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Abstract

Decomposition  of  chlorobenzene  as  a  model  molecule  of  aromatic  chlorinated 

compounds  was  studied  in  radiofrequency  (RF)  thermal  plasma  both  in  neutral  and 

oxidative conditions. Optical emission spectroscopy (OES) was applied for the evaluation 

of the plasma excitation and molecular rotational-vibrational temperature. Atomic (C, H, 

O) and molecular (CH, OH, C2) radicals were identified, while the morphology of the 

formed soot was characterized by electron microscopy. Organic compounds adsorbed on 

the surface of the soot after  plasma processing were comprised of various polycyclic 

aromatic hydrocarbons (PAH) and chlorinated PAH molecules. Their amount was greatly 

affected by experimental conditions, especially the oxygen content and plate power. The 

higher input power reduced the ring number of the PAH molecules. Addition of oxygen 

significantly reduced the amount of both PAHs chlorinated PAH molecules but enhanced 

the formation of polychlorinated benzene compounds.
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1. Introduction

Halogenated hydrocarbons used to be commonly used industrial solvents because of their 

advantageous  properties  like  easy  production  and  low  flammability.  However,  they 

contribute to huge environmental problems like global warming and stratospheric ozone 

depletion.  Furthermore,  several  chlorinated  compounds  are  registered  as  toxic  and/or 

carcinogenic  materials.  Having  these  facts  realized  in  the  last  decades,  international 

treaties either banned the application of several of them or made possible the disposal 

only in special hazardous waste deposition sites. In the absence of reliable destruction 

technology even now large quantities are still stored in many countries.

The  chemical  behaviour  of  chlorinated  aromatic  hydrocarbons  could  be  investigated 

through the example of the simplest of such compounds, the chlorobenzene (C6H5Cl). It 

was used for dielectric material, heat exchanger, solvent in the dye industry and even as 

insecticide at the tropics. During the synthesis of phenol and DDT it acted as intermedier. 

Due to its widespread application high indoor concentrations of up to 72.2 μg·m-3 was 

measured in  the  air  in  various  cities  of  the  USA [1].  This  value was even higher  at 

industrial  sites  in  different  countries  (between  18.7  mg·m-3 and  488 mg·m-3)  [2].  Its 

decomposition  in  the  atmosphere  takes  place  by reaction  with  hydroxyl  radicals  and 

photolysis. The latter is a pretty slow process, the half-life of which for chlorobenzene is 

one month. In natural waters the biological degradation rate is even slower: 150 days [3]. 

As a result, high contamination of many streams [4] was reported. Chlorobenzene was 

generally proved to have harmful influence on the growth, development and reproduction 

of the wildlife in the rivers [5-6]. Due to its lipophilic nature chlorobenzene tends to 

accumulate in the food chains and in the case of mammals it concentrates in the breast 

milk. The thermal destruction of this toxic compound via conventional high temperature 

decomposition processes such as pyrolysis or cracking results in toxic by-products, which 

are stable and also have adverse effects both on human health and on the environment, as 

well [7]. Considering the special characteristics of thermal plasmas such us extremely 

high temperatures (T  9000 K), high quench rates (~106 s·K-1), strong UV radiation, high 

number of reactive molecules, ions, etc. [8] the decomposition in thermal plasmas offers 

a safe and environmentally benign solution.
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In this paper we report on the decomposition of chlorobenzene as a model compound of 

the chlorinated aromatic hydrocarbons in an inductively coupled radiofrequency thermal 

plasma  reactor  both  in  neutral  and  oxidative  conditions.  We  investigated  both  the 

obtained  compounds  after  decomposition  and  the  generated  chemical  species  and 

fragments in the plasma as well. For this purpose the plasma column was monitored and 

analysed by optical emission spectroscopy.

OES is a convenient method for monitoring plasmas because chemical species can be 

identified and various parameters such as temperatures can be determined without any 

influences on the plasma state. The optical emission measurements of the Swan system of 

C2 (d3Πg – a3 Πu) transition are commonly used as a diagnostic tool for carbon plasmas 

[9-11].

2. Experimental

The experimental set-up consisted of an RF inductively coupled plasma torch (TEKNA 

PL 35) connected to a high frequency (4-5 MHz) LEPEL generator, a reactor, a cyclone, a 

filter unit and a vacuum pump. The chlorobenzene (Sigma Aldrich, 99%) was delivered 

by peristaltic pump (Masterflex) to the atomizer probe (2.16 mm inner diameter) placed 

in the plasma. Ar flow of 9.4 dm3min-1 was used for atomization. The plasma torch was 

also operated with Ar central gas and Ar sheath gas with flow rates of 15.5 dm3min-1 and 

40 dm3min-1, respectively. In certain runs O2 was also added into the sheath gas with 

varying concentrations.  The reactor,  schematically presented  on Fig.  1,  was made of 

stainless steel with the inner diameter of 19.7 cm and length of 121.6 cm. To determine 

the optimal conditions of C6H5Cl degradation process, three different plasma parameters 

were changed in particular tests: 1) feeding rate of C6H5Cl (150-350 g·h-1), 2) oxygen 

concentration (0-10 volume%),  3)  plate  power (15-25 kW).  Using this  parameters  as 

variables we created a three-level fractional factorial design of experiments by means of 

Statistica 10.0 software (StatSoft Inc.) to limit the number of tests and that of samples to 

be characterized,.  Fig.  2.  shows the graphical  representation of the nine experimental 

settings in the factorial space, while in Table 1  test conditions are listed.

Plasma emission was analysed at two spots, 70 and 180 mm far from the bottom of the 
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plasma torch, respectively, perpendicularly to the axis of the plasma column through a 

quartz window. The wavelength was selected by a 55 cm focal length monochromator 

(TRIAX 550 Jobin-Yvon) having 1200 grooves/mm grating.  Light  was collected  and 

transferred  to  the  entrance  slit  by  a  multi-legged  fiber  optics.  Plasma  emission  was 

detected  by  an  optical  multi-channel  analyser  (CCD-3000).  The  spectral  range  and 

resolution was of 200-1000 nm and 0.2 nm, respectively.

The  solid  soot  was  recovered  from  the  wall  of  the  plasma  reactor.  Soot  particle 

morphology was  characterized  by  scanning  electron  microscopy (SEM,  ZEISS  EVO 

40XVP)  and  transmission  electron  microscopy  (TEM,  Morgagni  268D).  Organic 

compounds  adsorbed  on  soot  after  plasma  treatment  was  ultrasonically  extracted  by 

toluene. Analysis of the extracted samples was performed by GC/MS (Agilent Techn. Inc. 

6890 GC / 5973 MSD) using Agilent DB-1701 capillary column (30 m × 0.25 mm i.d.,  

0.25 μm film thickness). 1 μl sample was injected to the column in splitless injection 

mode. The GC injector was kept at 300 °C. The GC oven was hold at 50 °C for 1 min, 

then increased to 280 °C at a rate of 10 °C·min-1. The mass spectrometer was operated at 

70 eV in the EI mode. The mass detection ranged from 14 to 500 Da.

3. Thermodynamic calculations

In order to estimate degradation processes thermodynamic calculations were performed 

in the range of 500-7000 K using code FACTSAGE®, which is based on the minimization 

of Gibbs free enthalpy. Ideal gas conditions can be reasonably assumed because of the 

near atmospheric pressure and high temperature conditions found in this type of plasma 

[12]. The calculations were performed for three different conditions, as follows: neutral 

C6H5Cl + Ar, oxygen deficient C6H5Cl + 4 O2 + Ar and oxidative C6H5Cl + 14 O2 + Ar.

In C6H5Cl + Ar system the main products of degradation are various atoms, ions of C, C+, 

Cl, Cl-, Ar+ , H and small carbon clusters such as C2, C3. Many species of hydrocarbons 

appear in gas phase such as CH4, C2H2, C2H4, C4H2 molecules and CH, CH2, C2H, C2H3 

reactive  intermediates.  The  majority  of  these  species  have  the  maximum  molar 

concentration at temperatures of 2500-4000 K. The chlorine is present mainly in the form 

of HCl (Fig. 3.).
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In the presence of oxygen soot formation decreased. Molar concentration of C and C2 

species are lower than in the case of neutral conditions in the whole temperature range. 

The  main  carbon-containing  products  are  CO  and  CO2.  Due  to  the  introduction  of 

oxygen, oxygen-containing species such as H2O, OH, C2O, HCO, HOO, ClO and HOCl 

appear in high temperature plasma according to calculations. At still higher oxygen doses 

(C6H5Cl + 14 O2 + Ar system) CH4 is not formed (Fig. 4.).

During decomposition of chlorobenzene the formed small hydrocarbon molecules and 

radicals  (C4H2,  CH,  CH2,  C2H,  C2H3)  undergoes  to  functional  group  elimination, 

cyclization and ring condensation. It is supposed that the reactions such as ring closure 

and aromatization are catalysed by the soot surface [13-14].

4. Results and discussion

4.1 Plasma emission spectroscopy

Several atomic transitions and molecular electronic bands were observed in the plasma 

spectra. The lines in the range of 700-800 nm are characteristics of Ar atoms (ArI). Other 

atomic emission lines were identified as hydrogen lines of the Balmer series as alfa, beta 

lines (Hα = 656.28 nm; Hβ = 486.1 nm). The Balmer lines of hydrogen are present in 

almost all  hydrocarbon flames and are extremely bright. The Hα line is the strongest, 

while the Hβ line shows broadening, which is attributed to Stark broadening [15]. Oxygen 

lines (OI) at 777.2 nm, 777.4 nm and 777.5 nm, respectively also appear in the spectra 

when oxygen is introduced in plasma. Single charged Ar ion lines (ArII) can be found at 

lower wavelengths of 324.3 nm, 349.1 nm, 355.9 nm and 376.5 nm. Carbon atomic (CI) 

and ion lines (CII, CIII) are not prominent in our spectra in spite of the fact that above 

4000 K carbon atoms and ions occur in great amount in the plasma. Atomic O, C, and H 

radicals can initiate further plasma chemical process, and contribute to the formation of 

radicals and reactive species such as HO, HOO, C2O. A typical emission spectrum of the 

plasma is shown in Fig. 5.

In the case of hydrocarbon plasmas, only a few molecular species emit in the visible 

range. One of the most prominent bands in the optical emission spectra was the C2 Swan 
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system (d3Πg – a3Πu) with bands between 430 nm and 650 nm. A rather weak feature of 

CH (A2Δ – X2Π) 0-0 band can be found at 431.4 nm. In some of the cases features of a 

band system could be observed between 380-390 nm. This feature could be assigned as 

the  B2Σ  –  X2Π  transition  of  CH  radical  as  a  by-product  from  chlorobenzene 

decomposition. However, CH+ emits also in this area (386-396 nm), which makes the 

assignation uncertain. In some cases strong features for the CN violet band (B2Σ+ – X2Σ+) 

centering at  388 nm could be observed.  The presence of CN molecular  bands in the 

collected spectra can be explained by the impurity of Ar gas used at  high flow rates 

during the experiments.

The H2 molecule radiates rather weakly throughout the entire visible spectrum having a 

peak intensity at around 600 nm in the orange. We observed very weak and noisy, thus 

rather uncertain sings of the Fulcher band of the H2 molecule between 595-630 nm in our 

spectra.

One of the important features, which occurred in the spectra with addition of oxygen is 

the OH molecular band (610-650 nm). Fig. 6. depicts  a plasma spectrum obtained in 

presence of oxygen. The two molecular bands are C2 Swan band and the OH band. The 

increase of the O2 to C6H5Cl ratio enhanced the OH and diminished the detection of CH.

In  some  spectra  continuous  background  were  seen  between  450  and  800  nm.  Such 

broadband  emissions  were  observed  in  spectra  of  laser  induced  graphite  plasmas. 

Emission of 40 nm diameter particles reaches a maximum at near 550-600 nm [16]. There 

are two other sources, which could contribute to the observed continuum, either linear 

carbon molecules (Cn with n≥4) or PAHs.

Previous  studies  have  demonstrated  in  the  plasma laser-induced florescence  (LIF)  of 

large gas phase molecules (e.g.: PAHs) can interfere with laser-induce incandescence [17-

18].

Equilibrium calculations have shown that concentration of linear carbon molecules (Cn, 

n≥4) present in the gas phase in neutral conditions (C6H5Cl + Ar system) is far lower than 

that  of  C2 and  C3.  Additions  of  oxygen  (C6H5Cl  +  4  O2 +  Ar)  suppress  the  molar 

concentration of all the carbon molecules present in the gas phase. Thus the observed 

continuum in our spectra could be attributed to the interference of the emissions of hot 

incandescent carbon particles formed in plasma and that of PAHs.
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In accordance with thermodynamic calculations intense soot formation took place under 

neutral conditions (CLB1, CLB6, CLB8). The soot made difficult to take spectra because 

of its strong shielding effect.

Optical emission spectra taken at 70 and 180 mm far from the end of the plasma torch are 

shown in. Fig. 5. and Fig. 6., respectively. The C2 feature was considerably weaker further 

from the hot  core of  the plasma column,  while  the CH feature appeared only in the 

spectrum collected closer to the torch (70 mm). These radicals (CH) appear through the 

electron impact dissociative excitation of C6H5Cl molecules.

In  oxidative  conditions  substantial  differences  were  observed  in  the  spectra  taken  at 

different distances from the torch in terms of OH and Hβ features. The spectrum taken at 

70 mm from the torch contained mainly OH molecular band, while at 180 mm strong and 

broadened Hβ lines appeared. It suggests that in the high temperature zone chlorobenzene 

decomposed to its fraction molecules. The OH radical was formed via reactions between 

these fractions and oxygen. In cooler parts of the reactor,  further from the torch ring 

closure and condensation of aromatic rings took place.

4.2 Temperature evaluation from emission spectra

In  the  plasma state  several  physical  and  chemical  processes  take  place  concurrently. 

Several  temperatures  (translational,  rotational,  vibrational,  excitation,  etc.)  can  be 

distinguished. In local thermodynamic equilibrium (LTE) these temperatures are close to 

each  other  and  consequently  close  to  the  electron  temperature.  Simultaneous 

determination of these temperatures enables wide characterization of the plasma and the 

evaluation of the equilibrium phenomena [19].

The excitation temperature (Tex) was determined by the Boltzmann plot according to the 

following equation:

log(Iijλij/gifij) = -Ei/kTex+C (C:constant)

where  Iij is  the  intensity  of  emission,  λij is  the  wavelength  of  each  peaks, gi is  the 

statistical  weight  of  upper  i energy levels  and  fij is  the  oscillator  strength.  Ei is  the 
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excitation of upper i energy levels and k is the Boltzmann constant.

The excitation temperature was determined using ArI spectral lines observed in the region 

of 650-1000 nm. These spectral lines were not overlapping with molecular bands. Ten 

atomic lines for Ar (at 687.1, 696.5, 703, 714.7, 737.2, 751.4, 794.8, 826.5, 840.8, 842.5 

nm)  were  selected  for  temperature  determination.  The  most  intensive  ArI  lines  were 

neglected from selection due to their higher tendency for self-absorption. Selection of 

appropriate  lines was based on the literature [19-20].  The  λij,  gi,  fij and  Ei values for 

selected lines were taken from NIST Atomic Spectra Database [21].

Excitation temperature of the pure Ar plasma was found to be 9000-10000 K. This result 

is  in  good agreement  with  data  published by others  [22].  They have  determined the 

electron temperature of the Ar plasma by the line to continuum method and found it 

10000 K. The addition of O2 slightly increased the excitation temperatures to 10000-

12000 K. During chlorobenzene decomposition the excitation temperatures dropped to 

7800-8900 K regardless of the presence of oxygen. The standard deviation uncertainties 

of the temperature values are ~10%.

To determine C2 Swan temperatures  we applied a  least-squares  fitting program NMT 

using  the  Nelder-Mead  algorithm,  developed  at  the  University  of  Tennessee  Space 

Institute [23-25]. The method is based on the calculation of positions and intensity of the 

transitions using an accurate quantum mechanical approach.

For the determination of the C2 Swan temperatures more than 10 spectra were taken in 

each Run. The error in the vibrational-rotational temperatures reported here were about 

±200 K. The standard deviations of the fit of relative intensity were below 0.4 in most  

cases.  The  excitation  temperatures  and  the  C2 vibration-rotation  temperatures  under 

different plasma conditions at 70 mm from the torch are listed in Table 2. where the Espec 

stands for the energy of RF thermal plasma related to the feed of chlorobenzene (kWh·g -

1).

The differences between excitation temperatures (calculated from ArI lines) and Swan 

temperatures  (C2 rotational-vibrational  bands)  imply  differences  in  the  spatial 

distributions of the excitation and relaxation of the particular chemical species [26].

4.3 Soot particle morphology
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The soot yield was defined as:

Ys = Rate of soot formation (gh-1) / Carbon content of the feed-rate of C6H5Cl (gh-1)

In  neutral  conditions  (CLB1,  CLB6,  CLB8)  high  amount  of  soot  was  produced  as 

compared  to  oxidative  conditions.  Addition  of  oxygen  inhibited  soot  formation.  In 

oxidative conditions the lowest soot formation was observed in Runs CLB3 and CLB5 

and no direct correlation was found between Espec  and Ys. The Espec and the amount of 

oxygen have combined effect on soot formation.

Fig.  7. shows TEM images of soot obtained after plasma treatment of chlorobenzene in 

the presence of oxygen (a) and without it (b). Soot was seemingly amorphous and the 

aggregates  had  spherical  shape  with  particle  size  in  the  50-150  nm range.  The  soot 

morphology of different Runs was similar.

4.4 Composition of extract and statistical evaluation of results

The organic  compounds adsorbed on soot  were extracted  by toluene  and the  toluene 

solutions were analyzed by GC/MS, as it was described in the experimental. Beside the 

fed  chlorobenzene numerous organic  compounds were identified including polycyclic 

aromatic  hydrocarbons  (PAH)  such  as  naphthalene,  biphenyl  and  various  isomers  of 

C12H8, C14H10, C16H10,  C18H10, C18 H12 and  C20H12 PAH compounds.  Chlorinated  PAH 

molecules were also found like chloronaphthalene, chlorobiphenyls, dichlorobiphenyls, 

C14H9Cl  (e.g.  chloroantracenes  or  chlorophenantrenes)  and  C16H9Cl  isomers  (e.g. 

chloropyrenes  or  chlorofluoranthenes).  Figure  8.  presents  the  distribution  of  PAH 

compounds of various ring numbers in the toluene extracts. During the decomposition of 

benzene the highest ring number of PAHs detected in our tests was six (C24H12). In inert 

condition the whole variety of PAH molecules were formed.

As  Fig.  8.  presents,  higher  input  power  suppressed  PAHs  formation,  especially  the 

formation of higher ring PAHs. This finding is in good agreement with others [27]. It was 

found that high ring PAHs (5 to 7) did not form easily at high input powers, because the 

free  electrons  of  higher  energy are  able  to  break  the  rings  to  shorter  fractions  most 
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probably into C2H2. Similar trends were observed in oxidative conditions. Fig. 8. shows 

that the addition of oxygen significantly reduce the amount of both PAHs and chlorinated 

PAH molecules, too. On the other hand, in oxidative conditions relatively high amount of 

polychlorinated benzene compounds were formed, while in C6H5Cl + Ar systems only 

mono- and dichlorobenzene was detected. Distribution of all the polychlorinated benzene 

derivatives identified (from chlorobenzene to hexachlorobenzene) in the toluene extracts 

are illustrated in Fig. 9. Benzyl chloride, ethynyl chlorobenzene, diethynyl chlorobenzene 

and  octachlorocyclopentene  (C5Cl8,  molecular  weight  =  344  Da)  were  also  detected 

among the products formed in oxidative conditions.

On the base of conducted tests diagrams were constructed by code Statistica. In these 

diagrams the amount of the formed compounds is shown related to tests variables such as 

the oxygen content and the applied power. The diagrams show a definite decrease in the 

amount of the formed PAH molecules up to 7 wt% oxygen content, while above that a 

slight increase occurs. Fig. 10. shows the fitted curve in the case of naphthalene, which 

was chosen as the simplest of the PAHs.

The amount of chlorinated benzene derivatives rises parallel with the oxygen content. 

Pentachlorobenzene showed the strongest correlation to the oxygen (R2 = 0,936) on Fig. 

11. It seems that in these cases the addition of oxygen is the base of their formation.

These results suggest that during the decomposition of chlorobenzene the oxygen content 

must be around 7 wt% to keep the formation of chlorine containing benzene derivatives 

and PAH molecules at minimum. The effect of power and feed rate seems negligible 

beside oxygen.

5. Conclusions

In this study chlorobenzene was used as a model compound to reveal the decomposition 

processes  of  halogenated  aromatic  hydrocarbons  in  RF  thermal  plasma  reactor.  We 

employed optical emission spectroscopy to identify the numerous species in the plasma. 

Besides the atomic lines of H, O and C, various radicals, such as OH, C2 and CH were 

detected. The presence and the amount of these radicals depend on the temperature of the 

observed  region  of  the  plasma  column.  In  higher  temperature  region  (T >  9000  K) 
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formation of C2, OH and CH are favoured, while in the lower one (T>7800 K) presence 

of H is higher. The excitation temperature was calculated as 9000-10000 K, while the C2 

Swan temperature was 4000-4500 K.

The particle size of the formed soot ranges from 50 to 150 nm. Compounds adsorbed on 

the surface of the soot comprise various PAH and chlorinated PAH molecules as well as 

polychlorinated benzene derivatives in much smaller amount. Both the applied power of 

the plasma and the oxygen concentration has a great effect on the amount of the formed 

PAH molecules. The higher input power reduces the ring number of the molecules. In the 

presence of oxygen their amount decreased and had a minimum at 7% but higher oxygen 

content  their  formation  enhanced.  The  amount  of  chlorinated  benzene  derivatives 

increased parallel with increasing oxygen content.
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Tables

Table 1. Tests conditions

Run Plate power (kW) Feed rate (g·h-1) Oxygen content 
(volume%)

CLB 1 15 150 0

CLB 2 15 250 10

CLB 3 15 350 5

CLB 4 20 150 10

CLB 5 20 250 5

CLB 6 20 350 0

CLB 7 25 150 5

CLB 8 25 250 0

CLB 9 25 350 10

16



Table 2. Plasma temperatures and soot yields

Run Espec C2 Swan temp. (K) Tg Excit. Temp 

(K)

YS 

(%)
CLB 1 0.10 4200 7800 35.78
CLB 2 0.05 - 8900 3.91
CLB 3 0.06 4300 12000 1.41
CLB 4 0.11 4000 - 4.22
CLB 5 0.08 4100 7800 1.25
CLB 6 0.05 5500 7800 8.75
CLB 7 0.13 3900 8900 5.47
CLB 8 0.09 4300 8900 25.00
CLB 9 0.06 4400 10400 2.34
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Fig. 1. Schematic representation of the reactor

19
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Fig. 3. Thermodynamic calculation for the C6H5Cl + Ar system
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Fig. 4. Thermodynamic calculation for the C6H5Cl + 14 O2 + Ar system
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Fig.  5. Emission spectrum of  plasma during chlorobenzene decomposition  in  oxygen 
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