem 4.4.

Figure 9. Two meet-irreducible elements in a rectangular diagram

Finally, Figure 9 explains why we have to distinguish boundary and interior

elements in Definition 7.2 (or straight trajectories and hat-trajectories in Def-

inition 4.3): we can have that x∗ < y∗ and x 6≤ y, but con(x, x∗) 6⊆ con(y, y∗).
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[18] Grätzer, G.: Notes on planar semimodular lattices. VI. On the structure theorem of
planar semimodular lattices. Algebra Universalis 69, 301–304 (2013)

[19] Grätzer, G.: A technical lemma for congruences of finite lattices. Algebra Universalis
(submitted)

[20] Grätzer, G.: Congruences of fork extensions of lattices. Acta Sci. Math. (Szeged)
(submitted); arXiv:1307.8404

[21] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. I. Construction. Acta
Sci. Math. (Szeged), 73, 445–462 (2007)

[22] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. II. Congruences. Acta
Sci. Math. (Szeged), 74, 23–36 (2008)

[23] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. III. Congruences of
rectangular lattices. Acta Sci. Math. (Szeged), 75, 29–48 (2009)

[24] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. IV. The size of a
minimal congruence lattice representation with rectangular lattices. Acta Sci. Math.

(Szeged), 76, 3–26 (2010)
[25] Grätzer, G., Lakser, H., Schmidt, E.T.: Congruence lattices of finite semimodular

lattices. Canad. Math. Bull. 41, 290–297 (1998)
[26] Grätzer, G., Schmidt, E.T.: A short proof of the congruence representation theorem

for semimodular lattices. arXiv:1303.4464
[27] Jakub́ık, J.: Congruence relations and weak projectivity in lattices. Časopis Pěst.
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