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ABSTRACT 
 Nowadays, metal matrix composites have many new areas of application owing to 
their excellent properties - for example their great tensile strength and high Young’s modulus 
with its relatively low weight. 

The aim of this work is the examination of ceramic fibre-reinforced aluminium matrix 
composite wires made via continuous process. Furthermore, the research will outline the 
double composite products that are composite wire-reinforced metal matrix composites.  

Double composites are examined by tensile tests and bending tests. A lot of 
experiments have been done on the thermal aging of composite wires and on measuring the 
impact energy of thermal-aged specimens. 

The mechanical test shows us that structures reinforced with the composite wires have 
a notably higher load-carrying capacity than a structure reinforced directly with fibres or a 
structure without any reinforcement. 
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1 INTRODUCTION 
 The composite wires are fibre reinforced aluminium matrix composites which are 
made by continuous process. Fig. 1 shows the principal composition of a continuous 
production process via which wires are made [1, 2]. The reinforcement fibres were drawn 
through molten aluminium under high pressure via an on-going process. The liquid metal 
infiltrates into the fibres affected by the high pressure [3] in contempt of incorrect wettability 
conditions. Thus, the space between the fibres was filled up completely. The molten metal, 
operating under high pressure, was made to stay in the chamber via a drawing of the fibres. A 
continuous drawing of the fibres and a suitable speed upwards is required for the process and 
the liquid metal flow. The main function of the orifice’s width is to keep back the molten 
aluminium. [4] 



 
Figure 1. The continuous process 

 
2 THERMAL AGING OF COMPOSITE WIRES 
 The composite wires were exposed to long term high temperatures (300°C and 
500°C). This form of experiment helped us see whether the long-losting high temperatures 
caused any kind of change in the reinforcement and the interfacing of the fibre and matrix. It 
often happened that the temperature of the power cables reached 200-300°C due to an 
overloaded electrical grid. Accordingly, necessary to see the changes brought about by the 
amount of heat in composite wires. It was observed as well that these effects depend on the 
temperature and the time duration of the heat treatment. So our specimens were heat treated at 
both temperatures for 102, 262, 508 and 1155 hours. After the heat treatment impact tests 
were then applied. 
 
3 ELABORATION OF DOUBLE COMPOSITES 

The tensile and the bending specimens are composite wire-reinforced casts [5, 6]. 
Various matrix materials were used in the experiments. The matrix of the composite wires is 
aluminium, so one of the double composite’s matrix metals is aluminium, too – while the 
composite wires also had to serve as reinforcing aluminium casts. It was also worth trying 
other metals as matrix material so as to see the differences among mechanical properties. 
Utilized metals were chosen with reference to their melting point. After this factor had been 
considered, the matrix metals were the following: tin (232°C), lead (327°C), zinc (420°C) and 
aluminium (660°C). All of the mentioned specimens were made by a gravitation casting 
process. 

 
4 EXAMINATION OF THE COMPOSITE WIRES 

Composite wires made via a continuous process have an average 60% amount of fibre, 
and 1.6-2.5 mm diameters. The composite wires were examined by tensile tests, bending tests, 
scanning electron microscopy, and EDS-analysis. [7, 8, 9] 

The tensile tests of composite wires are complicated, as there is no way to reduce a 
wire’s cross-section when we take into consideration the measured section. Thus, a breaking 
of specimens at the grip may occur – and any result when a specimen is breaks at the grip will 
not be acceptable. 

In an examination of Nextel 440 fibre (tensile strength 2000 MPa) reinforced wires the 
average tensile strength was 1350 MPa (the wires were broken in the measured section). 



The results of the tensile tests are well approximated by Eq. 1 (Rule of mixture). 
 ( )SZMFFC ff −⋅+⋅= 1σσσ  (1) 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 200 400 600 800 1000
Time [hours]

Im
pa

ct
 e

ne
rg

y 
[J

] 

Nextel 300°C
Nextel 500°C
Textron 300°C
Textron 500°C

 
Figure 2. Impact energy of thermal-aged composite wires 

 
Fig. 2 shows the results of the impact tests for thermal-aged specimens. Results of the 

tests show us that there was not - or was extremely little - fibre or interfacial damage arising 
which could harden in aluminium-oxide fibre-reinforced composite wires. In spite of this, 
though, there was notable embrittlement in a case of silicon carbide fibre reinforcement. This 
phenomenon is presumably connected with the mutual diffusion of the SiC, C and Al solid-
solid phases. It was traceable via scanning electron microscopy and an EDS-analysis [10, 11]. 

The composite wires and the interface between the fibre and the matrix were 
investigated with a scanning electron microscope and EDS-analysis. Infiltration of aluminium 
into the composite wire was perfect as the aluminium filled out all of the space existing 
between fibres. The looked-at wires were Nextel 440, oval cross-section fibre-reinforced Al 
99.99 matrix composites [12, 13]. 

For an examination of reactions at the interface, it is worth investigating, via an EDS-
analysis, the changes in components through the cross-section of a filament [14]. 

 
5 EXAMINATION OF DOUBLE COMPOSITES 

The location of reinforcing composite wires and occurring cavities in double 
composite casts were examined using an X-ray microscope. There were no ‘failures’ with 
most specimens. The molten metal flow did not alter wires’ original positions. Discovery of 
the position of composite wires was difficult, though, due to the tiny differences between the 
aluminium matrix and such composite wires. Most problems arose in connection with 
aluminium matrix specimens as its wettability properties are worse than the wettability 
properties of other metals. Here, many cavities were seen near the wires. 

In the tensile tests pure matrix metals were tested first – and, afterwards, came the 
composite wire-reinforced variant. Fig. 3 displays the tin and composite wire-reinforced 
specimens after the tensile tests. The strain of pure tin is greater; and, overall, obvious strain 
marks appeared. So the complete length of the specimen became greater and the strain of the 
composite wire-reinforced specimen was concentrated in a small area. Thus, the wire with a 
higher Young’s modulus was loaded and could not affect the other part of the matrix metal 
until a reinforcing wire failure, with the matrix then carrying the whole load. With lead and 
zinc there was no great difference between reinforced or pure specimens. 
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Figure 3. Composite wire 
reinforced tin matrix specimen 

(left) and pure tin specimen (right) 

Figure 4. Tensile force of specimens 
(CW=Composite Wire; 

SW=Steel Wire) 
 
Fig. 4 gives us the tensile test results. The composite wire-reinforced specimens 

carried bigger loads than the pure matrix metal specimens. This tells us that a load transfer 
occurs between the different matrix materials and composite wires. [15] 

The results of the bending tests show a similar tendency as that of Fig. 5 concerning 
tensile tests. With almost all specimens the reinforcing composite wire was able to work 
together with the matrix. This higher load can be used with the double composites - more than 
is the case with other specimens (without reinforcement). Exceptions are due to casting faults. 
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Figure 5. Bending test for square cross-section aluminium specimens 

 
Fig. 5 depicts results coming from square cross-section aluminium matrix double composite 
bending tests. A regression line related to measured points shows the correlation between the 
quantity of composite wire and strength. The strength of the double composite structure is a 
linear function of the composite wires’ quantity. 



6 CONCLUSIONS 
The investigated double composite specimens are reinforced casts with aluminium 

matrix composite wires. Pb, Sn, Zn and Al were used as a second material for a casted 
structure. 

The cast from Sn fills the mould appropriately and after solidification low imbibitions 
were noticed and dendritic crystallites were seen on the surface. The Zn cast had crisp 
imbibitions and a rough surface. Unfortunately, the Pb chilled too quickly, which resulted in 
the forming of interfaces. The moulding of Al was most difficult, as it filled the mould and 
the wires poorly (the molten metal did not successfully fill the corners and edges of the chill). 
Imbibitions measurements were smaller with casts that contained composite wires. 

The long-term aging showed a rigidity when it came to lasting and high temperatures. 
This process was more rapid and more significant for SiC fibre-reinforced composite wires 
than for Al-oxide reinforced wires. The reason for the rigidity of SiC fibre was that the two 
main component (Si and C) and Al in the diffusion process with the solid-solid phases reacted 
with the fibre-matrix interface [12]. So brittle intermetallic phase and aluminium-carbide 
appeared. 

Results from the tensile tests and the rate of the fibre/matrix show us that the strength 
of composite wires can be reduced 35% when set against theoretical (rule of mixture) results. 
The reason for this strength lowering is that small pores remained during infiltration of the 
fibre bundle, where the liquid metal was not able to penetrate; and this phenomenon decreases 
the cross-section of specimens.  

An examination of round cross-section specimens shows us how the presence of the 
notches and stress concentration places modify strength. Also determinable was the quantity 
and distribution of composite wires in a volume unit so as not to cause cavities between wires. 
Our experiments proved that, with specimens, cavities operate as stress concentration 
locations. Thus, a cross-section decrease does not lead to a major strength lowering – but has 
a stress concentration effect. 

General conclusions are that double composites improve the mechanical properties of 
products. 

During the moulding process composite wires did not move, which is proved via an X-
ray microscopic examination – and this points to a minimal amount of fixation needed to hold 
them in position. In addition it was observed that cavities always formed themselves close to 
composite wires. 
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