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Abstract:  

Changes of seasonal dispersal flight were investigated based on a wide spectrum of aquatic Heteroptera and 

Coleoptera species. We hypothesized that species or groups of species can be characterized by various seasonal 

patterns of dispersal flight. Dispersal activity was studied in a lowland marsh located in NE Hungary during a 

30-week long monitoring period. Insects were attracted to highly polarizing horizontal shiny black plastic sheets 

laid onto the ground. There are no periods of the year (from April till October) when insects are not rising into 

the air, but species have various seasonal flight activity. Dispersal flight activity of 45 species could be 

described. These activities assessed based on a seasonal approach and proportional classification. Based on these 

results three seasonal patterns and twelve sub-patterns were defined. Comparing the observed patterns with 

previously reported dispersal activity data, we argue that observations found in the literature fit well with 

patterns defined here, therefore, to assess the dispersal behaviour a unified scheme can be established.  Due to 

this unified scheme the seasonal dispersal activity of primary aquatic insects observed in different studies 

becomes highly comparable. This scheme can be a useful tool for assessing dispersal behaviour of insects across 

other geographic regions. 
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Introduction 31 

Overwintering, mating and deposition of eggs in suitable aquatic habitats are instinctive goals for 32 

aquatic insects (Bohonak & Jenkins 2003). To be in the most suitable habitat in each period of their life cycle, 33 

aquatic beetles and bugs shuttle among these habitats by flight according to their 'colonization cycle' denoted by 34 

Fernando & Galbraith (1973). Flight is not the only but the most effective way of dispersal (Bilton et al. 2001) 35 

and be an important prerequisite of survival in both individual and population level (Landin 1980). Indirectly, 36 

dispersal flight is important from conservation biological (Eyre 2006), and evolutionary points of view (Wagner 37 

& Liebherr 1992). Thus, understanding this kind of dispersal behaviour of aquatic insects is an old goal for 38 

ecologists. 39 

The phenomenon of the dispersal flight, as a result of complex processes is driven and influenced by 40 

many biotic and abiotic factors: e.g. elevation of the sun which determines the polarotactic detectability of water 41 

surfaces (Csabai et al. 2006), air temperature (Weigelhofer et al. 1992), water temperature (Popham 1953, 42 

Pajunen & Jansson 1969), wind speed (Pajunen & Jansson 1969, Csabai & Boda 2005), rain, reproductive status 43 

(Boda & Csabai 2009a), density (Yee et al. 2009, Pajunen & Pajunen 2003), actual state and changing of the 44 

original habitat (food sources, decrease of the water level, amount of predators, etc.) as noted by Nilsson & 45 

Svensson 1992, Ohba & Takagi 2005, Yee et al. 2009, for example. Almost all of these factors are continuously 46 

changing in time; many of them are changing between well defined thresholds through different seasons. All of 47 

the environmental factors together have a well defined seasonal rhythm, and it clearly defines the possibilities 48 

and needs of dispersal flight, so they must have a seasonal rhythm, too. If this is so, the most useful approach to 49 

describe the year-long changes of dispersal flight would be a season-based one. 50 

Many authors have investigated the flight of aquatic beetles and bugs and the literature is rich with 51 

useful information and data about the seasonal changes of aerial dispersal. Some authors tried to describe the 52 

changes of the dispersal behaviour during longer periods than one season (Thomas 1938, Leston & Gardner 53 

1953, Brown 1954, Fernando 1958, Richard 1958, Young 1966, Pajunen & Jansson 1969, Benedek & Jászai 54 

1972, Fernando & Galbraith 1973, Landin 1980, Bagge 1982, Van der Eijk 1987, Behr 1990, Weigelhofer et al. 55 

1992, Nilsson 1997, Lundkvist et al. 2002, Miguélez & Valladares 2008), while others noted only some clearly 56 

visible peaks of dispersal activity (Popham 1964, Williams 1987, Davy-Bowker 2002) or just noted that the 57 

dispersal flight occurred in warmer days without strong wind (Richardson 1907, Macan 1939, Poisson et al. 58 

1957). Generally, the objects of these investigations are restricted to only a few species. Moreover, most of the 59 

former studies were conducted by using light traps (e.g. Benedek & Jászai 1972, Zalom et al. 1980, Weigelhofer 60 
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et al. 1992), but in these cases only the evening and the night flight are observable, which is important but only a 61 

short part of the daily flying period. In colder seasons of the year (spring and autumn) no dispersal activity could 62 

be observed during night flights mainly due to the lower evening and night air temperature, although the 63 

dispersal flight can be remarkable during daytime in these seasons too (Csabai et al. 2012). Applying the light-64 

trap method we cannot draw reasonable conclusions about the rhythm of the year-long dispersal flight. There are 65 

some methods, which might be proper to follow up year-long dispersal behaviour such as mark-recapture 66 

methods (Pajunen & Jansson 1969, Davy-Bowker 2002, Pajunen & Pajunen 2003), water filled trays, tanks or 67 

pools (Fernando & Galbraith 1973, Behr 1990, Lundkvist et al. 2002, Boix et al. 2011), but these techniques 68 

require huge sampling efforts to studying dispersal flight throughout the year. Strictly because of the above 69 

mentioned shortcomings just some of these papers (Pajunen & Jansson 1969, Fernando & Galbraith 1973, 70 

Landin 1980, Behr 1990, Nilsson 1997, Lundkvist et al. 2002, Miguélez & Valladares 2008) treated and tried to 71 

describe the real seasonal rhythm of dispersal flight. Additional dispersal-based studies focused not on seasonal 72 

dispersal activity but on other strongly specified questions, which are only marginally affected by seasonal 73 

dispersal flight. 74 

Summarized, many details of the seasonal dispersal flight of certain species have become known thanks 75 

to former studies conducted by variously applied methods. However these data were episodic and no one has yet 76 

tried to integrate the accumulated knowledge into a comprehensive scheme. 77 

The aim of our work was to describe the dispersal flight activity of a wide spectrum of aquatic insects 78 

all day long on every week during a whole year period. We hypothesized that species (or group of species) can 79 

be characterized by different yearly rhythms of dispersal flight. Based on the annual flight data of a wide 80 

spectrum of species we proposed here a new unified scheme with seasonal approach for classification and 81 

description of seasonal dispersal flight. Finally, in spite of the methodological incongruence, we tried to insert 82 

the previously published results into the scheme. 83 

 84 

Material and methods 85 

Study site: Our study area was in north-eastern Hungary, in the territory of Hortobágy National Park, in 86 

the area of the Egyek-Pusztakócs Marsh System, at the shore of Hagymás-basin marsh (47°33'29” N, 20°55'29” 87 

E; 10 km ×10 km UTM grid code: DT 96). It lies in a semiarid-semihumid climatic region, where average yearly 88 

air temperature is 9.8–9.9 ºC. Average yearly precipitation is 520–550 mm, and most of that falls in spring and 89 

autumn. The area of the Hagymás-basin was approximately 0.3 km2 with depth up to 80 cm. The marsh was 90 
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characterized by various and extremely patchy vegetation, and consequently by rich and diverse aquatic beetle 91 

and bug assemblages (Csabai et al. 2005). During the sampling period the water level of the marsh was more or 92 

less permanent, because of the continuous water supply from floods and rainfalls.  93 

Theoretical basis of the sampling method: Almost all aquatic insects are capable of detecting 94 

polarised light (Horváth & Varjú 2004, Kriska et al. 2007, Horváth et al. 2011). Aquatic beetles and bugs can 95 

also find new habitats by means of the horizontal polarization of light reflected from the water surface (Schwind 96 

1991). Shiny surfaces (e.g. car bonnets, black plastic sheets used in agriculture, vertical glass surfaces) – from 97 

which the direction and the degree of the polarized light is similar to that of the light reflected from water 98 

surfaces – may confuse polarotactic water insects, since they detect them as horizontally polarizing water 99 

surfaces (Horváth 1995). Therefore aquatic insects can be trapped by using these artificial surfaces (Bernáth et 100 

al. 2001).  101 

Sampling period, method and elaboration: In the light of climatic and meteorological conditions in 102 

Hungary and their effects on the seasonal flight activity and phenology of primary aquatic insects (e.g. Boda & 103 

Csabai 2009a, 2009b), samples were taken altogether on 30 sampling weeks, from 14th week (beginning of 104 

April) until 43rd week (end of October) in 2005. Aquatic insects were collected for 24 hours on every week 105 

separated hourly. Sampling began every Wednesday at 8 a.m. (Local summer time: UTC + 2), regardless of 106 

weather conditions and was carried out until the next morning (8 a.m.). Aquatic insects were trapped on three 107 

black agricultural plastic sheets (foils) laid onto the ground, all of them were 9 m × 3 m in size. During the 108 

sampling period several such plastic sheets were used, their order was changed randomly. These test surfaces 109 

were placed 40 m apart from each other, and 30 m from the water margin. Using insect aspirators, water bugs 110 

and beetles that landed on the test surfaces were collected continuously by manual sampling. Individuals from 111 

the test surfaces were put into separate bottles hourly, which were labeled by the code of the surface and the time 112 

and date of collection. Collected animals were preserved in 70% ethanol. Beetles were identified under 113 

stereomicroscope in the laboratory using keys and descriptions by Csabai (2000) and Csabai et al. (2002). 114 

Aquatic bugs were identified using keys by Jansson (1986), Savage (1989) and Soós et al. (2009). Dryops spp., 115 

Hydrochus spp. and Helophorus spp. taxa were identified only to genus level. 116 

Evaluation: Despite the hourly separated samples, daily pooled data were used during evaluation. 117 

There were no significant differences among the catch efficiencies of the sheets (Csabai et al. 2012), hence the 118 

data originating from the three sheets were grouped together in the evaluation. Those sampling days, when the 119 

weather conditions (strong wind and rain) inhibited or extremely decreased the dispersal flight – 16th, 18th and 120 
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23rd weeks – were ignored and excluded from the evaluation. There were two notable altering dates in the 121 

composition of the flying assemblage [numbers of individuals of each species (see details in Csabai et al. 2012)]. 122 

The first such date was on the 21
st
 week, and another one was in the 35

th
 week. These two dates show high 123 

coincidence with the turning points of the seasons. Hence, seasonal approach with two stages was used to 124 

analyze the data and define the main dispersal periods. The characteristic of dispersal flight in case of a given 125 

species can be assessed as proportion of the maximal dispersal flight activity. Hence, the comparison will be 126 

relevant in cases of various regions and in cases of certain species by the help of this percentile approach. 127 

Maximal dispersal activity of species can be observed solely in one season, with a global peak of activity. This 128 

global peak with maximal number of individuals was regarded as 100 % of the dispersal activity and further 129 

activity peaks were expressed as a percentage of this global peak. Besides the maximal dispersal peak, there 130 

might be lower but clearly visible peak(s) of flight activity in another season or seasons. If these additional peaks 131 

reached at least 20% of the maximal flight activity, it was considered as a significant local peak. Namely, the 132 

season of the maximal dispersal activity with the global peak may define the ‟seasonal dispersal main pattern‟; 133 

moreover local peak(s) of dispersal activity or its absence may correspond to the „seasonal dispersal sub-pattern‟. 134 

Relations of the local peaks to each other were not taken into consideration in the sub-pattern stage because of 135 

their high variability and less importance. Thereby, spring (SP), summer (SU) and autumn (AU) main patterns 136 

and related sub-patterns are evolved (Table 1 and 2). The naming process follows the evaluation stages as three-137 

code signs. Namely, the code written in capital letters means the abbreviation of the main pattern (SP, SU or 138 

AU), the other codes with small letters refers to the sub-patterns (sp, su, au). The order of the codes follows the 139 

natural order of seasons. For example, sp-SU-au means that the highest flight activity peak can be found during 140 

summer and additional local peaks are visible during spring and autumn, of which either local peak can be higher 141 

or lower. „0‟ code was used when one or both of the additional local peaks were absent such as in the following 142 

cases for example: 0-SU-0 means maximal activity in summer and no significant dispersal flight during spring 143 

and autumn; sp-0-AU means maximal activity in autumn and local peak(s) can be found only in spring, but not 144 

during summer; or SP-0-au means highest dispersal activity in spring, no notable flight in summer but local 145 

peak(s) present during autumn. All possible combinations of patterns and sub-patterns according to the seasons 146 

with a short description of each combination were summarized in Table 2. All of the common species can be 147 

placed into one combination of the patterns and sub-patterns with no doubt, but below 100 captured individuals, 148 

the flight dynamics might be formed by coincidental occurrences, hence dispersal patterns of these less common 149 

species were assigned as questionable. To prove the soundness of the scheme based on the percentile approach 150 
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we used non-metric multidimensional scaling (NMDS) ordination with Euclidean distances. Dispersal 151 

characteristics of all common species were included in the analyses; as variables the percentage share of 152 

dispersal peaks were used. On the scattergram, species of each main pattern were denoted by convex hulls, while 153 

sub-patterns were signed with different symbols. 154 

 155 

Results 156 

45 433 specimens belonging to 90 taxa of water beetles (40 200 individuals, 69 taxa) and bugs (5 233 157 

individuals, 21 taxa) were captured (Table 1). The collected species are common inhabitants of both temporary 158 

and permanent waters and they are generally good fliers (Savage 1989, Nilsson & Holmen 1995). Dispersal 159 

flight of aquatic insects was observed from April till October with various numbers of individuals and species 160 

(Figure 1).  161 

Generally, the species showed different activity in the seasons (Table 1). Based on the two stages 162 

seasonal approach, we observed all of the three possible main patterns and 10 sub-patterns of the 12 possible 163 

ones (Figure 2 A-I). All possible and realized combinations of patterns and sub-patterns according to the seasons 164 

were listed in Table 2. Based on the captured numbers of individuals, 22 species were regarded as common 165 

species (n>100) and in these cases the classification could be done without doubt. The dispersal pattern/sub-166 

pattern could be assigned with relatively high certainty to 23 species (10<n<100), but the classification was still 167 

questionable. Further 45 species cannot be classified to any seasonal pattern because of the small numbers of 168 

individuals (n<10). 29 of 45 more common species flew during all of the three seasons, 14 species occurred in 169 

two seasons only, while two were noticed only in one season (Table 1). 170 

More than half, 24 of 45 more common species flew according to the summer (SU) main pattern; it was 171 

the most popular season for flight. There were no species – except some with extreme low numbers of 172 

individuals (n<10) – which did not fly in summer. 17 species followed the spring (SP) and only four species 173 

followed the autumn (AU) main-patterns. Within the spring main pattern (SP), the most frequent sub-patterns 174 

were the SP-0-0 and SP-su-0 sub-patterns, both followed by 8 species. There was only one species which flew 175 

according to SP-0-au sub-pattern. Within the summer main pattern (SU), the 0-SU-0 sub-pattern was preferred 176 

the most (16 species), but 2-2 species flew according to the 0-SU-au sub-pattern and the sp-SU-au sub-pattern. 177 

Although, sp-SU-0 sub-pattern had 4 follower species, but all of them were less common species (10<n<100), so 178 

in these cases the classifications were questionable. Among the three species, which flew en masse in autumn, 179 
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one followed the 0-0-AU sub-pattern, one the sp-0-AU sub-pattern, and one the 0-su-AU sub-pattern; moreover 180 

the later one has further follower species with lower number of individuals.  181 

During the evaluation we revealed that there might be two more sub-patterns theoretically (Table 2). In 182 

spite of that, we could not find species which flew in spring like SP-su-au sub-pattern and in autumn as sp-su-183 

AU sub-pattern. Namely, there were no species in our study which flew en masse during all the three seasons 184 

and the maximal dispersal activity was in spring or autumn. Based on the theoretical background of the scheme, 185 

the realness of the hypothetic sub-patterns are highly presumptive. Even if these sub-patterns were considered 186 

theoretical, we treated them as genuine parts of the scheme.  187 

Based on the NMDS ordination, the dispersal flight characteristics in case of the common species were 188 

truly different in pattern and sub-pattern levels, the scattergram clearly shows that species were classified to 189 

different patterns and sub-patterns were highly separated each other (Figure 3). The species formed three well-190 

separated groups according to the main patterns, the sub-patterns also separated well within these groups.  191 

 192 

Discussion 193 

It is notable, that aquatic insects achieve dispersal flight in any period of the year, but its extent and 194 

duration have remained poorly understood in the majority of primary aquatic insect species. We used an 195 

adequate new sampling method (Csabai et al. 2006, 2012) to follow up the seasonal changes of dispersal flight. 196 

A unified scheme was established based on seasonal dispersal activity of 45 species to assess the types of 197 

seasonal dispersal behaviour. In the first stage spring, summer and autumn seasonal dispersal main patterns were 198 

observed. In general, we found that there are no periods from the beginning of April till the end of October, 199 

when aquatic insects are not rising into the air. Most of the species flew in maximal number of individuals in 200 

summer. This is highly consistent with the results of all former studies (Table 3), but we revealed that there are 201 

several species which flew „en masse‟ in spring and autumn. Dispersal flight in spring and autumn were 202 

mentioned in former publications, but rarely assigned as maximal peaks of activity. The optimal flying periods 203 

are shorter in spring and autumn than summer because of the rainfall and the lower air temperature (Csabai et al. 204 

2012). In spite of this, a lot of species show maximal dispersal activity during either of these colder periods. In 205 

the second stage we described 12 sub-patterns all together. The common marsh dwelling species utilized nine of 206 

them in Hungary; hence these are treated as realized sub-patterns. One further sub-pattern exists with only some 207 

species and low numbers, so the presence of this sub-pattern can be not clearly revealed in our region. There are 208 

two more sub-patterns (SP-su-au, sp-su-AU) marked as theoretical sub-patterns which were not realized during 209 



8 

 

our sampling period and/or among these marsh-dwelling species in Hungary. Naturally, there might be followers 210 

for these sub-patterns at different habitats and/or in different geographical areas.  211 

General conclusions about the dispersal or concrete seasonal peaks of dispersal flights were described 212 

by many authors using various sampling methods. But only those dispersal-based studies pointed out the 213 

seasonal changes of dispersal flight, in which the sampling periods covered three seasons and the sampling 214 

frequency was strictly regular (Table 3). Based on these papers, the first period of dispersal flight might occur 215 

during April and May. Generally, both the mass and maximal dispersal flights were observed in the summer 216 

months. From September to the end of October only a low number of individuals were collected. Respectively, 217 

several exact seasonal flight periods and peaks of dispersal activity were mentioned by these authors, but the 218 

differences between the extents of peaks were never taken into consideration. Without the assessment of the 219 

relationship among the peaks it is hard to draw exact conclusions about the seasonal changes of dispersal 220 

behaviour. We are not only considering the extent of the peaks, but this is also the basis of the scheme. Despite 221 

that our scheme was established based on a Hungarian pilot study, the classification is widely and generally 222 

applicable to characterize the seasonal dispersal flight of primary aquatic insects. To demonstrate this, we 223 

selected some former studies in which the sampling periods were more than seven months (covering three 224 

seasons) and reported high numbers of collected individuals, moreover the changes of the dispersal activity are 225 

traceable and the applied method is adequate to study the seasonal dispersal rhythm (Table 4). Six of these seven 226 

studies investigated the seasonal flight periods of aquatic beetles, whereas only one paper dealt with this kind of 227 

activity of aquatic bugs. Reviewing these studies well-defined seasonal dispersal description can be found in 228 

cases of 19 species. Unfortunately there are only three aquatic beetle species which were common both among 229 

results of these studies and in our checklist and further three aquatic beetle species were common among the 230 

cited papers (Table 4). In the case of these species, strong differences in the seasonal patterns could have been 231 

caused by a few factors. 232 

1. Geographic differences: In case of Anacaena limbata, Fernando & Galbraith (1973) mentioned an 233 

SU main pattern with various sub-patterns (sp-SU-0 or sp-SU-au) in Canada, but we observed this species as a 234 

typical spring flyer (SP-0-0). Both classifications are based on many data (more than 500 individuals), hence the 235 

classifications are not questionable. The spring dispersal period was observed in the dispersal behaviour in both 236 

regions. The climate of the Canada might have formed the various seasonal dispersal behaviours, and suppressed 237 

the spring dispersal to the sub-pattern level. Similar mechanisms might have formed the pattern and sub-patterns 238 

of Agabus bipustulatus. According to Behr (1990) and Lundkvist et al. (2002), A. bipustulatus had two active 239 
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periods during the year. The first period was in summer months and the second was during October. In Germany 240 

(Behr 1990), the maximal activity was observed in summer with a feasible peak in autumn (0-SU-0 or 0-SU-au), 241 

while in Sweden (Lundkvist et al. 2002) the species had 0-su-AU sub-pattern. Most probably, the same effect 242 

might be seen according to the changes of the altitude. Unfortunately, there are no results about this phenomenon 243 

in case of aquatic insects, but it is clearly shown in case of terrestrial insects (e.g. Holuša et al. 2006). 244 

2. Number of individuals collected: For example, Hydroporus planus flew according to SP-su-0 sub-245 

pattern in Hungary, but there are no great difference in the seasonal dispersal percentages in spring and summer 246 

(spring: 51,6%, summer: 41,9%; Table 1). In Germany, Behr (1990) described this species as a typical summer 247 

flyer (0-SU-0), while Lundkvist et al. (2002) in Sweden described two different flight behaviors (0-SU-0 and 0-248 

SU-au). These differences might be caused by the differences among the collected number of individuals (Behr: 249 

86 ind., Lundkvist et al.: almost 500 ind., this study: 31 ind.). Our classification might be influenced by the 250 

coincidental occurrences because of the smaller number of collected individuals and the almost equal dispersal 251 

percentage during two seasons. If three individuals did not fly in the last sampling day of spring, but did in the 252 

first sampling day in summer, the main pattern and the sub-pattern could be the same as Behr (1990) and 253 

Lundkvist et al. (2002) described. Similar reasons could explain Hydroglyphus geminus being described as 0-254 

SU-0 or 0-SU-au sub-pattern in Spain based on only 72 specimens (Miguélez & Valladares 2008), while in 255 

Hungary this species had 0-su-AU sub-pattern with no doubt (1926 ind.). These cases strongly support our 256 

statement that classification can be done without doubt when the number of individuals are high enough (n>100), 257 

otherwise the patterns must be considered as questionable. 258 

Another problem based on numbers of individuals can be arisen during applying our evaluation method, 259 

if the sampling intensity was highly uneven among the seasons. If numbers of samples are the same from every 260 

season, the activity pattern and coding can undoubtedly considered to be real and appropriate. However, if the 261 

numbers of samples from each season are different, it is recommended to introduce a restriction for assessing the 262 

seasonal flight activity. Our suggestion that it could be done based on the percentage shares of the samples and 263 

numbers of individuals among the seasons. If the percentage distribution of the samples (sampling days) are, for 264 

example, spring: 20% - summer: 60% - autumn: 20 %, the activity pattern can be considered as real and 265 

acceptable if the percentage share of the number of individuals of a certain species reach or exceed the share of 266 

the samples for that season when the maximum activity peak can be visible (main pattern). So if the global 267 

activity peak could be seen in spring and local peaks were observed in summer, the seasonal activity pattern 268 

would be SP-su-0; but it can be considered to be real and acceptable if more than 20% of the individuals were 269 
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caught during spring. If the maximal peak was observed in summer and there were additional peaks in spring 270 

(sp-SU-0), the pattern can be correct if at least the 60% of the individuals were captured in summer. If this 271 

criterion is not satisfied the stated pattern should be regarded as questionable, even if it is based on high number 272 

of individuals. In our study the percentage distribution of the samples (sampling days) among the seasons was 7 273 

(23,33%) - 13 (43,33%) - 10 (33,33%), respectively. Based on this, all common species met the criterion and 274 

produced significantly higher proportion (Table 1) than the share of samples in that season when the maximal 275 

dispersal peak was manifested. 276 

3. Taxonomic resolution: Helophorus brevipalpis were mentioned by Landin (1980) from Sweden and 277 

by Miguélez & Valladares (2008) from Spain as a summer species, but whereas Miguélez & Valladares (2008) 278 

described a local peak in spring (sp-SU-0), Landin (1980) found it only in summer (0-SU-0). Landin & Stark 279 

(1973) previously mentioned that H. brevipalpis occurs in September in Sweden, but they only followed 280 

dispersal flight during a short period. In the present study, Helophorus individuals were identified only to genus 281 

level, and flew ‘en masse’ in summer, but further local peaks can be seen in the other seasons. Further analyses 282 

with better taxonomic resolution are needed before making conclusions about these comparisons for H. 283 

brevipalpis.  284 

4. Unidentified reasons: Hydroporus incognitus were described as 0-SU-au species in Sweden by 285 

Nilsson (1997), with high numbers of individuals in September. In Germany, Behr (1990) described H. 286 

incognitus as a typical summer species (0-SU-0). The flight is pre-reproductive in Sweden and directly following 287 

the breeding season in Germany (Nilsson 1997). Later, in Sweden also, Lundkvist et al. (2002) found 0-SU-au 288 

sub-pattern during the first sampling year, but in the second year the local peak occurred in spring (sp-SU-0). In 289 

both years, the local peaks were near to the global peak. Based on this, the explanation of Nilsson might be 290 

reconsidered. In fact, H. incognitus has a very high dispersal activity throughout the year where it is found.  291 

In summary, we described the results of a mensurative experiment, established a frame scheme and 292 

inserted all previously known results into the frames. Our scheme is likely in accordance with the natural 293 

phenomenon. Namely, there might be several main periods of dispersal flight based on likely reasons of why the 294 

aquatic insects arise to the air. The „colonization cycle‟ – habitat selection for different purposes during life cycle 295 

– determines the main periods of dispersal flight, and it can be further divided based on the purpose of the flight 296 

- breeding-, hibernation-, aestivation- and feeding-flight as noted by Fernando & Galbraith (1973). In Europe, 297 

the breeding flight generally occurs in spring and early summer. In summer, the purposes of the dispersal flight 298 

are to find suitable habitat for feeding or aestivation. In this period the starting of dispersal flight is primary 299 
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influenced by the condition of habitats and stochastic ecological conditions as noted by Popham (1964). In 300 

autumn, most of the species are looking for a suitable habitat for overwintering (Fernando & Galbraith 1973). 301 

Whatever is the reason, the phenology features and the environmental factors (e.g. rainfall, water loss, increased 302 

water and air temperature, high predation pressure, food shortage) together affect the realized flying periods. It 303 

follows that these periods are species and geographically dependent. The turning point of the seasons might be 304 

different based on the latitude. If this is so, the dispersal behaviour of a given species might be different in 305 

different geographical areas, as Pajunen & Jansson (1969), Benedek & Jászai (1972), Lundkvist et al. (2002) and 306 

Boda & Csabai (2009a) previously mentioned.  307 

All the data from previous studies about the dispersal flight originated from the temperate zone of 308 

Europe and North America; the scheme is useable in these regions yet. Naturally, winter season may play a 309 

significant role in forming seasonal dispersal flight in warmer climates, for example the south part of the 310 

Mediterranean, subtropical or tropical territories of other continents. Thus, a winter main pattern (WI) and its 311 

sub-patterns likely would appear in the scheme and the sub-pattern level might be widened in the future in cases 312 

of all other main patterns. The scheme is appropriate for including in new patterns and can be expanded to 313 

accommodate future investigations.  314 

315 
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Legends of Figures  436 

 437 

Figure 1 Dispersal activity during the whole sampling period. (A) total number of collected individuals, (B) total 438 

number of species. The grey arrows show the sampling days, when the weather conditions inhibited the 439 

dispersal. 440 

 441 

Figure 2 Seasonal dispersal patterns and realized sub-patterns based on the dispersal dynamics of a typical 442 

species highlighted in bold. The species included the same pattern and sub-pattern displayed in the diagram, too. 443 

(A-C) Spring main pattern (SP), framed up with green (A): Spring sub-pattern (SP-0-0), (B): Spring-summer 444 

sub-pattern (SP-su-0), (C): Spring-autumn sub-pattern (SP-0-au). (D-F) Summer main pattern (SU), framed up 445 

with red (D): Summer sub-pattern (0-SU-0), (E): Summer-autumn sub-pattern (0-SU-au), (F): Summer-spring-446 

autumn sub-pattern (sp-SU-au). (G-I) Autumn main pattern (AU), framed up with grey (G): Autumn sub-pattern 447 

(0-0-AU), (H): Autumn-summer sub-pattern (0-su-AU), (I): Autumn-spring sub-pattern (sp-0-AU). 20% of the 448 

maximal flight activity was shown by the broken lines as the boundary of the sub-pattern level. The species 449 

highlighted in bold are represented in pictures. 450 

 451 

Figure 3 The differentiation of the dispersal flight behaviour in pattern and sub-pattern levels using non-metric 452 

multidimensional scaling (NMDS, final stress = 0.0239). 453 
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Table 1 Checklist of the collected taxa, percentage distribution of seasonal dispersal activity, total numbers of 

individuals and seasonal dispersal flight patterns / sub-patterns followed by each species (Ntotal: numbers of 

captured individuals during the whole sampling period; *: patterns and sub-patterns are questionable; 

Abbreviations of the pattern codes as in Figure 2.) 

Taxon 
Spring % 

 (14-20. week) 

Summer %  

(21-33. week) 

Autumn % 

(34-43. week) 
Ntotal  

Patterns 

and sub-

patterns 

Helophorus spp. 17,8 76,4 5,8 24590 sp-SU-au 

Sigara lateralis (Leach, 1817) 0 98,6 1,4 3375 0-SU-0 

Enochrus quadripunctatus (Herbst, 1797) 12,3 66,1 21,6 3243 sp-SU-au 

Helochares obscurus (O.F. Müller, 1776) 49,8 44,7 5,5 2478 SP-su-0 

Enochrus affinis (Thunberg, 1794) 17 25,8 57,2 1937 sp-0-AU 

Hydroglyphus geminus (Fabricius, 1792) 0,3 37,7 61,9 1926 0-su-AU 

Sigara falleni (Fieber, 1848) 0,1 99,8 0,1 1446 0-SU-0 

Hydroporus fuscipennis Schaum, 1868 84,9 15 0,1 1387 SP-0-0 

Berosus frontifoveatus Kuwert, 1888 5,2 93,8 1 730 0-SU-0 

Hydrochus spp. 87,2 12,8 0 697 SP-0-0 

Anacaena limbata (Fabricius, 1792) 92,5 6,6 0,9 548 SP-0-0 

Enochrus bicolor (Fabricius, 1792) 27,7 71,8 0,5 365 SP-su-0 

Hygrotus impressopuctatus (Schaller, 1783) 5,3 65,1 29,5 281 0-SU-au 

Graptodytes bilineatus (Sturm, 1835) 71,4 27,4 1,2 248 SP-su-0 

Cymbiodyta marginella (Fabricius, 1792) 61,3 36,2 2,6 235 SP-su-0 

Hydrobius fuscipes (Linnaeus, 1758) 58,5 19,2 22,3 224 SP-0-au 

Sigara striata (Linnaeus, 1775) 0 98,6 1,4 219 0-SU-0 

Laccophilus minutus (Linnaeus, 1758) 4,4 78 17,6 205 0-SU-au 

Dryops spp. 81,3 14,1 4,7 128 SP-0-0 

Rhantus suturalis (MacLeay, 1825) 4 26,4 69,6 125 0-0-AU 

Hydroporus angustatus Sturm, 1835 70,4 22,6 7 115 SP-0-0 

Berosus signaticollis (Charpentier, 1825) 34,9 61,5 3,7 109 SP-su-0 

Enochrus coarctatus (Gredler, 1863) 54,8 29,8 15,5 84 *SP-su-0 

Hesperocorixa linnaei (Fieber, 1848) 6,3 93,8 0 64 *0-SU-0 

Agabus uliginosus (Linnaeus, 1761) 81,7 16,7 1,7 60 *SP-0-0 

Enochrus testaceus (Fabricius, 1801) 32,1 67,9 0 53 *0-SU-0 

Sigara nigrolineata (Fieber, 1848) 0,0 97,6 2,4 41 *0-SU-0 

Hydrochara flavipes (Steven, 1808) 31,6 55,3 13,2 38 *sp-SU-0 

Hygrotus inaequalis (Fabricius, 1776) 3,0 72,7 24,2 33 *0-SU-0 

Hydroporus planus (Fabricius, 1781) 51,6 41,9 6,5 31 *SP-su-0 

Liopterus haemorrhoidalis (Fabricius, 1787) 83,9 16,1 0 31 *SP-0-0 

Hydrochara caraboides (Linnaeus, 1758) 76,7 13,3 10,0 30 *SP-0-0 

Limnoxenus niger Zschach, 1788 60,0 40,0 0 25 *SP-su-0 

Colymbetes fuscus (Linnaeus, 1758) 0 100,0 0 24 *0-SU-0 

Gerris odontogaster (Zetterstedt, 1828) 20,8 58,3 20,8 24 *0-SU-0 

Graphoderus austriacus (Sturm, 1834) 18,2 72,7 9,1 22 *0-SU-0 

Berosus luridus (Linnaeus, 1761) 50,0 50,0 0 20 *sp-SU-0 

Haliplus ruficollis De Geer, 1774) 5,3 94,7 0 19 *0-SU-0 

Enochrus melanocephalus (Olivier, 1792) 23,5 70,6 5,9 17 *0-SU-0 

Callicorixa praeusta (Fieber, 1848) 6,3 93,8 0 16 *0-SU-0 

Peltodytes caesus (Duftschmid, 1805) 43,8 53,2 0 16 *sp-SU-0 
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Porhydrus obliquesignatus (Bielz, 1852) 6,7 80,0 13,3 15 *0-SU-0 

Paracorixa concinna (Fieber, 1848) 0,0 100,0 0 14 *0-SU-0 

Bidessus nasutus Sharp, 1887 23,1 76,9 0 13 *0-SU-0 

Agabus labiatus (Brahm, 1790) 58,3 41,7 0 12 *SP-0-0 

Hydaticus grammicus (Germar, 1830) 8,3 33,3 58,3 12 *0-su-AU 

Further species with low number of captured individuals: (9) Coelostoma orbiculare (Fabricius, 1775), (8) Enochrus fuscipennis 

(Thomson, 1878), (7) Gerris argentatus Schummel, 1832, Hydrochara dichroma (Fairmaire, 1892), (6) Cymatia rogenhoferi (Fieber, 1864), 

(4) Gyrinus substriatus Stephens, 1829, Hebrus pusillus (Fallén, 1807), Hydaticus seminiger (De Geer, 1774), Hydroporus palustris 

(Linnaeus, 1761), Notonecta glauca Linnaeus, 1758, (3) Acilius canaliculatus (Nicolai, 1822), Colymbetes striatus (Linnaeus, 1758), Corixa 

punctata Illiger, 1807, Rhantus frontalis (Marsham, 1802), (2) Acilius sulcatus (Linnaeus, 1758), Corixa affinis Leach, 1817, Graphoderus 

cinereus (Linnaeus, 1758), Gyrinus paykulli Ochs, 1927, Haliplus immaculatus Gerhardt, 1877, Hydrophilus aterrimus (Eschscholtz, 1822), 

Hygrotus parallellogrammus (Ahrens, 1812), Ilyocoris cimicoides (Linnaeus, 1758), Porhydrus lineatus (Fabricius, 1775), (1) Cymatia 

coleoptrata (Fabricius, 1776), Dytiscus circumflexus Fabricius, 1801, Enochrus ochropterus (Marsham, 1802), Gerris lacustris (Linnaeus, 

1758), Graptodytes granularis (Linnaeus, 1767), Graptodytes pictus (Fabricius, 1787), Haliplus heydeni Wehncke, 1875, Hesperocorixa 

sahlbergi (Fieber, 1848), Hygrotus confluens (Fabricius, 1787), Hyphydrus ovatus (Linnaeus, 1761), Ilybius ater (DeGeer, 1774), Ilybius 

quadriguttatus (Lacordaire, 1835), Laccobius bipunctatus (Fabricius, 1792), Laccobius minutus (Linnaeus, 1758), Noterus clavicornis (De 

Geer, 1774), Noterus crassicornis (O.F. Müller, 1776), Plea minutissima (Leach, 1817, Rhantus bistriatus (Bergsträsser, 1778), Sigara 

assimilis (Fieber, 1848), Sigara limitata (Fieber, 1848), Spercheus emarginatus (Schaller, 1783) 

 



Table 2 All possible and realized combinations of patterns and sub-patterns according to the seasons with a short 

description of each combination. Abbreviations of the pattern codes as in Figure 2. 

Cells filled with grey are not possible pattern combinations.  

*This pattern combination was followed up by only some species which were captured in quite small numbers of 

individuals, so it was not shown on Figure 2. 

** Follower species for this pattern combination were not found in our study. 
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none  

no local peaks in other 

seasons 
SP-0-0 0-SU-0 0-0-AU 

spring 
there is/are local 

peak(s) of flight 

activity in spring 

 sp-SU-0* sp-0-AU 

summer 
there is/are local 

peak(s) of flight 

activity in summer. 

SP-su-0  0-su-AU 

autumn 
there is/are local 

peak(s) of flight 

activity in autumn 

SP-0-au 0-SU-au  

spring-summer 
there are local peaks of 

flight activity both  in 
spring and summer 

  sp-su-AU** 

spring-autumn 
there are local peaks of 

flight activity both in 

spring and autumn 

 sp-SU-au  

summer-autumn 
there are local peaks of 

flight activity both in 

summer and autumn 

SP-su-au**   
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Table 3 Summary of published dispersal based studies in which (i) the sampling periods were more than seven 

months, (ii) the sampling frequency were regular, and (iii) original investigations that provided seasonal 

dispersal flight conclusions. 

Author(s) Taxa Method Territory Sampling 

period 

General conclusion 

about the mass 

dispersal period(s) 
Bagge (1982) Corixidae light-trap Finland from May to 

October 

from July to August 

Behr (1990) 
Hydroporus 

spp. 
artificial habitat  Germany 

from April to 

December 
from June to August 

Benedek & Juhász (1972) Corixidae light-trap Hungary 
from March to 

November 
June and September 

Brown (1954) Corixidae light trap Great Britain 
throughout the 

year* 
spring and early summer 

Fernando (1958) Corixidae 
light reflecting 

glass trap 
Great Britain 

from March to 

October 

spring and from June to 

August 

Fernando & Galbraith (1973) 
aquatic 

Coleoptera 
artificial habitat Canada 

from April to 

October 
from July to August 

Landin (1980) Helophoridae 
light reflecting 

glass trap 
Sweden 

from March to 

November 
from June to August 

Leston & Gardner (1953) Corixidae light-trap Great Britain 
from May to 

August 
July 

Lundkvist et al. (2002) Dytiscidae 
light reflecting 

glass trap 
Sweden 

from April to mid 

October 
from May to September 

Miguélez & Valladares (2008) 
aquatic 

Coleoptera 
Moericke trap Spain 

from March to 

November 
April to October 

Nilsson (1997) 
Hydroporus 

spp. 
red car roofs Sweden 

from May to early 

October 
from June to September 

Pajunen & Jansson (1969) Corixidae 
capture-mark-

recapture 
Finland 

from May to 

October 

early spring and late 

autumn 

Richard (1958) Corixidae light trap Great Britain 
from April to mid 

October 

April and from August to 

September 

Thomas (1938) Corixidae light-trap Great Britain 
throughout the 

year* 
summer 

Van der Eijk (1987) 
Gyrinus 

marinus 

capture-mark-

recapture 
Netherland 

from April to 

December 
from April to October 

Weigelhofer et al. (1992) Corixidae light-trap Austria from February to 

March (next year) 

from June to September 

Young (1966) Corixidae direct 

observation 

Great Britain from February to 

October 

from March to June 

*data originated from continuous use of light-traps 
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Table 4 Review and classification of formerly published results using the scheme. The table shows only those 

articles, which conform to the requirements of comparability given in Table 3 

 

*due to the low number of individuals captured the classification is questionable (10<n<100) 

 

Taxa 

Seasonal 

flight 

pattern 

References Territory 

Classification of the common species, which have more descriptions for seasonal dispersal flight in previous 

papers 

Coleoptera    

Dytiscidae    

Agabus bipustulatus (Linnaeus, 1767) 0-SU-0 Behr (1990) Germany 

 0-SU-au Behr (1990) Germany 

 0-su-AU Lundkvist et al. (2002) Sweden 

Hydroglyphus geminus (Fabricius, 1792) 0-SU-0* Miguélez & Valladares (2008) Spain 

 0-SU-au* Miguélez & Valladares (2008) Spain 

 0-su-AU present study Hungary 

Hydroporus incognitus Sharp, 1869 sp-SU-0 Lundkvist et al. (2002) Sweden 
 0-SU-au Lundkvist et al. (2002) Sweden 

 0-SU-0 Behr (1990) Germany 

 0-SU-au Nilsson (1997) Sweden 

Hydroporus planus (Fabricius, 1781) SP-su-0 present study Hungary 

 0-SU-0 Behr (1990) Germany 

 0-SU-0 Lundkvist et al. (2002) Sweden 

 0-SU-au Lundkvist et al. (2002) Sweden 

Helophoridae    

Helophorus brevipalpis Bedel, 1881 sp-SU-0 Miguélez & Valladares (2008) Spain 

 0-SU-0 Landin (1980) Sweden 

Hydrophilidae    
Anacaena limbata (Fabricius, 1792) SP-0-0 present study Hungary 

 sp-SU-0 Fernando & Gailbraith (1973) Canada 

 sp-SU-au Fernando & Gailbraith (1973) Canada 

Classification of the species, which have only one description for seasonal dispersal flight in previous papers 

Coleoptera    

Dytiscidae    

Hydroporus morio Aubé, 1838 0-Su-au Nilsson (1997) Sweden 

Hydroporus neglectus Schaum, 1845 0-SU-0 Behr (1990) Germany 

Hydroporus nigrita  (Fabricius, 1792) 0-SU-0 Nilsson (1997) Sweden 

Hydroporus  piceus Stephens, 1828 0-SU-au* Behr (1990) Germany 

Hydroporus pubescens (Gyllenhal, 1808) sp-0-AU* Miguélez & Valladares (2008) Spain 

Hydroporus  tristis (Paykull, 1798) 0-SU-0 Behr (1990) Germany 

Helophoridae    

Helophorus aequalis Thomson, 1868 0-SU-0 Behr (1990) Germany 
Helophorus alternans Gené, 1836 SP-0-0* Miguélez & Valladares (2008) Spain 

Helophorus orientalis Motschulsky, 1860 0-SU-0 Fernando & Gailbraith (1973) Canada 

 0-SU-au Fernando & Gailbraith (1973) Canada 

Helophorus strigifrons Thomson, 1868 SP-0-0 Landin (1980) Sweden 

Hydrophilidae    

Anacaena lutescens (Stephens, 1829) 0-SU-0 Behr (1990) Germany 

Heteroptera    

Corixidae    

Arctocorisa carinata (Sahlberg, 1819) 0-su-AU Pajunen & Jansson (1969) Finland 

Callicorixa producta (Reuter, 1880) 0-su-AU Pajunen & Jansson (1969) Finland 
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