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INTRINSIC VOLUMES OF RANDOM POLYTOPES WITH VERTICES ON THE BOUNDARY
OF A CONVEX BODY

KAROLY J. BOROCZKY, FERENC FODOR, AND DANIEL HUG

ABSTRACT. Let K be a convex body iiR?, letj € {1,...,d — 1}, and leto be a positive and continuous
probability density function with respect to tiié— 1)-dimensional Hausdorff measure on the boundais of

K. Denote byK,, the convex hull of» points chosen randomly and independently frafd according to the
probability distribution determined by. For the case whefiK is aC? submanifold ofR? with everywhere
positive Gauss curvature, M. Reitzner proved an asympfimtinula for the expectation of the difference of the
jthintrinsic volumes ofK” and K., asn — oo. In this article, we extend this result to the case when thg on
condition onK is that a ball rolls freely ink.

1. INTRODUCTION

Random polytopes in Euclidean spa& can be defined in various ways.f, . .., z,, aren random
points sampled from a given convex boffy ¢ R¢, then the convex hull of these random points yields a
random polytope that has been studied extensively in th@tiire. The present focus is on a related though
different model of a random polytope that has not been ergltw the same extent. Instead of choosing
the points from all ofK, we sample random points from the boundaryiaf The convex hull of these
points then provides a model of a random polytope that wiltdwesidered here. Our main focus is on the
convergence of the expectation of geometric functionaisifisic volumes) of such a random polytope.
The main result, stated in Theorém]1.2, extends previouk iprelaxing the regularity assumptions on
K. This is a nontrivial task, since the speed of convergenpemigs in a crucial way on the boundary
structure, in particular on the (generalized) curvatunéds . The present approach refines arguments that
have recently been developediin [4] to establish first oreults for the aforementioned model of a random
polytope, and it combines geometric and probabilistic $dea

Before stating our results explicitly, we provide the regdibackground and notation. Our basic setting
is the d-dimensional Euclidean spad, d > 2, with scalar product,-) and norm| - ||. By H’ we
denote thej-dimensional Hausdorff measure, whégé is simply called the volumé&,;. Let B’ be the
unit ball of R with center at the origin, and Ief’~! be its boundary. Then we write; = #H7(B’)
for the j-dimensional volume of3/, and hencé{’~1(S7~!) = j«; is the surface content d8/. The
relative boundary of a compact convex éet- R? is denoted by)C. Finally, the convex hull of subsets
X1,..., X, and pointsy, . .., z5 is denoted by X1, ..., X;, 21, ..., 25

Throughout the following K is a convex body (compact convex set) with interior point®Rih for
notions of convexity we follow the monographs by Schneid&] jor Gruber([8]. The boundary of is
denoted by K. We say thad K is twice differentiable in the generalized sense at a boynuizintz € 0K
if there exists a positive semi-definite quadratic faghon R, the so called second fundamental form,
with the following property: IfK is positioned in such a way that= o andR?~! is a support hyperplane
of K, then in a neighborhood of the origin 0K is the graph of a convex functiohdefined on dd — 1)-
dimensional ball aroundin R¢~! satisfying

(1.1) f(z) =3 Q) +o([l=l*),
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asz — o. According to a classical result of Alexandrov (see P.M.l&n[&] or R. Schneidef [18]) K is
twice differentiable in the generalized sens@{dt ' almost all points: € 9K . Such boundary points are
also called normal boundary points. We wiitd ), . . ., k4—1 («) for the (generalized) principal curvatures
of K atx € JK, which are just the eigenvalues @f FurthermoreH;(z) denotes the normalizedh
elementary symmetric function of the principal curvatwg8K at the normal boundary point Here the
dependence of this function dii is not made explicit. Thus, for € {1,...,d — 1}, we have

Hj<x>=(d;1)_l S k@) (a),

1< <”'<ij§d—l

and this definition is supplemented B (x) := 1. In particular,H,;_1(x) is the Gaussian curvature and
H,(z) is the mean curvature 6fK atz. We say thab K is Ciﬁ, for somek > 2, if K is aC* submanifold
of R? and its Gaussian curvature is positive everywhere.

The intrinsic volumed/; (K), j =0, ..., d, of a convex bodyx C R? can be introduced as coefficients

of the Steiner formula
d

Va(K +AB%) =Y "M aq_;V;(K),
Jj=0
where K + AB? is the Minkowski sum ofK’ and the ball\B? of radius\ > 0. In particular,V is
the volume functional}, (K) = 1, V4 is proportional to the mean width arid,_, is a multiple of the
surface area. Alternately, intrinsic volumes can be oletdizs mean projection volumes. Specifically, for
j=1,...d—1,itis well-known that

() a

Vi(K) =
3 () v

Vi(KI|L) v;(dL),

Whereﬁf is the Grassmannian of akdimensional linear subspaceskf equipped with the (unique)
Haar probability measure; and, forL € £4, K|L denotes the orthogonal projection &fonto L. Here,
V;(K|L) is just thej-dimensional volume (Lebesgue measure)dL..

We say that a ball rolls freely in a convex boyc R? if there exists some > 0 such that any: € 0K
lies on the boundary of some Euclidean balbf radiusr with B ¢ K. The existence of a rolling ball is
equivalent to saying that the exterior unit normal is a Lipsrmap oo K (see D. Hugl[14]). In particular,
W. Blaschke observed thatdfk is C2, thenK has a rolling ball (see D. Hug [14] or K. Leichtweiss[15]).
In turn, we say thafs rolls freely in a ball of radiug® > 0 if any =z € 0K lies on the boundary of some
Euclidean ballB of radiusR with K C B.

In this paper, we shall consider the following probabilitpdel. Let/K be a convex body with a rolling
ball of radiusr. Let o be a continuous, positive probability density function defi ondK’; throughout
this paper this density is always considered with respettadoundary measure é4s. Select the points
x1,...,x, randomly and independently frod¥ according to the probability distribution determined by
0. The convex hullK,, := [z1,...,z,] then is a random polytope inscribed#. We are going to study
the expectation of intrinsic volumes &f,,. In order to indicate the dependence on the probabilityilens
o0, we writeP, to denote the probability of an event in this probabilityepandE, to denote the expected
value. For a convex bodi(, the expected valug,(V;(K,)) of the j-th intrinsic volume ofk,, tends to
V;(K) asn tends to infinity. Itis clear that the asymptotic behavioVpfK) — E,(V;(K,,)) is determined
by the shape of the boundary &f. In the case when the boundaryfis aC? submanifold ofR?, this
asymptotic behavior was described by M. Reitzher [16].

Theorem 1.1 (Reitzner, 2002)Let K be a convex body ¢ with C2 boundary, and lep be a continuous,
positive probability density function of\l. Denote byE,(V;(K,)),j = 1,...,d, the expected-th
intrinsic volume of the convex hull efrandom points oK chosen independently and according to the
density functiorp. Then

(1.2)  Vi(K) —Eo(V;(K,)) ~ 0D /6 . o(a) ™ T Hy_y ()™ Hyj(x) H ™" (dz) - n~ 7

asn — oo, where the constant’-?) only depends op and the dimensior.
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Forj = d, that is in the case of the volume functional, C. Schutt antVErner [21] extended (1.2)
to any convex bodys such that a ball of radius rolls freely in K and, in addition K rolls freely in a
ball of radiusR, for someR > r > 0. The latter assumption df rolling freely inside a ball implies a
uniform positive lower bound for the principle curvaturé£)dd whenever they exist. They also calculated
the constant(%® explicitly, that is

(d—1)TIT(d+ 1+ 27
2(d+ 1)![(d — g1

Moreover, C. Schiitt and E. Wernér [21] showed that for fikgdhe minimum of the integral expression
in (1.2) is attained for the probability density function

dd) —

o ‘Hd_l(l')ﬂl#+1
Jor Hama(2) 75 Hi=L(dr)
Our main goal is to extend Theorém11.1 to the case wligiis only assumed to have a rolling ball,

forall j = 1,...,d. In particular, the Gauss curvature is allowed to be zero set ®f positive boundary
measure. More explicitly, we shall prove

00(z)

Theorem 1.2. The asymptotic formul@.2) holds if K is a convex body iiR? in which a ball rolls freely.

The present method of proof for Theoreml 1.2 is different fthmone used by Reitznér [16] or Schiitt
and Wernerl[21]. It is inspired by the arguments from our e paperl[4] concerning random points
chosen from a convex body, however, the case of random pminten from the boundary is more delicate.

Examples show that in general the condition that a ball rio#sly inside X' cannot be dropped in
Theoreni I.R. General bounds are provided in the followiegtem.

Theorem 1.3. Let K be a convex body iR?, and letp be a continuous, positive probability density function
ondK. Then there exist positive constantscs, depending ok’ and g, such that for any, > d + 1,

e TT < Ey(Vi(K) — Vi(Ky)) < con” 7.

The lower bound is of optimal order i has a rolling ball, and the upper bound is of optimal orderkif
is a polytope.

For comparison, let us review the main known results abaittnvex hullK' (n) of n points chosen
randomly, independently and uniformly frof. In the case where a ball rolls freely insifie the analogue
of Theoren 1R is established in K. Boroczky Jr., L. M. Hoénn and D. Hug [3]. For the case of the
volume functional and an arbitrary convex bally C. Schiitt[[19] proved (see K.J. Bordczky, F. Fodor, D.
Hug [4] for some corrections and an extension) that

Hm 71 (Vy(K) — E(Va(K(n))) = caVy(K)T1 [ Hy_y(z) ™7 H ' (dw),
where the constamt; > 0 only depends on the dimensidrand is explicitly known. Concerning the order
of approximation, we have

(1.3) yn” D < Vi(K) = EVi (K (n)) < yan~ Y4,

(1.4) ysn I n < Vy(K) = EVa(K (n)) < yan~ /D),

where~, ..., v4 > 0 are constants that may dependin The inequalitied (113) are due to R. Schneider
[17], and [1.%) is due to I. Barany and D. Larman [2]. Theesedare best possible, being attained in
(@3)(left) and[(1.4)(right) by sufficiently smooth bodiesnd in [1.B)(right) and_(I14)(left) by polytopes.
The proof of Theorem 112 is given in the following three sexs. In Section 2, we rewrite the difference
V;(K) — E,(V;(K,,)) in an integral geometric way. The inner integral involvedhiis integral geometric
description is extended over the projectiiii. of K to L, whereL is a j-dimensional linear subspace.
Then we show that up to an error term of lower order the maitritmriion comes from a neighborhood of
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the (relative) boundar§( K |L) of K |L with respect ta., where this neighborhood is shrinking at a well-
defined speetin) asn — co. Further application of an integral geometric decomposithen shows that
the proof boils down to determining the limit

t(n)

lim nTT(y, u(y))Po (yr & Kn|L) di

n—r oo 0

wherey € 9(K|L) andzx is a normal boundary point ok with y = z|L. The case where the Gauss
curvature of K at x is zero is treated directly. In Section 3, we deal with theecapositive Gauss
curvature. In afirst step, we choose a reparametrizatidmeofitegral which relates the parametéo the
probability contents of that part of the boundary d& nearz that is cut off by a cap determined by the
parametet. This reparametrization has the effect of extracting theveant geometric information frorf .
What remains to be shown is that the transformed integralsssentially independent &f and yield the
same value for the unit ball with the uniform probability déy on its boundary. This latter step is divided
into two lemmas in Section 3. Whereas both lemmas have amasag our previous work [4], the present
arguments are more delicate and the second lemma has taabésked by a reasoning different from the
one in [4]. The proofis then completed in Section 4, wher@ddition to the previous steps, a very special
case of Theorefn 1.1 is employel (eing the unit ball) as well as an integral geometric lemranf[3].
The final section is devoted to a proof of Theofen 1.3.

2. GENERAL ESTIMATES

In order to prove Theorefn 1.2, we start by rewritiig K) — E,(V;(X,,)) in an integral geometric
form. For this, we use Kubota’s formula and Fubini’s theoterobtain

Vi(K) = Eo(Vj(Kn))

n

_ ; —V: T d-1 Tr1)... d—1 Tn
_/aK.../aKVK Vi(K)) [ [ olws) HY M (dar) .. 1Y (d)

i=1

e W p [ L, i) v

X H o(x;) v;(dL) H¥ Y (dxy) ... H¥ " (dy,)

= /// / 1{y e K|Landy ¢ K,|L}
O‘J‘ld jJed oK oK

X H o(x;) H " (dxy) . . . HY Y (dwy Y HI (dy) v;(dL)

_ (j)o‘d ;
2.1) = i /,; ? /K el # KalL) ) v (0L,

Now we introduce some geometric tools.Hf has a rolling ball of radius, then so doe&| L for any
Le E;-l. Furthermorep K has a unique outer unit normal vectdr:) at each boundary point € 0K If
L e L}, yed(K|L)andx € K such thay = z|L, thenz € K and the outer unit normal ¢f(K|L) at
y is equal tou(x).

Since the statement of the theorem is translation invgnemimay assume that
(2.2) rBY ¢ K ¢ RB?
for someR > 0. Fort € (0,1), let Ky := (1 — t)K, and forx € 9K, letz; := (1 — t)z. Similarly,
(K|L); .= (1 —t)(K|L) andy; := (1 — t)y fory € O(K|L).

Forz € 0K andt € (0,1), let

xzy = x — (te,u(z))u(x).
If t € (0, %), then [2.2) implies that
(2.3) tr <{z—z;,u(r)) = (x — x,u(x)) <
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The existence of a rolling ball atyields that ift € (0, ), then

(2.4) z; +rvVt(u(x)r NBY) C K.
On the other hand, we have
(2.5) llxf — x| < Rt.

For real functionsf andg defined on the same space, we wrfte< g or f = O(yg) if there exists a
positive constany, depending only ok andp, such thatf| <~ - g.

We shall use the notion of a “coordinate corner”. Given ahambrmal basis in a lineardimensional
subspacd., the corresponding — 1)-dimensional coordinate planes dutinto 2¢ convex cones, which
we call coordinate corners (with respectit@nd the given basis). In the following, we writg, v2, . . . for
positive constants which merely dependigrandp.

Let us estimate the probability that¢ K,,. There exists a constant > 0 such that the probability
content of each of the parts 8f contained in one of th2? coordinate corners @< is at leasty;. Now if
o ¢ K,, theno can be strictly separated froii,, by a hyperplane. It follows thdtz, . . ., z,} is disjoint
from one of these coordinate corners, and hence

(2.6) Plo ¢ K,) <241 —m)"
This fact will be used, for instance, in the proof of the swhsnt lemma. In the following, for € R¢ we
use the shorthand notatid, z := {Az : A > 0}.

Lemma 2.1. There exist constants~, € (0, 1), depending ot andyp, such thatifL L‘j—’, y € O(K|L)
andt € (0, ¢), then

Py (y: & KnlL) < (1 - 72t%) _

Proof. Lety € 9(K|L) andx € 0K be such thay = z|L. Let©,...,0),_, be the coordinate corners
with respect to some basis vectorsifx)*. In addition, fori = 1,...,29~1 andt € (0, 1), let

Gi,t = 5)K N ((Et + [9;, R+l’]) .
Sincep is positive and continuous, we have

/@ o) M (de) 2 5O,

If y» ¢ K,,|L ando € K, then there exists@g—1)-dimensional affine plang, in L throughy;, bounding
the halfspace#l; andH; in L, for whichK,,|L C H; . Now, if L+ is the orthogonal complement &fin
RY, thenH := H, + L+ is a hyperplane iiR? with the property that; € H andK,, C H~ := H; +L*.
Furthermore@, , C H* := H; + L* for somei € {1,...,297!}, because € K, C H~. Therefore
2d—1
Py (yt & Kn|L,0 € K;,) < Z (1= 7M1 (044))" .
=1
Combining [Z.4) and(2]15), we deduce the existence of a anohgt > 0 such that ift < ~,4, then the
orthogonal projection 0®; ; into u(z)* contains a translate &’ N (r/2)v/tB¢, and therefore

HI(O;) > st T

fori=1,...,2%1 Inturn, we obtain

2.7) P, (y: & Kn|L,0 € K,) < (1 - %t%) .

On the other hand, 6 ¢ K, |L, then [2.6) holds. Combining this with (2.7), we conclude pinoof of the
lemma. O

Subsequently, the estimate of Lemimd 2.1 will be used, féant®, to restrict the domain of integration
(cf. Lemmd2.B) and to justify an application of Lebesgu@mihated convergence theorem (dee (2.12)).
For these applications, we also need that # 9K andc > 0 satisfieso := 5“7 < 1, then

J w
RN _ ) - B
(28) / (1_Ct%) dt:cdfld 1/ 5%71(1—8)7%8 & ¢TI T,
0 —L1Jo
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where we use thdl — s)™ < e " for s € [0, 1] andn € N.

The next lemma will allow us to decompose integrals in a blatavay. We writeu(y) to denote the
unique exterior unit normal to(K'|L) aty € 9(K|L). It will always be clear from the context whether we
mean the exterior unit normal at a point 9K or at a pointy € 9(K|L).

Lemma22. If 0<ty,<t; <dandh: K|L — [0,0] is a measurable function, then

/ B, (z ¢ Ko|L) h(z) H (da)
(KIL)to \(K|L)¢,

- / / 1(1 — )77 Py (ye & KnlL) (y, u(y))h(y) dt H " (dy).
a(K|L) Jto

Proof. The set)(K|L) is a(j — 1)-dimensional submanifold df of classC', and the map
T: (K|L) x (to,tr) = mt(K[L)so \ (K|L)ty, (y:t) = yr,

is aC! diffeomorphism with Jacobiad T (y,t) = (1 — t)?~1(y,u(y)) > 0. Thus the assertion follows
from Federer’s area/coarea theorem (5ée [7]). O

In the following, we use the abbreviatioMm) := na-,

Lemma23. Letl < j <d— 1. Thenwe have
] -2
/ / PQ (ngn|L) H‘](dy) Ijj(dL) zo(nﬁ) .
L3 J(K|L)i(n)

Proof. Let§ > 0 be chosen such that it satisfies the conditions of Leinma 2elméy assume that is
large enough to satisfy{n) < § andn > (y2)2. First, we treat that part of the integral which extends over
the subsetK |L)s of (K|L)()-

Letw := dr. Then[2.B) yields

(2.9) (x — x5,u(x)) > w for z € OK.

There exists a constamt > 0 such that the probability measure (af+ % B%) N K is at leasty, for all
r € OK. We choose a maximal st , ..., z,} C 0K suchthat|z; — z|| > § fori # [.

For L € ﬁ?, lety € (K|L)s. If y ¢ K,|L, then there exist a hyperplarié in R? and a half space
H~ bounded byH such thaty € H, H is orthogonal tol,, andK,, C int(H~). Chooser € 9K such
thatu(z) is an exterior unit normal té7 —. SinceH intersectsKs, we have(z — y, u(x)) > w by (2.9).

Now there exists somee {1,...,n} with ||z — 2| < ¢, and hencgxy, ..., z,} C int(H ) yields that
{x1,...,2,} is disjoint fromz; + & B¢, In particular, we have
(2.10) Py (y & KnlL) < m(1 — )"

Next lety € 9(K|L). If t € (¢t(n),d), then Lemma2]1 yields
n 1 _3
(2.11) P, (y & KnlL) < (1 _ wf%) <ot T

In particular, writing! to denote the integral in Lemrha 2.3, we obtain from Lerhmh@20) and[(2.1]1)
that

I P K,|L) H’ (dy) v;(dL
< /L?/(KIL% o (v & KoulL) 1/ (dy) vy (dL) +

)
[ Bt Kl W ) e )
cd Jumn) Joa(k|L)
< m(1 —77)n+/ / na-t H " (dy) vj(dL) = o(nd%zl),
ca Jok|r)

which is the required estimate. O
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It follows by applying [2.11), Lemmia?2.3 and Lemial2.2, in thider, that
lim n7T (V;(K) = E,(V;(Kn)))

n—

(%) e
:aihmndl// J(y & Kn|L)H (dy) v;(dL
g e [ [ ¢ K,|L) H (dy) v;(dL)
(9o »
= )Y e / / Py(y ¢ KnlL) M/ (dy) v;(dL)
AjQg—j n—=0 L3 J(K|L\(K|L)¢(n)
(9)aa

a]adfj n—oo

H) 2 Jj—1 Jj—1 .
T /,; /B(“) | TR # KD = 07 ) de () L),

We deduce from Lemnia2.1 arfd (2.8) thatif- ng, L € £{ andy € d(K|L), then

O _
/ TR, (yr & KolL) (you(y)) (1 — 1)~ di < C,
0

whereng andC depend ok andp. Therefore, we may apply Lebesgue’s dominated converghroeem,
and thus we conclude

(212)  lim 0TV (K) — By(V;(K.)) = / / L) H - (dy) vy(dL),
n—reo aaad jJed 8(K|L)

where, forL € £4 andy € 0(K|L), we have

t(n) R
(2.13) Jo(y, L) == lim nT=1 (y,u(y))P, (yr ¢ Kn|L) dt

n—oo 0

Subsequently, we shall inspect this limit more closely. first step, we shall consider those poipts
O(K|L) for which there is a normal boundary poine 0K with y = x|L andHy_1(z) = 0.

Lemma24. LetL € £4, and lety € 9(K|L). If z € K is a normal boundary point ok with y = z|L
andHy_1(z) = 0, thenJ,(y, L) = 0.

Proof. Let z € K be a normal boundary point with = z|L and Hs_1(xz) = 0. First, we show the
existence of a decreasing functigron (0, ) with lim,_, o+ ¢(t) = oo satisfying

(2.14) P, (y: & Kn|L) < 29 (1 - W)t%)"

In the following, we always assume thtat- 0 is sufficiently small, that is is sufficiently large, so that all
expressions that arise are well defined. L€t .., v4_; be an orthonormal basis inz)* such that these
vectors are principal directions of curvatureléfat x and such that the curvature is zero in the direction
of v;. In addition, let®, ..., 0., , be the coordinate corners in(z)*, and, fori = 1,...,29"! and

€ (0,1),let®; , = 0K N (x, + [©},R.x]) as before. The continuity af yields that

| @ mt ) > 1 @)
Ot
Since the curvature is zero in the directiongfthere exists a functiog on (0, 1) with lim,_, o+ 9(t) =
oo satisfying
z; — (Vv € K and z} +¢(t)Viv, € K.

Combining [(2.4) and[(2l5), we deduce the existence of a deurg functiong on (0, ) with
lim; 0+ ¢(t) = oo satisfying

/ o(z) H(dz) > p(t)t T,
Ot
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First, we assume that ¢ K, |L ando € K,,. In particular, then we also hawg ¢ K,,, and hence
there exists a hyperplardé throughz; such thati,, lies on one side ofi. Sinceo € K,,, it follows that
H separates(,, from someO; ;, and therefore

(2.15) P, (y: & Kn|L,0 € K,,) < 297! (1 - @(t)t%)n

On the other hand, 6 ¢ K,|L, then [2.6) holds. Combining this with(2]15), we conclU#@d4). In turn,
we deduce fron((2]8) that

t(n) _
Jo(y, L) < lim nﬁ/ (1- go(t(n))t%)" dt < lim ¢(t(n))71 = 0.
0

n—oo n—00

O

In the next section, we study the more difficult case of bompngdaints with positive Gauss curvature.

3. NORMAL BOUNDARY POINTS AND CAPS

LetL € E‘j, and lety € 9(K|L) be such thay = z|L for some (uniquely determined) normal boundary
pointz € &K with H;_1(x) > 0. We keepr andy fixed throughout this section. First, we reparametrize
x; andy; in terms of the probability measure of the correspondingaf&@jd<. Using this reparametrization,
we show that/, (y, L) essentially depends only on the random points negee Lemma3]1), and then in
a second step we pass from the case of a general convexoayhe case of a Euclidean ball.

Fort € (0,1), we consider the hyperplaré(z,t) := {z € R? : (u(x),2) = (u(z),z:)}, the half-
spaceH ™ (z,t) := {z € R? : (u(x),2) > (u(x),z;)}, and the cag’(x,t) := K N HT(z,t) whose
bounding hyperplane i (x, t). Next we reparametrize; in terms of the induced probability measure of
the capC'(z, t); namely,

To=x  and  gs =y,

where, for a given sufficiently smadl> 0, the parameter > 0 is uniquely determined by the equation

(3.1) 5= / o(w) H ™ (dw).

C(z,t)NOK
Note thats is a strictly increasing and continuous function:ofVe further define
(3.2) C(z,s)=C(z,t) and  H(z,s)= H(z,t),

where again, for given, the parameter is determined by[(3]1). Observe thak N H* (x,t) = 0K N
C(z,t). Subsequently, we explore the relation betweeamdt. Let f : u(x)* — [0, 0] be a convex
function such that the restriction of the map
F:u(z)t = RY, z= x4+ 2 — f(2)u(x),
to a neighborhood of parametrize® K in a neighborhood of. Moreover, we consider the transforma-
tions
H:Rd_)u(x)lv yHy—x_@/_'rvu('r»u(I)a
and
T:u(z)t xR = u(z)t xR, (21, oy za-1, @) = (Vk1z1, - sV kd—12d—1, @),

whereu(z)! is considered to be a subsetdfr)* x {0} andk; = k;(z),i = 1,...,d—1, are the principle
curvatures oD K atz. Then we obtain

/ o(w) He= (duw)
OKNH* (z,t)

o(F(2)V1+ [V f(2)[2H ™ (dz)

B /n(aKmH+(z,t))

-/ olF o 77 (:)) T+ VTGN Haoa ()2 10 ),
TIUOKNH* (2,t)))
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LetK = T(K — z) + z, and henc@ (II(OK N H* (x,t))) = II(OK N H* (x,t)). If f is defined fork
asf is defined fork, and
_ 1+ || Vf(T-1(1I 2
o) = o(FoT o Tl(w),  g(uw) = YL D]
V1 V7)) 2

)

forw € 9K N H*(x,t), then we obtain

/ o(w) H*H(dw) = Hg—1 (x) /2 / o(w)g(w) H' (dw).

OKNH* (z,t) OKNH* (z,t)

Next we putH (r) := = — ru(z) 4+ u(z)* and denote by.;+(w) the exterior unit normal ok atw € K.
Since (cf. the notes for Section 1.5 (2)in[18])

1

F@) =35l 4oz, IVFEI =zl +o(lzl),  ng(w) =

V(@) + u(x)
1+ ||V f(w)]

with @ := II(w) andz € u(z)*, we get
2 VI (@] +offlel)®

\/1 — (nge(w), u(z)) o[ + o([[w])

Thus a simple application of the coarea formula yields tlwat; > 0 sufficiently small andi > 2,

/ o) M~ (dw)
OKNH* (x,t)
t{a,u()) 1
= Hd—1($)_1/2/ / @(w)g(w)\/l — (ng(w),u(x))2  H2(dw) dr.
0 OKNH(r)
Since alsaX has a rolling ball, the map +— n(w) is continuous, and therefore also

1

re [ aw)glw)y/1— (ngp(w), u(@)? H (dw)
OKNH(r)

is continuous. This implies that

0 _
5 | ow) Hi ™ (dw)
OKNH* (x,t)

_ _{wul@) et T e e a2 g
 Haa(2)'? /6‘KOH(t<z,u(m)>)g( )9 )\/1 (ng(w), u(z))?>  H"*(dw)

() AW o,
- Hyq(2)1/2 /a?mH(m,u(m)))g( Jatw) 2t(x, u(x)) + o(V1) )

Clearly, we haveo(w) — o(x) = o(z) andg(w) — 1, ast — 0%, uniformly with respect tow €
OK N H(t{z,u(x))). Moreover, since

T:= {x +2z- %HZHQU(:C) 1z € u(x)L}
is the osculating paraboloid ¢f andT" has rotational symmetry, we obtain for= s(t) that

is 0s o)z u(x) —15 0 e 2f<ffau(ff)>d72
ot Hy 1(x)'/? o, (t (@ = Da 2t (x, u(x)) )

= (d—Dag-1Ha1(2) 3 o(z) (2(z, u(z))) ? (z,u(z))
= (d—-Dag_10(x)2% (z,u(z)) 3

Thus we have shown that
d—3 85 d—3 d—1

(3.3) Jm e o (t)=(d—1) o(@)27 (z,u(@)) 7 Hy1(x) >aq1.
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In the same way, we also obtain

(3.4) lim ¢ - s(t) = Q(:C)Q%(:C,u(:v))d_;lHd_l(x)_%ad_l.

t—0+

Observe tha{{3]3) and (3.4) are valid alsodos 2. In particular,[(3.B) and (3/4) imply thak,(y, L) can
be rewritten as (cf[{2.13))

g(y,n)

(3.5) J,(y, L) = (d—1)"'G(2)? lim nTiP, (f, & Ko|L) s~ a7 ds,
n—oo 0
where ) ) )
G(x) = (0a1) 77 o) 77 Hy_y () 701
and .
Tim ng(y,n) = ag10()(2u(z),2) T Har(2)73,
Now we show that in the domain of integratigfy, n) can be replaced by /2, that is
n—1/2
(3.6) Joly, L) = (d = 1) 7' G(x)* lim nTIP, (s & K,|L) s 71 ds.
n [o ] 0

It follows from Lemmd 2.1l and (3] 4) that there exist constapt> 0 andcs > ¢; > 0 depending ony, K,
L, o such that ifs > 0 is small enough, then

]P)Q (gs g Kn|L) < (1 - CQS)”,
and ifn is large ands is betweeny(n, y) andn /2, thencin=1/2 < s < ¢on=1/2. In particular,
C2n71/2

lim nTTR, (s & Ko|L) s~ a1 ds

n—=00 fo n-1/2
—-1/2

2 c2n d—3
< lim ndfl/ e OMEgTa=T dg
C

n—r oo 177‘71/2
< lim cznﬁfée_clc‘)"%c;%n% =0,
n—oo
and hencd (315) yields (3.6).
Letw : R? — u(z)* denote the orthogonal projection6z)*. Using [2.5),[(2.8) and(3.4), we obtain
—1
3.7 li a1 — Ts = 0,
(3.7) lim 57T (e — )]
_9 1
li =1 —z) = =G(x)%
lim 5T u(e),0 ~ &) = 5G()
Let Q denote the second fundamental forndd€ atz (cf. (I.1)), considered as a function afw)-. Then
there are an orthonormal basis . . . ,v4_1 of u(x)* and positive numbers;, ..., kq—; > 0 such that

d—1 d—1
Q (Z Zi’l}i> = Z kzzf
i=1 i=1
Further, letr be the orthogonal projection tg(z)*, and define
E:={zcu(x)r: Q) <1},

which is the Dupin indicatrix ofs” at z, whose half axes ar (z)~'/2,i = 1,...,d — 1. In addition, let
T be the convex hull of the osculating paraboloididfatz € 9K, thatis

I={z+z—tu(x): zculx)t> 2 Q(2)}

Hence, we have
I'NH(z,t) =z} +/2t(z,u(x)) E,
and there exists an increasing functjofs) with lim,_,o+ fi(s) = 1 such that

(3.8) 4 a(s)'G(x) - STTE C KN H(z,s) C & + fi(s)G(x) - STIE,
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wherei* := a7 € (z—Ryu(z))NH(z, s), ands andt are related by equation (3.1). From{3.7) it follows
that also

(3.9) Fo 4 ji(s)'G(x) - sTTE C KN H(x,s) C &, + ji(s)G(z) - sTTE,

The rest of the proof is devoted to identifying the asymptdhavior of the integral[ (3.6). First,
we adjust the domain of integration and the integrand in tablé way. In a second step, the resulting
expression is compared to the case whgres the unit ball. We recall that, .. ., x,, are random points
in 0K, and we pu€, := {z1,...,z,}, hencek,, = [Z,]. For a finite setX c R?, let#X denote the
cardinality of X

Lemma3.1l. Fore € (0,1), there existy, 8 > 1 and an integek > d, depending only on andd, with the
following property. IfL. € Ef, y € O(K|L), z € K is a normal boundary point ok such thaty = z|L
andH,_1(x) > 0, and ifn > ng, whereny depends on, z, K, o, L, then

n—1/2
\/0

where

P, (s & Kn|L) s~ T ds = /n

(d—1)/2
n

P(K, Ly, 0,e,5)s 71 ds + O < ° > ,

oK, Loy, 0,2,5) = Py ((5: # ((O(a, B) NZ,]IL) ) and (#(Ca. Bs) NE,) < b))

Proof. Lete € (0, 1) be given. Them > 1 is chosen such that

(3.10) 9d—1+3% e iy < e

2—dq
Further, we choosg > (16%(d — 1))4~! such that

d—1

(3.12) 2d_16_2—3d+2\/—'6 = ad%217
and then we fix an integér > d such that
af k €
(3.12) ( k') PR
. d—1

Lemmd 3.1 follows from the following three statements, vahie will prove assuming thatis sufficiently
large.

n—1/2 o
, _ _d=3 E _ _d=3 €
(i) /0 P, (Js & Kn|L)s a1 ds = /E(dil)/2 P, (9s &€ Kp|L)s™ a1 ds+ O ( 5 ) .

nd—1
(i) If e(4=V/2/n < s < a/n, then
3

P, (# (é(x,ﬁs) n En) > k:) <.

d—1

(i) If £l4=1/2/n < s < a/n, then

P # Kl) = B, (3 # [(Cla 5 nZ01E]) + 0 (=2 ).

o d—1
Before proving (i), (ii) and (iii), we note that they imply
n=1/2

d—3 % d—3
/ P, (9s € Kp|L)s 71 ds = / (K, L,y,0,e,8)s 1 ds+
O 1=

(d-1)/2
n

o(—=)/[" —ids+ 0 [ —
which in turn yields LemmBa3]1.

First, we introduce some notation. As before,debe the second fundamental formaat 0K, and
letvy,...,vq4_1 be an orthonormal basis af(z)* representing the principal directions. In addition, let
1....,0%, , be the corresponding coordinate corners, and ferl, ..., 2%~ ands € (0,n~1/2), let

6, = C(z,5) N (&5 + [0, Ryal).
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Subsequently, we show that

(3.13) lim s*l/ o(z) HE N (dz) = 271,

s—0+ éi,s NOK

In fact, since a ball rolls freely insid&, ¢ is continuous and positive at and by [3.¥) we deduce that

lim 571/ o(2) H¥(d2)

s—0+ @i,sﬂaK
= p(x) lim s~ 1HI! (éi)s N 8K)
s—0t

— o(z) lim s~ 'H4! (aK NC(z,s) N (@ + [@;,R+u(;¢)])) .

s—0t

Let¥ : 9I' N C(x,r/R) — 0K N C(z,r/R) be the diffeomorphism which assigns to a paint
o' N H (z, s) the unique point (z) € 0K N (&% + Ry (z — z%¥)). It follows from (3.8) that there exists an
increasing function: : Ry — R with lim,_,o+ u(s) = 1 such that

p(s)™t < Lip(y (a0 N C(x, 5))) < pls).

Thus we get
lim s~13{¢! (aK N C(z,s)N (& + [0, R+u(a:)]))
s—0+
1 —19yd—-1 ~ ~ % /
= 51_1)%1+ sTH (\If (81" NC(x,s)N(ZX+ [Gi,RJru(x)])))
= lim s~ 1H! (ar NC(z,s)N (@ + [@;,R+u(x)]))
s—0t
_ o—(d=1) 7; —1qd-1 ~
2 Sl_l}r(rﬁs H (BI‘HC(:C,S)) .
Now we can repeat the preceding argument in reverse orddiraily use [3.1) to arrive at the assertion
(B.13).
To prove (i), we observe that
c(d—1)/2 L(d—1)/2
! ]P’Q(gngﬂL)s_g dsg/ Ty ds < ;
0 0 nd-1

Leta/n < s < n~'/2, and letn be sufficiently large. First[{2.6) yields that
]P)Q (0 ¢ Knv .1]5 Q Kn|L) < anfﬁ'

On the other hand, if € K, thengs ¢ K, |L implies thatéLS N K, = () for somei € {1,...,2¢°1},
and hencd (3.13) yields

(3.14) P, (0 € Ky, §is & Kn|L) < 27711 — 274g)" < 2412 "ns,
Therefore, by[(3.70) we get

o ~ —d=3 d—1 > —27%ns 21 €
Pg(yngﬂL)S Tds < 2 e sa-17"ds + 5
a/n a/n na-1
14 2d_
2d 1+d—1 o0 . Lil €
= — e "ra-1Tdr + —;
nT-1  Ja2-dq nTT
2¢e
< 2
nd-—1

which verifies (i).
Next (i) simply follows from [3.1) and(3.12). In fact, if < s < a/n, then

P, (# (Cepnz) 2 8) < () oo < (}) <“—f)k <Lor =
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Finally, we prove (iii). To this end, if(®~1/2/n < s < a/n andi € {1,...,2?71}, then we define
4 d-1
3.15 w; = o
(3.15) (v3s) Zl ; f_ o
wheren,, =7, € {—1,1}form =1,...,2¢-1. Now let

Qs i= OK N[5 + O, /5, +w; + O],

We claim that for large., if §, € K,,|L buty, ¢ {(é(m,ﬁs) N En)|L} , thenthere existse {1,...,2¢71}
such that

(3.16) S0 N Qs = 0.

Moreover, foralli = 1, ...,2¢"1, we have

(3.17) /~ o(z) HEY(dz) > 273+, /B
Qs

To justify (3.17), leti € {1,...,291} be fixed. It follows from the definition of; that
T G(x)

Recall thatr : R — u(x)* denotes the orthogonal projectionitéz)*. If n is large enough, and hence
0 < s < a/nis sufficiently small, ther (31 7). (3.9) arld (31 15) yielditha € (£, ), since by assumption
\/31/(0171)/4 > 2, and therefore

(w; + ©)) ( (\/—s) )-E)CW(Q-,S).

In particular, [3.1I7) now follows from

| entae)

e}

—
5

~

. Hd_l(ﬁi,s)

>
"W

) i ()

>

s
[\

T 1 G(z)4 1 _
2 (2) " 9d—1 VEE Eld)—l Qa1 Hg1(z) 12

= 274414, /s,
Next we verify [3.16). We assume that € K,,|L butg, ¢ {(é(x,ﬁs) NE,)|L|. Then there exist €
[(5(:1:, Bs)N En)|L} andb € (Kn \ C*(:c,ﬁs)) |L such thatys € (a,b). Thus there exists a hyperplane
H in R¢ containingj, + L and bounding the halfspacgs"™ andH ~ such that’(z, 8s)NE,, C int(H ")
andb € int(H 7). In addition, there existse {1,...,2¢71} such that
(3.18) Ts+ 0, Cc H.
Now we define pointg andq’ by
{a} = g, 0l N H(z,\/Bs),  {d'} = [§s,0] N H(z, Bs).
Relation [3.8) implies that
H(z,Bs) N K C &5, + 2G(z)(8s) ™1 E
if s > 0 is sufficiently small. Arguing as ir_[4], we obtain that
Bl/ (d—1)
(w(®), ¥s — Gps) < m< (), 9y@s — Ups)

and ~

lg = gymsll _ (ul@), s yfs>

g = Fssll (u(@), Gs — Gss)
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which yields (cf.[4])
q€Yyps+ 2571 G(z)E
Sinces > [8%(d — 1)}, we thus arrive at
1 1
— =1 G(2)E
Now (3.18) implies thag + ©; c H~. Hence it follows from[(3.719) thaj\/— +w; Cqg+0,c H-,and

therefore alstyfS +w; +0; C H™ ThusQZ s C H—, which yields=,, N QZ s = 0.
Assertion (iii) follows from [3.1b) and (3.17). In fact,df?*~1/2 /n < s < a/n, then

Py (3 # [(Cly. 85) NZ)IL] ) = By (3 € (KulL)

(3.19) q€ Gygs +

a1 n
< ZZ <1 _/; Q(Z)Hdl(dZ)>
< ;d_ll -2~ *‘“21\;_ sn
; ea” T,

by the choice of5. O

To actually compare the situation near the normal boundaintp of K with H;_;(x) > 0 to the case
of the unit ball, letr = (day)~* be the constant density of the corresponding probabilitrithution on
S9-1 Letw € S9! be thed-th coordinate vector ifR?, and henc®?—1 = w+. We write B,, to denote
the convex hull of» random points distributed uniformly and independently¥m! according tas. For
s € (0, 3), we fix a linear subspack, € L with w € Lo, and leti, be of the formiw for X € (0,1)
such that

(dag) ™' - HIT {2z € ST (2,w) > (s, w)}) = s.
In particularbs| Ly = ws.
Lemma32 If L € £,y € d(K|L) andz € OK is a normal boundary point such that= z|L and
Hy 1(z) >0,then
n—1/2 n—1/2

. 2 - _d=3 . 2 _ _d-3
lim nT1P, (§s € Kp|L) s~ 31 ds = lim na-1P, (ws &€ Bp|Lg) s~ 71 ds.

Proof. First, we assumé > 3. It is sufficient to prove that for any € (0, 1) there existsiy > 0,
depending om, z, K, o, L, such that ifn. > ng, then

(3.20) / P, (js € Kn|L)s™ T ds = /
0 0

Let a, 3 andk be the quantities associated withe, K, o, L in Lemma3.1, leC(z, s) denote the cap of
K defined in[[3.R), and lef'(w, s) denote the corresponding cap®f atw. We define the densitieg on
0C(z, fs) andos onIC (w, Bs) of probability distributions by

{ 0(2)/(Bs), it z € K N Cl(x, Bs),
0, ifzedC(x,ps)\OK,

() = { o(2)/(Bs), i z€ 5N C(w, Bs),
° 0, ifzedC(w,Bs)\S4 .

—1/2 —1/2

P, (s & Bun|Lo)s™ ™ ds+0< = )
nd-1

0s(2)

Fori = 0,...,k, we writeC(z, 3s); andC(w Bs); to denote the convex hulls éfrandom points dis-

tributed unlformly and independently @' (z, 8s) anddC (w, Bs) according tao, ando, respectively.
If nis large, then Lemn@ 1 yields that the left-hand and th&+ignd side of (3.20) are

( ) + Z ( ) /(d L (Bs)i(1— Bs)" " x P,, (g ¢ é(x,ﬁs)iw) =
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( ) + Z ( ) /<d e (Bs)' (1 = Bs)" ™" x Py, (w ¢ 5(w,ﬁs)i|L0) s ds.

For each < k, the representat|on of the beta function by the gamma fanetind the Stirling formula (see
E. Artin [1]) imply

1/8 =0 (i 4+ -2
(3.21) lim n% (7;) / (ﬂs)z(l - BS)niisig ds = ’ (Z dil) < 1.
0

n— oo 7!

Therefore to prove (3.20), it is sufficient to verify that feachi = 0, ..., k, if s > 0 is small, then

Py, (3. # Cla, B)ilL) = B, (i, # Clw, Bs)ilLo) | < <.

(3.22) .

If 4 < 4, then [3.2R) readily holds as its left-hand side is zero.
To prove[3.2R) ifi € {j + 1,...,k}, we transform both and B¢ in such a way that their osculat-

ing paraboloid is? = {z — ||z]|2w : z € R?"!}, and the images of the cap¥z, 3s) andC(w, s)
are very close. Using these caps, we construct equivalpresentations dp,, (gs Z CN'(x, ﬁs)i|L) and

P,, (u?s Z ﬁ(w, ﬁs)i|L0), based on the same spa€gand on comparable probability measures and ran-
dom variables.

We may assume that(z) = w. Letwi,...,vs_; be an orthonormal basis af in the principal
directions of the fundamental for@ of K atxz € 9K. We define the linear transforr, of R¢ by
Aw) = 2(Bs)T1Gla )*2

Ags(v) = ﬂsdlv 2)G(x) Y, i=1,...,d—1,
and choose an orthonormal linear transfdPgnsuch thatPsw = w, andP, o A (L+) = LOL. Based on
these linear transforms, |ét, be the affine transformation

D,(z) = Pso Ag(z — x).
In addition, we define the linear transforRy of R by

Ry(w) = 2(Bs) (O‘d1>ﬁw,

dad

1
_ d—1
Rs(vi) = (ﬁs)rll (ad_1> Uiy izla"'ad_la

dOéd
and let¥, be the affine transformation
Us(z) = Rs(z — x).

Subsequently, we also write; z for ®,(z) or ®,z| L for ®,(z)| Lo, and similarly for¥ ;. We observe that
() is the osculating paraboloid of both, K and¥,B? ato, and

lim .3, = lim Uy, = —B7Tw=: w"

s—0t s—0t
lim (IJSG(:E,BS) = lim \Ilsé(w,ﬂs) = {z—7w:ze B land|z|? <7 <1}
s—0t s—0t

Forp € C(z,Bs) N OK andz = m o ®,(p), let D(p) be the Jacobian of o ®, atp as a mapr o ®,
C(z,Bs) NOK — R41, and let

@s('z) = Qs(p) : D(p)il'
In addition, forp € C(w, 8s) NS4~ andz = 7 o U, (p), let D(p) be the Jacobian of o ¥, atp as a map
oW, : C(w,Bs) NS4 — R and let

G+(2) = 0s(p) - D(p) ™"
We define
Es = [w o (Dsé(:v,ﬂs)} u [w o \Ilsa(w,ﬂs)} ,
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and extengh; ands, to =, by
6,(2) = 0, it z€[row,C(wBs)|\ [ro@,C(, B5)]
Go(z) = 0, if [wofbsé(x,ﬂs)}\{wo@sé(w,ﬂs)}.

Thereforeg; anda, are densities of probability distributions &a. Forz € Zg, let p,(z) € ®,0K and
¥s(2) € ¥,5971 be the points near whose orthogonal projection inf?—! is z. For random variables

z1,...,2; € Eg either with respect tg, or &, the quantities above were defined so as to satisfy
(3.23) Po, (5 # C@, BNIL) = Pa, (@udulLo & [ps(21), s 0s(20)l L)

B24) Py, (0 ¢ Clw,BshIL) = Pa, (Wids & [(e1)s -, ()| o)

Now there exists an increasing functiors p*(s) with lim,_,o+ p*(s) = 1 such that

(
p(s)"1BI ¢ [ﬂ' o Q)Sé(:zr,ﬂs)} N |:7T o \Ilsa(w,ﬂs)} C B, C p*(s)B41,
*(s)ps(z) forall z € =, and

W
s)layt, <os(z) < pr(s)ayt, ifzemo ®,C(z, Bs),

e (
pr(s)rayt, <as(2) < pt(s)ayt,, ifzemo .C(w, Bs).
Therefore
(3.25) lim |6s(2) — G5(2)| HY " (dz) = 0.
s—0F J=,

From [3:25) we deduce thatdf> 0 is small, then
(3.26) |]P).§s ((1)5575|L0 ¢ [‘Ps (Zl)v ceey ‘PS(ZZ')”LO andV¥ s ¢ W’s (Zl)v e 71/15('21')”140) -
Ps, (PsZs|Lo & [ps(21)s -+ s (2)]|[ Lo andWsiis & [1hs(21), - .., ¥s(2:)]|Lo)| <

Next, if s > 0 is small, then

> ™

~ 9 - €
||U)* — ¢SI5H S W and H’LU* — \I/SwSH S W,

and in addition .
lps(2) — s (2)]] < Sy forall z € =5.

Let us assume thabszs|Lo & [ws(21), .., 9s(2:)]|Lo but Uss € [hs(21),...,%s(2)]| Lo for some

z1,...,2; € Zs. In this case, the point of [ps(21),. .., vs(2:)]|Lo closest tod,zs|Ly is contained in
some(j — 1)-simplex[¢s(zm, ), - - -, @s(2m;)]|Lo, i.€. there are\;, ..., \; > 0, Ay + ...+ X = 1,
such thata = 121 Arp(2m, )| Lo. Moreover, there ar@y, ..., u; > 0, p1 + ... + u; = 1, so that

Was =y 1 _y prhs(zr)|Lo. Then we have

[[®s3s|Lo —al| <

(I)S‘/Z'S|L0 - Z Mr%(zr)|L0

r=1

7
< H(I)5575|L0 - U’*H + ||U’* - \IszSH + Z/LT(UJS(ZT) - ‘PS(ZT)”LO
r=1
< € € e 3
- Lkitl + fei+1 + i+l T fgt1?
and hence
. 4e
”w - GH < Litl
Choose a maximal set;,...,v; € S4! N Ly such that the distance between any two points is at least

ek~U+D in particular
| < e~ U110+,
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Sincea, ¢s(zm, )| Lo, - - -, s(2m, )| Lo lie in a(j — 1)-dimensional affine subspace bf, there is a unit
vectorv € S N Ly such that (s (2, ) — w*,v)| < 4ek~U+Y forr = 1,..., 4, and thus
" 6e

[(ps(2m,.) — w*,vm)| < jREsY
forr = 1,...,j and a suitably chosen € {1,...,1}. In fact, for the given vector € S?~! N Ly, there
is somem € {1,...,1} such that|v — v,,|| < ek~U+V), Sinced,C(z, Bs) C w* + 2B%, we deduce that

(s (zm,) —w"vm)| < [ps(zm,) = w", 0)] + [[0s(zm,) — 0[] - lvm — v]|
< de 9 e be
S R T g T e

Therefore, if we define, fom =1, ..., 1,
II,, := {p € 3<1356'(:C,Bs) D p— w o) < 6£k_(j+1)} ,

we get the following: if®,%s|Lo € [ps(21),.-.,0s(2:)]|Lo bUut s € [hs(21),...,%s(2:)]| Lo for
somezy,...,z; € Zg then there existsn € {1,...,1} such thatll,, contains somg of the points
©s(21), ..., ps(2i). SinceHIY(I,,) < ek~ U+, we have

Pg, (®s¥s|Lo & [ps(21), - - -, ps(2i)][ Lo andW s € [1hs(21), - - -, ¥s(2:)]| Lo)
. l
<(1) 3B (el pa(s) < T

(3.27) < (;) e (ekUTDY « %

Similarly, we have

(3.28)  Po, (Vadhs € [Uu(21), ., ()]l Lo aNd@.E Lo € [pa(21), - a0l 1Lo) < 7.
Combining [(3.2B),[(3.24) as well d5(3126), (3.27) dnd (By2&ds [3.22), and in turn Lemnia3.2df> 3.

If d = 2, then a similar argument works, only some of the constrdinsilsl be modified as follows. In
@23), we only havg 71T (z + %)/i! < k + 1, and hence if(3.22), we should verify an upper bound
of order 5, not of orders.. Therefore the upper bound in(3126) should®e O

4. COMPLETING THE PROOF OFTHEOREM[I.Z

In order to transfer an integral over an average of projestiaf a convex body to a boundary integral,
we are going to use the following lemma from K. Boroczky Ur.M. Hoffmann, D. Hug[[3].

ForL € £4 andy € 9(K|L), we choose a point(y) € K such thaty = z(y)|L. In generalz(y) is
not uniquely determined, but we can fix a measurable chofcf8(@. 152]). Recall, however, thaty) is
uniquely determined for; a.e.L € £4 and#’/~! a.e.y € I(K|L).

Lemma4.l. LetK C R?be a convex body in which a ball rolls freely, jet 9K — [0, o) be nonnegative
and measurable, and lgte {1,...,d — 1}. Then

& T (z)H Y (dx) = T i=1 2
2 @@ ) = [ ? /8(K|L)f( () 1~ (dy) v5(dL).

By the very special cask’ = B of (L2), due to M. Reitznef[16], we have
lim n7 T [V;(BY) — B,V (B)] = P (dag) 7.

n—oo

Therefore the rotational symmetry 8¢, (2.12) and[(36) yield

d . -
GD (Jo )T = (5) cva Jaj(dag) T 2
¢ (dag) Qg—j0y d—1 (1)~
n—1/2
(4.1) x lim nTIP, (B & Bn|Lo) s~ 7= ds.

n—00 0
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We can now transform the asymptotic formulasifo Let L € Eff and lety € 9(K|L) be such that
y = z|L for some normal boundary poiat = x(y) € K. If Hy_1(z) = 0, thenJ,(y,L) = 0 by
Lemmd24. IfH,;_1(x) > 0, then it follows from [3.5), Lemmi@a3.2 and (#.1) that

-2
Jo(y, L) = (d—1)"Yag—r) T o(x)71 Hyy(2)T7
n—1/2 , is
x lim na1P, (s & BplLo)s <1 ds
n—oo 0

Do joy\
= C(‘j’d)g(ff)ﬁﬂd—l(f)dll< e &> )

ag—jo;  dog
wherez = z(y). Finally, we apply first(2.12), and afterwards Lemimd 4.1deéduce
Jim 7 (V) — By (V; (K))

gd dad

Jo
=0 [ o) Hoa ()7 Hs () M (),
0K

which concludes the proof of Theorém]1.2.

/ / o(w(y)) 71 Ha—1 (x(y)) ™7 HI =L (dy) v;(dL)
ﬁd 9(K|L)

5. PROOF OFTHEOREM[L.3

Using the Stirling formuld’(n + 1) ~ (2)"v/27n, asn — oo (see E. Artin[[1]), for anyx > 0 and
€ (0,1], we deduce

v 1
lim no‘/ s 11—s)"ds = lim no‘/ s*7H1 —s)"ds
I'(a)I" 1
(5.1) = lim no‘M =T(a).

nsoo  D(n+1+4+a)

In the following argumentyy, 2, ... again denote positive constants that may depen& andp. We
can assume that € int(K). Further, let(0K)? denote the set of alt4,...,z, € dK such that €
[z1,...,2,]. Foru € S9! andt > 0, let

C(u,t) :={x € K: (x,u) > hx(u) —t},

whereh denotes the support function &f. To deduce the upper bound, we start with the estimates

E (Vl - Vi(Kn))
- / (hac () — hac. () HO= (du)o(z) -« - o(wn) HE(dar ) ... A= (da)
Ad—1 BK Sd—1
< / / (hi(u) = i, (w) H* ™ (du)o(z1) - - o(@n) HYH(dzr) ... HY T (dn)
QAd—1 J(9K)r Jgd-1
+24(1 — )"

IN

/ / / H{xy,...,2, € OK \ C(u,8)}o(z1) - o(xn)
Qd—1 Jgd-1 Jo (OK)"
H N (dxy) .. HIT (d,) ds HA Y (du) 4+ 24(1 — )"

hi (u) "
= <1— / Q(wmd—l(dw)) dEHO (du) + 291 — )"
Qq—1 Jgd-1 Jo OKNC (u,t)

For suitable positive constants, 3, v4 we get, foru € S9=1 andt € (0,72),

> ytdlift e (0,79),
(5.3) / ola) H (dx) { b ree 0.
OKNC (u,t) > V4, if t > 7.

(5.2) <
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In particular,y4, v3(72)?~* € (0,1). We deduce fron{(512)[(5.3) and (b.1) that, for suitaije. .., o
with Y7,7Y9 € (07 1)1

E,(Vi(K) = Vi(Ky))

IN

2
Y5 / (1 — ’}/3td71)n dt + ’}/6’}/'?
0

Y9 1y =y
= 78/ sT170 - (1L —s)"ds + 7677 < Y1001,
0
To prove the lower bound fdt, (V1 (K) — V1(K,,)), we need the following observation.

Lemma5.1. Let K c R? be a convex body, and I&t; be twice differentiable at, € S~!. Then there
is someR > 0 such thatk' C 2y — Rug + RB?, wherezy = Vhx (ug) € K. In particular, there exist
a measurable séf ¢ S9! with H?~1(X) > 0 and someR > 0, all depending onk, such that for any
u € ¥ there is some € 9K such thatk’ C = — Ru + RB?.

Proof. For the proof of the first assertion, we may assumehat o, hence alsd x (up) = 0. We put
h := hg. By assumption, there is a functidh: Ry — [0, oo) with lim;_ o+ R(¢) = 0 and

1
h(u) — 3 d2h(u —up,u —uo)| < R(||lu— uol)||u— u0||2.

Thus there is a constaft; > 0 and§ > 0 such thath(u) < Ri|ju — uo|? for all u € S9! with
(u,up) > 1 — 6. But then forRy := max{2R;, max{h(u) : u € S¥1}/(26)} and allu € S9!, we
obtain
h(u) S RQ (1 — <UQ,U>) = h(—RQUO + RQBd, U),
thatisK C —Roug + RQBd.
The second assertion follows immediately from the first disse O

Letty be the inradius of¢. Now Lemmd’5.1l yields, for € 3 andt € (0, ), that
/ o(z) H " (dx) < 1y - t
AKNC (u,t)

Choosing a constants € (0, to) satlsfymgwll(ylg) < 1, it follows as in the derivation of (5.2) that,
with a suitable constant s € (0, 1), we have

Eo(Vi(K) — Vi(K,)) > / / 1 nt2) " e )

ad—1

Y13
= / sda-1 (1—3) ds > v14 - =
0

Theoreni_1.R shows that the lower bound of Lenima 1.3 is of gitorder if K has a rolling ball. In
fact, the assumption of a rolling ball ensures that the iratlegn the right side of (112) is positive. This
follows, for instance, from the absolute continuity of thauSs curvature measure of a convex body which
has a rolling ball (cf.[[12]).

On the other hand, the upper bound®y(V; (K) — V4 (K,,)) is of optimal order ifK is a polytope. To
explain this, letS, ¢ S™~! be contained in the interior of the exterior normal cone of ofithe vertices
of K and such tha#?~1(%g) > 0. In this case

/ o(z) Hd_l(dzzr) < 15 - gt
OKNC (u,t)

foru € ¥y andt € (0, v16), and henc&, (V1 (K) — V1(K,,)) > 17 - N,
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