
Approaches to Identify Object Correspondences
Between Source Models and Their View Models

Csaba Debreceni1,2, Dániel Varró1,2,3
1Budapest University of Technologies and Economics, Department of Measurement and Information Systems, Hungary

2MTA-BME Lendület Research Group on Cyber-Physical Systems, Hungary
3McGill University of Montreal, Department of Electrical and Computer Engineering, Canada

Email: {debreceni,varro}@mit.bme.hu

Abstract—Model-based collaborative development of embed-
ded, complex and safety critical systems has increased in the
last few years. Several subcontractors, vendors and development
teams integrate their models and components to develop complex
systems. Thus, the protection of confidentiality and integrity of
design artifacts is required.

In practice, each collaborator obtains a filtered local copy of
the source model (called view model) containing only those model
elements which they are allowed to read. Write access control
policies are checked upon submitting model changes back to the
source model. In this context, it is a crucial task to properly
identify that which element in the view model is associated to
which element in the source model.

In this paper, we overview the approaches to identify cor-
respondences between objects in the filtered views and source
models. We collect pros and cons against each approach. Finally,
we illustrate the approaches on a case-study extracted from the
MONDO EU project.

I. INTRODUCTION

Model-based systems engineering has become an increas-
ingly popular approach [1] followed by many system inte-
grators like airframers or car manufacturers to simultaneously
enhance quality and productivity. An emerging industrial prac-
tice of system integrators is to outsource the development
of various components to subcontractors in an architecture-
driven supply chain. Collaboration between distributed teams
of different stakeholders (system integrators, software engi-
neers of component providers/suppliers, hardware engineers,
specialists, certification authorities, etc.) is intensified via the
use of models.

In an offline collaboration scenario, collaborators check
out an artifact from a version control system (VCS) and
commit local changes to the repository in an asynchronous
long transaction. Several collaborative modeling frameworks
exist (CDO [2], EMFStore [3]), but security management is
unfortunately still in a preliminary phase. Traditional VCSs
(Git [4], Subversion [5]) try to address secure access control
by splitting the system model into multiple fragments, but
it results in inflexible model fragmentation which becomes
a scalability and usability bottleneck (e.g. over 1000 model
fragments for automotive models).

This paper is partially supported by the EU Commission with project
MONDO (FP7-ICT-2013-10), no. 611125. and the MTA-BME Lendület 2015
Research Group on Cyber-Physical Systems.

In our previous works [6], we introduced a novel approach
to define fine-grained access control policies for models using
graph queries. A bidirectional graph transformation so called
lens is responsible for access control management. The for-
ward transformation derives consistent view models by elimi-
nating undesirable elements from the source model according
to the access control rules that restrict the visibility of the
objects, references and attributes. In contrast, the backward
transformation propagate the changes executed on the view
models back to the source model. It also enforces the write
permission defined in the policies by rejecting all the changes
if any of them violates an access control rule.

At commit time, the executed operations and their orders
are not available in the most cases, only the deltas are sent to
the VCS. It is an urgent task to correctly identify the modified
elements of the model to recognize whether an access control
rule is violated. Thus object correspondences need to be built
between the element of the source and the modified views.

In this paper, first we motivate the need of identification of
object correspondences using a case study from MONDO EU
FP7 project. Then we overview the possible approaches and
discuss their advantages and disadvantages that can be applied
onto our existing lens-based approach.

II. PRELIMINARIES

A. Instance Models and Modeling Languages

A metamodel describes the abstract syntax of a modeling
language. It can be represented by a type graph. Nodes of
the type graph are called classes. A class may have attributes
that define some kind of properties of the specific class.
Associations define references between classes. Attributes and
references altogether are called features.

The instance model (or, formally, an instance graph) de-
scribes concrete systems defined in a modeling language and
it is a well-formed instance of the metamodel. Nodes and
edges are called objects and links, respectively. Objects and
links are the instances of modeling language level classes and
associations, respectively. Attributes in the metamodel appear
as slots in the instance model.



B. Enforce Access Control Policies by Graph Transformation

In the literature of bidirectional transformations [7], a lens
(or view-update) is defined as an asymmetric bidirectional
transformations relationship where a source knowledge base
completely determines a derived (view) knowledge base, while
the latter may not contain all information contained in the
former, but can still be updated directly.

The kind of the relationship we find between a source
model (containing all facts) and a view model (containing a
filtered view) fits the definition of a lens. After executing the
transformation rules, model objects of the two models reside at
different memory addresses, so the transformation must set up
a one-to-one mapping called object correspondence, that can
be used to translate model facts when propagating changes.

We assume that the forward transformation of the lens builds
correspondences between objects of source and view models.
But these correspondence relation cannot be guaranteed when
the derived view model is reloaded as a new model because
the new objects will not share the same memory addresses.

Rebuilding correspondence mapping between the source
model and the modified view model is cumbersome, where
the view may hide most of the sensitive information. Instead,
correspondences are easier to build between the unmodified
and modified view model as it is depicted in Fig. 1, then the
originally achieved mapping can be used.

Fig. 1. Request to build correspondence between view models

C. Model Comparison

Building correspondences between two version of the same
model is common problem in model versioning called model
comparison. Model comparison process is responsible for
identifying differences of two model and translate them into
elementary model operations such as create, update and delete.
A common issue in this context is to recognize whether an
object is moved to another place or an existing object is
deleted and a completely new one is created in the model
with the same attribute values. Thus it is required to build
correspondences between the two model to properly identify
the differences.

III. MOTIVATING EXAMPLE

Several concepts will be illustrated using a simplified ver-
sion of a modeling language (metamodel) for system inte-
grators of offshore wind turbine controllers, which is one of
the case studies [8] of the MONDO EU FP7 project. The
metamodel, depicted by Fig. 2, describes how the system

is modeled as modules providing and consuming signals.
Modules are organized in a containment hierarchy of com-
posite modules, ultimately containing control unit modules
responsible for a given type of physical device (such as
pumps, heaters or fans). Composite modules may be shipped
by external vendors and may express protected intellectual
property (IP).

Fig. 2. Simplified wind turbine metamodel

A sample instance model containing a hierarchy of 2
Composite modules and a Control units, providing a Signal

altogether, is shown on the top left side of Fig. 3 called source
model. Boxes represent objects (with attribute values as entries
within the box), while arrows represent containment edges and
cross-references.

Fig. 3. Example instance model

Access Control. Specialists are engineers responsible for
maintaining the model of control unit modules and have
specific access to the models, described in the following:

R1. Intellectual properties have to be hidden from specialists.
R2. Objects cannot be created or deleted in the system model.
R3. Vendor attribute of visible composites must be obfuscated.



R4. Control units and their attributes can be modified.

According to the aforementioned access control rules, view
models depicted in the top middle of Fig. 3 are derived
for specialists where the protected IP objects are not visible
and the vendor attributes are obfuscated. Only the control
unit (marked with bold border) is allowed to be modified by
specialists.

Scenario. At a given point, a specialist changes the type of
the control unit from FanCtrl to HeaterCtrl represented on
the top right side of Fig. 3 and propagate the modifications
from view model back to the source model. It is need to be
decided whether the change was allowed or not. Two cases
can arise: (i) the VCS realizes that only the type attribute
was modified; or (ii) the VCS interprets the change as the
deletion of the original control unit and an addition of a
new control unit. The former case will be accepted (valid
updated source model on Fig. 3) while the latter one need
to be rejected ((invalid updated source model on Fig. 3)) as
it removes the control unit and its signal with the related
references (marked with dashed borders and edges). Thus, the
VCS has to identify which object has changed to be able to
make a proper decision.

IV. OVERVIEW OF THE APPROACHES

In this section, we categorize the possible approaches to
based on comparison techniques collected in [9]. For each
approach we discuss its advantages and disadvantages and
provide their application onto our running example.

A. Static Identifiers
Several modeling environments automatically provide

unique identifiers for each object. The requirements against
the identifiers are the following:

SI1. Identifiers need to assign to all objects.
SI2. Recycling of identifiers are not allowed.
SI3. Identifiers cannot be changed after serialization.
SI4. After deserialization, the identifiers need to remain.

For instance, the Industry Foundation Classes [10] (IFC)
standard, intended to describe building and construction in-
dustry data, assigns unique number at element creation time.
At the beginning it assigns 0 for the first object and then it
increases the previous assigned identifier with 1. In case of the
Eclipse Modeling Framework [11] (EMF), unique identifiers
are assigned at serialization time if the serialization format
supports this features (e.g. XMI format supports, but Binary
not). In practical, a universally unique identifier (UUID) is
generated for each object that still does not have any.

Advantages. Static identifiers require no user specific config-
uration. Always provides a perfect match for correspondences.

Disadvantages. Modeling environments or serialization for-
mat need to be changed. Moreover, it is possible, that the
modeling tools do not support these formats.

Example. For our running example, static identifiers can
be achieved using a proper serialization format that provide
unique identifiers.

B. Custom Identifiers

In practice, domain language developers usually prepare
their languages to support identifiers by adding a common
ancestor for all classes that provides an identifier attribute.
During the development phase, engineers need to manually
set the identifiers for each object where the uniqueness cannot
be guaranteed. Moreover, access control rules must make that
attribute visible (at least in an obfuscated form) in views.

Advantages. There is no need to change modeling environ-
ment or model serialization.

Disadvantages. Existing languages need to be modified
which may lead to inconsistencies. Uniqueness is questionable.

Example. Fig. 4 shows a possible extension of the afore-
mentioned metamodel with a NamedElement interface. All the
classes inherit the id attributes.

Fig. 4. Identifier introduced in a common ancestor

C. Signature-based Matching

Signature-based matching does not rely on unique identi-
fiers, instead it calculates signatures of the objects. A signature
is a user-defined function described as a model query. This
approach is introduced in [12], whereas Hegedus et al. [13]
described a similar approach so called soft traceability links
between models. All the references and attributes involved in
the calculation of a signature need to be visible (at least in
and obfuscated form).

Advantages. There is no need to change modeling environ-
ment or serialization format, thus the modeling tools will still
support the models.

Disadvantages. Users need to specify how to calculate the
signature, which might lead to several false positive results.

Example. For our running example, a simple signature
query defined in ViatraQuery language [14] is represented in
Listing 1, which makes two control units identically equal if
their container modules, the value of their cycle attributes
and their provided signal objects are identically equals.
This query successfully identifies changes introduced in the
running example. However, it cannot recognize the deletion
and addition of two different control units at the same position.

1 pattern sign(ctrl,cycle,sig,container) {
2 Control.eContainer(ctrl,container);
3 Control.cycle(ctrl,cycle);
4 Control.provides(ctrl,sig);
5 }

Listing 1. Example Signature Query

D. Similarity-based Matching

Similarity-based matching tries to measure the similarity
between objects based on the similarity value. In contrast,



identifiers and signatures directly decide whether a corre-
spondence exists between two objects. Similarity is calculated
by the values of each features. For each feature, users need
to specify a weight that define how important is it in the
identification. Using these weights, meta-model independent
algorithms derive the correspondences between the objects.

For instance, EMF Compare [15] is comparison tools to
compare EMF models, and use similarity based-matching. Its
calculation includes analyzing the name, content, type, and
relations of the elements, but it also filters out element data
that comes from default values etc.

Advantages. The identification is based on general heuristics
and algorithms, where the users do not need to provide
complex description on how to identify an object.

Disadvantages. Users need to specify weight for the features
to fine-tune the similarity algorithms.

Example. A possible list of weights is defined in Listing 2,
where the references of the aforementioned metamodel have
more influence on the similarity than the attributes. In this
case, our example modifications will be successfully recog-
nized. However, Listing 3 describes a context, where the
attributes are more important than the others. Thus, if we
change the value of an attribute, it will be recognized as a
deletion of an object and the creation of a new one.

1 wieghts
2 * container: 2
3 * provides: 2
4 * type: 0
5 * cycle: 0
6 * vendor: 0
7 * consumes: 0
8 * submodules: 0
9 * protectedIP: 1

Listing 2.
Weights with environment pressure

1 wieghts
2 * container: 0
3 * provides: 0
4 * type: 5
5 * cycle: 2
6 * vendor: 2
7 * consumes: 0
8 * submodules: 0
9 * protectedIP: 1

Listing 3.
Weights with attribute pressure

E. Language-specific Algorithms

Language-specific algorithms are designed to a given mod-
eling language. Thus these approaches can take the semantics
of the languages into account to provide more accurate iden-
tification of objects. For instance, a UML-specific algorithm
can use the fact that two classes with the same name mean
a match and it does not matter where they were moved
in the model. UmlDiff [16] tool uses similar approach for
differencing UML models. To ease the development of such
a matching algorithms, the Epsilon Comparison Language
(ECL) [17] can automate the trivial parts of the process, where
developers only need to concentrate on the logical part.

Advantages. Semantics of the language are used and there
is no need to any modification in the model or modeling tools.

Disadvantages. Users need to specify a complete matching
algorithm for a given language which can be challenging.

Example. A simple matching rule defined with ECL is
presented in Listing 4. It matches a s control unit with Fig.t
control unit (declared in match-with part) if their container
and the provided signals are equal (declared in compare part).

1 rule MatchControls
2 match s : Control
3 with t : Control {

4 compare {
5 return s.container = t.container
6 and s.provides = t.provides
7 }
8 }

Listing 4. Example Rule in Epsilon Comparison Language

V. CONCLUSION AND FUTURE WORK

In this paper, we aimed to overview the approaches to
identify correspondences between an original model and its
filtered and modified version. We categorized these approaches
into 5 groups - using static identifiers or custom identifiers,
calculating signature-based matches, aggregating values of
features using similarity-based matching and providing lan-
guage specific algorithms. We introduced their application on
a case study extracted from MONDO EU project and discussed
their pros and cons.

As future work, we plan to integrate these approaches into
our query-based access control approach [6] and evaluate them
from the aspects of usability and scalability.

REFERENCES

[1] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in
model-driven engineering,” IEEE Software, vol. 31, no. 3, pp. 79 – 85,
2014.

[2] The Eclipse Foundation, “CDO,” http://www.eclipse.org/cdo.
[3] ——, “EMFStore,” http://www.eclipse.org/emfstore.
[4] Git, “Git,” https://git-scm.com/.
[5] Apache, “Subversion,” https://subversion.apache.org/.
[6] G. Bergmann, C. Debreceni, I. Ráth, and D. Varró, “Query-based

Access Control for Secure Collaborative Modeling using Bidirectional
Transformations,” in ACM/IEEE 19th Int. Conf. on MODELS, 2016.

[7] Z. Diskin, “Algebraic models for bidirectional model synchronization,”
in International Conference on Model Driven Engineering Languages
and Systems. Springer, 2008, pp. 21–36.

[8] A. Bagnato, E. Brosse, A. Sadovykh, P. Maló, S. Trujillo, X. Mendial-
dua, and X. De Carlos, “Flexible and scalable modelling in the mondo
project: Industrial case studies.” in XM@ MoDELS, 2014, pp. 42–51.

[9] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige, “Different
models for model matching: An analysis of approaches to support
model differencing,” in Proceedings of the 2009 ICSE Workshop on
Comparison and Versioning of Software Models. IEEE Computer
Society, 2009, pp. 1–6.

[10] M. Laakso and A. Kiviniemi, “The IFC standard: A review of history, de-
velopment, and standardization, information technology,” ITcon, vol. 17,
no. 9, pp. 134–161, 2012.

[11] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[12] R. Reddy, R. France, S. Ghosh, F. Fleurey, and B. Baudry, “Model
composition-a signature-based approach,” in Aspect Oriented Modeling
(AOM) Workshop, 2005.

[13] Á. Hegedüs, Á. Horváth, I. Ráth, R. R. Starr, and D. Varró, “Query-
driven soft traceability links for models,” Software & Systems Modeling,
pp. 1–24, 2014.

[14] G. Bergmann, Z. Ujhelyi, I. Ráth, and D. Varró, “A graph query language
for emf models,” in International Conference on Theory and Practice
of Model Transformations. Springer, 2011, pp. 167–182.

[15] C. Brun and A. Pierantonio, “Model differences in the eclipse modeling
framework,” UPGRADE, The European Journal for the Informatics
Professional, vol. 9, no. 2, pp. 29–34, 2008.

[16] Z. Xing and E. Stroulia, “Umldiff: an algorithm for object-oriented
design differencing,” in Proceedings of the 20th IEEE/ACM Int. Conf.
on Automated Soft. Eng. ACM, 2005, pp. 54–65.

[17] D. S. Kolovos, R. F. Paige, and F. A. Polack, “Model comparison: a
foundation for model composition and model transformation testing,” in
Proceedings of the 2006 international workshop on Global integrated
model management. ACM, 2006, pp. 13–20.

http://www.eclipse.org/cdo
http://www.eclipse.org/emfstore
https://git-scm.com/
https://subversion.apache.org/

	Introduction
	Preliminaries
	Instance Models and Modeling Languages
	Enforce Access Control Policies by Graph Transformation
	Model Comparison

	Motivating Example
	Overview of the Approaches
	Static Identifiers
	Custom Identifiers
	Signature-based Matching
	Similarity-based Matching
	Language-specific Algorithms

	Conclusion and Future Work
	References

