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Abstract 21 

 22 

Diversity partitioning has been generally used to estimate the contribution of different levels 23 

of sampling hierarchy to landscape diversity. However, beta diversity values derived by 24 

partitioning strongly depend on focus and sample size and the partitioning is inadequate to 25 

express the contribution of landscape elements to community variation. Pairwise 26 

dissimilarities are also frequently used to express community turnover, but related approaches 27 

capture only a limited aspects of it, especially for hierarchical sampling designs. To avoid 28 

these shortcomings, we suggest a procedure which quantifies the role of different levels of 29 

sampling hierarchy (relative beta diversity) and the share of landscape elements in the 30 

corresponding relative beta diversity (contribution value). Our novel method uses pairwise 31 

dissimilarities and is based on partitioning a dissimilarity matrix of sampling units. The new 32 

method is suitable to testing various null hypotheses via permutation techniques as 33 

demonstrated by artificial and actual data. Our novel method is a valuable tool in ecology 34 

because it complements existing approaches while providing a unique way to understand 35 

community diversity in space. 36 

 37 

Highlights 38 

• A method quantifying different aspects of community variation is proposed. 39 

• We demonstrated its utility by examining artificial and actual data sets. 40 

• Significance tests are possible via randomization models. 41 

• It complements existing approaches to measure community variation. 42 

 43 
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1. Introduction 46 

 47 

 Studying and understanding the spatial aspect of biodiversity are the most challenging 48 

tasks of contemporary ecology (Beever et al., 2006; Bevilacqua et al., 2012; Rosenzweig, 49 

1995; Villéger and Brosse, 2012; Whittaker et al., 2001). A wide range of conceptual and 50 

methodological approaches to this problem use the term beta diversity (Tuomisto, 2011) and 51 

include analyses of turnover along environmental gradients and variation in species 52 

composition among sites (Anderson et al., 2011). In the simplest case, turnover or variation 53 

are evaluated using sampling units without considering any a priori classification of them. In 54 

many situations, however, sampling units constitute an inclusive hierarchy: units are grouped 55 

according to habitat, similar habitats are merged into landscape elements, and so on. Such a 56 

sampling scheme, referred to as hierarchical sampling design (see Crist et al., 2003), allows a 57 

sophisticated evaluation of turnover within the community (Gering et al., 2003). In the present 58 

paper, we emphasize that community variation quantified using regional and local diversity 59 

values are confounded by differences in focus and sample size and consequently cannot be 60 

formally compared (Izsak and Price, 2001; Terlizzi et al., 2009). We also show that recently 61 

available approaches using pairwise dissimilarities capture only a limited aspect of 62 

community turnover for hierarchical sampling designs. Therefore, we suggest a procedure 63 

which quantifies the role of different levels of sampling hierarchy (relative beta diversity) and 64 

the share of landscape elements in the corresponding relative beta diversity (contribution 65 

value) such that differences in focus and sample size do not influence the estimates. From a 66 

practical point of view, our approach provides an invaluable tool for biodiversity monitoring 67 

because 1) it quantifies a standardized and therefore comparable aspect of community 68 

variation, and 2) it expresses the share of landscape elements in total diversity, an option not 69 

available in earlier methods. Thus, our method supplements the existing methodology of 70 
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diversity partitioning while providing a unique way to understand community diversity in 71 

space. 72 

 73 

2. Terminology 74 

 75 

2.1. The scale concept 76 

 In the scale concept, five terms: sampling unit, grain, focus, sample size and extent, 77 

are of central importance (see Kenkel et al., 1989; Palmer and White, 1994; Peterson and 78 

Parker, 1998; Scheiner et al., 2000, 2001; Wu, 2004). Sampling unit is the arbitrarily 79 

delimited tract of the community in the real space (synonyms are plots, quadrats). Grain is the 80 

standardised unit to which all data are adjusted, if necessary, before the analysis. This aspect 81 

of scale becomes particularly important in ecological research when data are obtained from 82 

different studies or from the same research research using sampling units of unequal size. For 83 

example, for eight sites we may have measures of species richness derived from 1 m2 84 

quadrats, whereas for another site we may have species richness derived from 2 m2 quadrats. 85 

To use data from all sites, quadrats must be standardized to the same size, which becomes the 86 

grain of the study (Schneider et al., 2000). Focus is the scale at which the grains are 87 

aggregated and related grains form focal units. For example, when the species richness of a 88 

patch is estimated by aggregating the species inventories of three 1 m2-quadrats, then the 89 

focal unit size is 3 m2. Consequently, the size of focal units may be equal to or larger than the 90 

grain size. Sample size expresses the number of replicates of sampling units at the scale of 91 

grain or the number of focal units (at the scale of focus). Finally, extent is the geographical 92 

area within which the sampling units are arranged. 93 

 94 

2.2. Hierarchy theory 95 
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 In hierarchy theory, several levels of organisation are distinguished in a system, each 96 

involving a distinct set of attributes and problems (King, 1997). Consequently, the level does 97 

not indicate any physical dimension directly (contrary to scale) and is constrained by the level 98 

above it (Turner et al., 2001). A good example is the habitat hierarchy of streams (Frissell et 99 

al., 1986) which defines microhabitat, pool/riffle, reach, segment, and the stream system as 100 

different levels. These levels of habitat hierarchy are associated with unique 101 

geomorphological and hydrological features and events (see Fig. 2 in Frissell et al., 1986). 102 

Note that in this paper we consider only discrete hierarchical levels; if the levels themselves 103 

are continuous then a function may be invoked that describes that abstract continuum, and this 104 

function is also called the scale in hierarchy theory (Allen and Starr, 1982). 105 

 106 

3. Quantifying community variation using diversity partitioning 107 

 108 

 Let us start with a simple example: we have a landscape with two habitat patches (A 109 

and B) and our aim is to quantify community variation (beta diversity) within and among 110 

patches. In this case, our habitat hierarchy consists of three levels: sample (level 1), patch 111 

(level 2) and landscape (level 3, see Fig. 1: Habitat hierarchy). Assume that we take 3 112 

sampling units (sampling units 1, 2, and 3) from patch A and 3 sampling units (sampling units 113 

4, 5, and 6) from patch B and that the grain size of the 6th sampling unit is larger than that of 114 

the others (Fig. 1: Sampling unit). Since the observed diversity depends on sampling unit size, 115 

to allow comparisons we have to standardise our sampling units to the same grain size. After 116 

this, grain size will be the same for all sample units (Fig. 1: Grain). In the next steps, sampling 117 

units at grain size are regarded as focal units (Fig. 1: Focal units, bottom row), or sampling 118 

units at grain size are aggregated to get focal units (Fig. 1: Focal units, 2 middle and top 119 

quadrats). Following this terminology, Whittaker (1960) put forward a Greek lettering scheme 120 
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referring to diversity observed within (α and γ diversities) and among (β diversity) focal units. 121 

In our example, within sample focal unit alpha diversity is calculated as the mean diversity in 122 

the lowest six focal units (Fig. 1, Focal units, below), within patch focal unit alpha diversity 123 

as the mean diversity in the two focal units (Fig. 1, Focal units, middle), and total diversity of 124 

the landscape as the diversity of the top focal unit (Fig. 1, Focal units, top). Given the above 125 

scheme, beta diversity can be expressed in many different ways, including methods based on 126 

additive and multiplicative partitioning (Anderson et al., 2011; Jurasinski et al., 2009; Koleff 127 

et al., 2003; Ricotta, 2010; Tuomisto, 2010; Veech and Crist, 2010a, b; Whittaker, 1960). 128 

Among sampling units variation is calculated as the relationship between within-patch focal 129 

unit alpha diversity and within-sample focal unit alpha diversity. Among-patches variation is 130 

quantified as the relationship between total gamma diversity and within-patch focal unit alpha 131 

diversity. Here we should emphasize again that among-patches variation includes only that 132 

part of community variation, which exists among patches but not within patches. In case of 133 

additive partitioning, the relationship is measured via subtraction and thus beta diversity is 134 

expressed in units of numbers of species, whereas in case of multiplicative partitioning it is 135 

achieved via division and thus beta diversity is expressed as an unitless ratio. In addition, 136 

diversity can be partitioned with respect to a two-level or a multi-level sampling hierarchy 137 

(Chiarucci et al., 2008; Erős, 2007; Gering et al., 2003; Wagner et al., 2000) and thus the 138 

focal scale concept is a generalization of two-level (regional and local) comparisons. In sum, 139 

diversity partitioning described above has become one of the most influential approaches for 140 

assessing the contribution of the different levels of habitat hierarchy to the overall biological 141 

diversity of a landscape, thereby linking patterns in biological diversity to landscape level 142 

environmental heterogeneity (Gering et al., 2003). 143 

 Assume that we have a landscape with discrete patches of vegetation and we would 144 

like to quantify community variation within (β1) and between (β2) patches. For simplicity, 145 
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sampling unit size is held constant, consequently grain equals to the sampling unit. Assume 146 

further that only a single species is present in each sampling unit and sampling units share no 147 

species. We sample the same landscape by four different sampling designs (A, B, C, and D): 148 

in case A, two patches were sampled, each by 2 sampling units; in case B, 2 patches were 149 

sampled, each by 4 sampling units; in case C, 4 patches were sampled, each by 2 sampling 150 

units; and finally in case D, 4 patches were sampled, each by 4 sampling units (Table 1). 151 

 Additive diversity partitioning based on species richness shows that there are scale-152 

related differences in quantifying beta diversity within the same design. For instance, sample 153 

sizes for calculating β diversities among sampling units (β1) and among patches (β2) differ 154 

with sampling strategy (4, 8, 8, and 16 versus 2, 2, 4, and 4). This is critical when the different 155 

β diversities are evaluated and interpreted because sample size has a strong effect on β 156 

diversity (often called as the relationship between additive diversity partitions and sample-157 

based rarefaction, Crist and Veech, 2006; Gotelli and Colwell, 2001; but reference to this 158 

phenomenon appears in other papers as well, e.g., Gering et al., 2003; Veech et al., 2002). 159 

However, in comparing the β diversities one must consider that focal unit size also changes 160 

(1, 1, 1, and 1 versus 2, 4, 2, and 4 in Table 2). This is critical again because the effect of 161 

focal scale on species richness can be characterized by the well-known species-area 162 

relationship (Crist and Veech, 2006; He and Legendre, 2002; Pielou, 1975; Schmera et al., 163 

2009): the larger the focus, the higher is the number of species. Crist and Veech (2006) 164 

already realized this problem (i.e. within the same level, not only sample size but also 165 

differences in focal unit sizes influence beta diversity) and suggested a methodology for 166 

separating the effects of different focal unit sizes and sample size. However, this suggestion 167 

does not solve the methodological problem associated with diversity partitioning, namely that 168 

beta diversities are calculated based on different focal unit and sample sizes from different 169 

levels. This is critical because focal unit sizes differ across levels. It is easy to see that focal 170 
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unit size depends on the grain size in general, and upper-level (≥2) focal unit sizes also on the 171 

sample sizes observed at the level below (Fig. 1). It follows that differences in sample size 172 

representing landscape elements and the handling of sampling units (aggregation into focal 173 

units) may strongly influence the result of diversity partitioning. 174 

 The output table shows that even small changes in sample size may affect substantially 175 

the results of diversity partitioning (Table 1). For instance, increasing sample size (no. of 176 

sampling units) from 4 to 8 raised among patches β2 diversity from 2 to 4, while the number 177 

of patches examined (2) was unchanged (A to B). Similar change in sample size increased 178 

among patches β2 diversity from 2 to 6 if the number of patches increased from 2 to 4 (A to 179 

C). Moreover, if both sample size and the number of patches changed (A to D), then among 180 

patches β2 diversity increased from 2 to 12! 181 

 We do not say that small changes in sample size always have strong impact on the 182 

output of diversity partitioning for actual data (because in most cases community variation is 183 

smaller than in our artificial data), but our example calls attention to the inherent ecological 184 

weakness associated with diversity partitioning methodology. Moreover, habitat types in 185 

actual data sets often differ regarding the number of sampling units taken (Chiarucci et al., 186 

2008; Erős, 2007; Müller and Großner, 2010). In these cases, community variation within 187 

habitats represented by large sample is overestimated in the calculations if compared to 188 

habitats sampled by fewer units. Furthermore, the focal unit size of habitats with large sample 189 

size will be greater than that for habitats with low sample sizes. This influences the output of 190 

beta diversity at upper levels. 191 

 Another problem associated with diversity partitioning is that whereas it estimates the 192 

contribution of a given level to total diversity, no information is provided on the possible 193 

difference between the contributions of focal units within the same level. In other words, 194 

diversity partitioning "facilitates the comparison of diversity components between habitat 195 



 9 

types (...), but does not tell us which landscape elements (i.e. which habitat type) contribute 196 

most to landscape species diversity" (Wagner et al., 2000). We argue that this information 197 

might be essential in any management decision or conservation planning. 198 

 The above observations suggest that (1) comparison of different beta diversity values 199 

originating from the same diversity partitioning is theoretically less meaningful because 200 

sample size-dependence and the way sampling units are handled (aggregated) may be strongly 201 

responsible for the results; and (2) diversity partitioning is uninformative about the 202 

contribution of landscape elements. We do not say that the currently used method of diversity 203 

partitioning should be disregarded or its use is absolutely meaningless, but rather we call 204 

attention to some shortcomings of the approach. 205 

 206 

4. Quantifying turnover using pairwise dissimilarities 207 

 208 

 Pairwise dissimilarity indices are commonly used in expressing beta diversity both in 209 

basic research (Anderson, 2001; Anderson et al., 2006, 2011; Koleff et al., 2003; Vellend, 210 

2001) and conservation practice (Cingolani et al., 2010; La Sorte et al., 2008). If sampling 211 

scheme follows a hierarchical sampling design (i.e. sampling units can be grouped 212 

successively at different levels), then pairwise dissimilarity matrices can be partitioned into 213 

groups of dissimilarities (see Fig. 1 in Bacaro et al., 2012). Partitioning of dissimilarity 214 

matrices is frequently used in molecular genetics (Analysis of Molecular Variance, AMOVA, 215 

Excoffier et al., 1992) and community ecology (Analysis of Similarities, ANOSIM, Clarke 216 

1993; Mean Similarity Approach, MSA, Van Sickle, 1997; Permutational Multivariate 217 

Analysis of Variance using Distance Matrices, PERMANOVA, Anderson, 2001; Multiple 218 

Response Permutation Procedure, MRPP, McCune and Grace, 2002). 219 
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 Most of these tests aim to indicate the coherence of groups or the differences between 220 

groups by a comparison of (squared/rank of) dissimilarities within and between groups 221 

(AMOVA, ANOSIM, MSA and PERMANOVA) or by the comparison of dissimilarities 222 

among groups (MRPP), but are not necessarily designed for expressing turnover in well 223 

interpretable way. Capturing turnover values from the output files of these analyses is rather 224 

challenging, because these tests are based on squared dissimilarities (AMOVA, 225 

PERMANOVA), ranked dissimilarities (ANOSIM) and raw dissimilarities (MRPP, MSA) 226 

and because overall test statistics or group-related partial results are often standardized by the 227 

number of observations within the group (AMOVA, PERMANOVA), by the relative group 228 

size (MRPP), by the number of dissimilarity values within the group (MSA), or in such a way 229 

that the test statistic varies between -1 and +1 (ANOSIM). Consequently, even if the 230 

quantification of turnover by pairwise dissimilarities is not influenced by scale issues 231 

(because all methods express community turnover from one sampling unit to another) no 232 

methodology is available to express turnover of different levels of hierarchically collected 233 

samples. 234 

 235 

5. Innovation 236 

 237 

 Here we suggest a procedure which quantifies the role of different levels of sampling 238 

hierarchy (relative beta diversity) and the share of landscape elements to the corresponding 239 

relative beta diversity (contribution value), such that differences in focus and in sample size 240 

do not influence the estimates. 241 

 Numerous pairwise dissimilarity measures are used to express beta diversity (e.g., 242 

Koleff et al., 2003). Although our method works with any of these measures, here we 243 
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calculate pairwise beta diversity values (βPAIR) for all possible sampling unit pairs as follows 244 

(see Lande, 1996): 245 

2
c+b=βPAIR , (Eq1) 246 

where b is the number of species present only in the first sampling unit and c is the number of 247 

species present only in the second sampling unit. 248 

 In hierarchical sampling designs, pairwise beta diversities quantify turnover within 249 

and/or among landscape elements. Let us define Ax,j as a set of pairwise beta diversities, 250 

which quantify the community turnover within a landscape element j (defined at level x) but 251 

not the community turnover within landscape elements defined at any levels lower than x. We 252 

quantify the role of different levels of sampling hierarchy as relative beta diversity (βREL) 253 


j

jxPAIRPAIRxREL A ,)1( | ∈=− βββ  (Eq 2) 254 

and the share of landscape element as contribution value (CV) given by 255 

jxPAIRPAIRjx ACV ,, | ∈= ββ  (Eq 3) 256 

 In order to illustrate calculations of the novel method, consider a hierarchical sampling 257 

design with two patches and 4 sampling units (2 sampling units per patch) and the following 258 

data matrix in which columns represent sampling units and rows are species: 259 

    patch 1 | patch 2 260 
 261 

    1   1   1   1 262 
    1   0   0   0 263 
D=  1   0   1   1 264 
    1   1   1   0 265 
    0   1   1   0 266 
    0   0   1   1 267 

The pairwise comparison of sampling units resulted in 6 pairwise beta diversities (Table 2). 268 

Two pairwise beta diversities (pairs 1-2 and 3-4) express within patch/among sampling units 269 

turnover, whereas the other four (pairs 1-3, 1-4, 2-3, and 2-4) within landscape/among patches 270 

community turnover. The results show that pairwise beta diversities as defined above vary 271 
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between 1 and 2 (Table 2). The relative beta diversity among sampling units (level-1) is 1.25 272 

and among patches (level-2) is 1.5. Their difference shows that the second sampling level has 273 

a higher relative contribution to diversity than the first. In other words, diversity among 274 

sampling units from different patches is larger than among sampling units from the same 275 

patch. The contribution value of a patch expresses how the patch contributes to the relative 276 

beta diversity among sampling units. The contribution values of patches 1 and 2 differ (Table 277 

2), suggesting that patches can be ranked based on their contribution to the between sampling 278 

unit relative beta diversity: from this point of view patch 1 is more “valuable” than patch 2, 279 

because community turnover in patch 1 is higher (1.5) than in patch 2 (1). It should be noted 280 

that from additive diversity partitioning we would conclude that among sampling unit beta 281 

diversity is larger (1.25) than among patches beta diversity (1). 282 

 283 

6. Analyses of actual data sets 284 

 285 

6.1. Stream dwelling caddisflies 286 

 Caddisflies were collected from the Kemence stream (Hungary) using a hierarchical 287 

sampling design (Schmera and Erős, 2012). Within the stream system, 3 segments (coded 288 

from 1 to 3); within each segment, 3 reaches (altogether 9, coded from 1 to 9), within each 289 

reach, 3 riffles (altogether 27, coded from 1 to 27) were randomly selected. Within each riffle, 290 

12 (altogether 324) Surber sampling units (area: 0.09 m2, mesh size: 0.5 mm) were taken to 291 

represent microhabitat level of the stream habitat hierarchy. Consequently, our stream habitat 292 

hierarchy includes the following levels: sampling unit/microhabitat, riffle, reach, segment and 293 

stream system (see figure and definition of levels in Schmera and Erős 2012). 294 

 Additive diversity partitioning applied to the species richness of caddisflies showed 295 

that among sampling units beta diversity had the strongest contribution to the total diversity of 296 
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the stream system (29 species) followed by among segments beta diversity (Fig. 2A). In 297 

contrast, the novel methodology showed that among segments relative beta diversity (βREL(4)) 298 

has the strongest sample size-independent contribution to the caddisfly diversity of the 299 

stream, followed by among reaches (βREL(3)), among riffles (βREL(2)) and among sampling units 300 

(βREL(1)) relative beta diversities (Fig. 2B). 301 

 Moreover, contribution values identified that 1) segment 3 has the strongest 302 

contribution to the among reaches beta diversity followed by segments 2 and 1; 2) reaches 5 303 

and 7 have the strongest contribution to among riffles beta diversity, whereas reaches 1 and 3 304 

have the weakest; and 3) riffles 19 and 21 have the strongest contribution to among sampling 305 

units beta diversity and riffles 3 and 17 have the weakest (Fig. 2C). Here we should 306 

emphasise again that the contribution value of a landscape element (defined at level x) 307 

quantifies the contribution of the landscape element to the relative beta diversity at level x 308 

(βREL(x)), and it is not a summary statistic of pairwise beta diversities within the landscape 309 

element. 310 

 One of the advantages of the novel methodology is that corresponding measures from 311 

different studies can easily be compared by traditional statistical approaches if the grain of 312 

sampling units is the same. Such comparisons with traditional diversity partitioning are rather 313 

complicated because both among focal-unit diversities and within focal-unit diversities at 314 

higher level (x> 1) are strongly influenced by sample size and focus. 315 

 Testing the significance of relative beta diversities and contribution values within the 316 

same study is not possible with traditional statistical approaches because these measures 317 

originate from non-independent observations (i.e. the same sampling unit is used for 318 

calculating many pairwise beta diversities). Therefore, we suggest using randomization-based 319 

null models for statistical testing following Crist et al. (2003). The null-model approach is a 320 

framework for comparing observed measures with expected ones, where expected ones are 321 
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derived from randomising the observed data (Gotelli and Graves, 1996). As the combination 322 

of null hypothesis and randomization technique provides a wide variety of null models, here 323 

we can only demonstrate test performance for a single null-hypothesis with the note that 324 

careful formulation of ecological hypotheses is a prerequisite to statistical tests. 325 

 Our test examines whether the observed relative beta diversities and contribution 326 

values are a consequence of sampling design. This corresponds to the second hypothesis (H2) 327 

of Crist et al. (2003). Testing this hypothesis requires separate randomization for each level. 328 

In the first step, sampling units are randomly relocated into any other position as determined 329 

by the sampling design. Using this randomization, hereafter called as randomization #1, we 330 

can test whether among segments relative beta diversity is different from that expected by 331 

chance (βREL(4), Fig. 2B). In the second step, we constrain the randomization in such a way 332 

that sampling units remain in the same segment in which they were taken (randomization #2). 333 

Using this strategy, we can test whether among reaches relative beta diversity (βREL(3), Fig. 334 

2B) and contribution values of segments (Fig. 2C) are different from that expected by chance, 335 

by keeping segment constrains. Finally, we constrain the randomization in such a way that 336 

sampling units should remain in the same segment and reach from which they are originally 337 

derived (randomization #3). Randomization #3 allows testing whether among riffles and 338 

among sampling units relative beta diversities (βREL(2) and βREL(1), Fig. 2A) and the 339 

contribution values of reaches and riffles (Fig. 2C) are different from that expected by 340 

chance, with segment and reach constraints unchanged. The analyses showed that 341 

among segments (βREL(4)), among reaches (βREL(3),) and among riffles (βREL(2)) relative 342 

beta diversities are significantly higher than expected by chance, whereas among 343 

sampling units beta diversities (βREL(1)) are significantly lower (Fig. 2B) at p=0.05. 344 

Moreover, we tested the contribution values of different landscape elements (Fig. 2C). 345 
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Calculations were performed by an Excel Macro developed by the first author. We 346 

used 1000 randomizations. 347 

 348 

6.2. Grassland communities 349 

 The second example comes from an extensive study of rock grasslands on the 350 

dolomite bedrock of Sas-hill, within the city limits of Budapest, Hungary (Podani 1998). 351 

Eighty sampling units were selected in the grasslands, representing three major vegetation 352 

noda (or community types without sharp boundaries), namely open rock grassland (OG), 353 

closed grassland (CG) and slope steppe (SS), and henceforth referred to as habitats. Each 354 

sampling unit consisted of a series of 8 nested quadrats with a common corner, the smallest 355 

being 0.5 m x 0.5 m, and the largest 4 m x 4 m, with 0.5 m side increments in between. For 356 

the present study, we used 10, 8 and 7 sampling units from the above three habitats, 357 

respectively, and in order to demonstrate sampling unit size-dependence of diversity studies, 358 

we used four quadrat sizes: 1 m x 1 m, 2 m x 2 m, 3 m x 3 m, and 4 m x 4 m. Thus, we have 359 

three levels of diversity to evaluate: within-quadrat alpha diversity, among quadrats and 360 

among habitats beta diversity, plus gamma diversity of the total landscape. 361 

 Additive diversity partitioning applied to the grassland communities showed that 362 

among sampling units beta diversity had the highest contribution to species richness 363 

independently from the size of the sampling unit (Fig. 3A). Moreover, diversity values (α1, β1 364 

and β2) increased monotonically over increasing sampling unit size. In contrast, the novel 365 

method showed that independently from the size of the sampling unit, among habitats relative 366 

beta diversity (βREL(2)) had stronger contribution to the diversity of the grassland of the hill 367 

than among sampling units beta diversity (βREL(1)). Both relative beta diversity values (βREL(1) 368 

and βREL(2)) increased over sampling unit size (Fig. 3B). Contribution values showed that 369 

independently from the sampling unit size, closed grassland had the highest contribution to 370 
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among sampling units beta diversity followed by slope steppe and open grassland habitats 371 

(Fig. 3C). 372 

 Considering relative beta diversity, we tested whether the observed relative beta 373 

diversities are different from that expected by chance. Our results showed that among 374 

sampling units beta diversities (βREL(1)) were smaller than expected by chance whereas among 375 

habitat relative beta diversity (βREL(2)) was higher than expected by chance (Fig. 3B). This 376 

suggests that turnover is larger among habitats than within habitats. The contribution values 377 

showed that closed grassland (CG) at 1 m ×1 m sampling unit size has higher contribution, 378 

whereas at other sampling unit sizes the contribution to the among sampling units beta 379 

diversity is lower than that expected by chance. That is, statistical significance is not 380 

independent of sampling unit size (or grain). Slope steppe (SS) and open grassland (OG) also 381 

had significantly low contribution to among sampling units beta diversity (Fig. 3C). 382 

 383 

7. Bias, variation and error rates 384 

 385 

 We quantified the bias and the variation of relative beta diversities following widely-386 

accepted directives adapted to our research questions. We created an artificial landscape with 387 

two, three and four patches, each with 20 sampling units and 20 possible species. We filled 388 

each sampling unit with 4, 10, or 16 species presence (20, 50, or 80% matrix fill). These 389 

matrices served as the starting landscape and we quantified its true relative beta diversities. 390 

We sampled each patch by 4, 8, 12, 16 and 20 sampling units to estimate relative beta 391 

diversity values. We repeated this procedure 100 times. To make the calculations independent 392 

from the configuration of the starting landscape, we produced altogether 100 random starting 393 

landscapes. We quantified bias as the difference between the true value and estimated values 394 

(Sokal and Rohlf, 1995). We found that bias is in general low (between –0.3 and +0.3) and 395 
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decreases with increasing sample size and, to a less extent, with increasing number of patches 396 

and with intermediate (50%) matrix fill (Fig. 4). We quantified variation as the dispersion of 397 

replicate estimates (Sokal and Rohlf, 1995). We found that mean variation of estimated beta 398 

diversities decreased with increasing sample size, that mean variation of estimated level-2 399 

relative beta diversity (BetaREL(2) was smaller than that of estimated level-1 beta diversity 400 

(BetaREL(1)) and this difference increased over increasing patch sizes (Fig. 5). Matrix fill 401 

influenced the mean variation of estimated relative beta diversities: 50% matrix fill had the 402 

highest mean variation (Fig. 5). 403 

 We calculated the error rate of the relative diversity calculation combined with the 404 

randomization algorithm applied in the analysis of actual data sets. Similarly to the 405 

calculation of bias and variation, we produced starting landscapes (with different number of 406 

patches and with different matrix fill). We considered the true relative beta diversities 407 

independent from sampling design, if their actual values fell within the 95% confidence 408 

interval of randomly relocated samples. We tested this by a randomization test (n=200). Then 409 

we sampled the starting landscape by 4, 8, 12, 16 and 20 sampling units and calculated the 410 

estimated relative beta diversity values. We performed a randomization again (n=200) to test 411 

whether the estimated beta diversities predict independence from sampling design. To make 412 

the estimation of error rates independent from the configuration of the starting landscape, we 413 

produced altogether 200 starting landscapes. We quantified the type I error rates (the 414 

probability of rejecting the null hypothesis when it is true), and type II error rates (the 415 

probability of failing to reject the null hypothesis when the null hypothesis is false, Zar, 416 

1999), of our null hypothesis with the assumption that the observed relative beta diversities 417 

are the consequence of sampling design. We found that the error rates are in general low and 418 

decrease with increasing sample sizes and that type I error rate is more sensitive to changes in 419 

sample size than type II error rate (Fig. 6). 420 
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 421 

8. Conclusions 422 

 423 

 Diversity partitioning has become one of the most common approaches for assessing 424 

the contribution of different levels of hierarchically collected samples to the overall biological 425 

diversity of a landscape (Gering et al., 2003). In the present paper, we showed that diversity 426 

partitioning suffers from dependence on sample size effects and aggregation of sampling 427 

units, and therefore it cannot quantify properly the contribution of landscape elements to the 428 

observed diversity patterns. To solve these problems, we suggested a methodology 429 

independent of sample size and demonstrated its usefulness with artificial and actual data sets. 430 

 Following the terminology of Tuomisto and Ruokolainen (2006), our approach 431 

explains variation in beta diversity (level-3 question): what is the contribution of different 432 

hierarchical levels of a sampling hierarchy to overall beta diversity (relative beta diversity), 433 

and what is the share of a landscape element to the corresponding relative beta diversity 434 

(contribution value). Our approach is clearly different from raw data-based methods of 435 

partitioning community composition variation among groups of explanatory variables 436 

(Legendre and Legendre, 1998; Legendre et al., 2005; Peres-Neto and Legendre, 2010) 437 

because our approach cannot provide information on shared variance fractions and cannot 438 

handle environmental. 439 

 The methodology proposed here allows easy comparison of different studies by 440 

traditional statistical approaches if the grain of sampling units is the same. Moreover, it can be 441 

expanded to testing various null hypotheses along the lines described by Crist et al. (2003). 442 

Since the number of potential null hypotheses is large, and there are many other factors that 443 

influence the tests (e.g., matrix size dependence, number of levels and so on), we suggest that 444 

both the null hypothesis and the corresponding randomization technique should be selected 445 
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carefully. We demonstrated by simulation studies that our approach has small bias, low 446 

variance (especially at larger sample sizes) and low error rates. 447 

 The indication of how biological diversity is distributed among different levels of a 448 

habitat hierarchy is a central question of biodiversity research. Additive diversity partitioning 449 

is a tool for answering this question and expresses the contribution of the levels of habitat 450 

hierarchy in units of numbers of species. Here we developed a novel method that quantifies 451 

the same concept also in units of numbers of species, and demonstrated its application using 452 

artificial and actual data sets. However, if one would express relative beta diversity as a 453 

unitless ratio (i.e. multiplicative diversity partitioning) or in any other way, then our approach 454 

can easily be extended into this direction because pairwise beta diversity can be expressed in 455 

different ways (multiplicative beta diversity, effective species turnover, Whittaker's species 456 

turnover, proportional species turnover, Jaccard similarity, see Koleff et al., 2003, Tuomisto, 457 

2010). 458 

 The comparison of traditional diversity partitioning and the new methodology suggests 459 

that they are complementary (Table 3). The differences come from that traditional diversity 460 

partitioning uses raw beta diversities, whereas sample size-independent measurement of beta 461 

diversity adapts relative beta diversities. Although a consistent terminology of species 462 

diversity is a subject of ongoing debate (Jurasinski and Koch, 2011; Tuomisto, 2011), in our 463 

view relative beta diversity and contribution values are valuable tools for landscape ecologists 464 

because they complement existing approaches while providing a unique way to understand 465 

community diversity in space. 466 

 467 
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Table 1: Effect of sample size (SS) and focus (F) on diversity (α1, β1, β2, and γ diversity) at 611 

three different levels based on traditional additive diversity partitioning in four artificial 612 

sampling designs. Focus is expressed by the mean number of sampling units pooled. 613 

 614 

Sampling 
design 

Level 1  Level 1  Level 2  Level 3 

SS F α1  SS F β1  SS F β2  SS F γ 

A 4 1 1  4 1 1  2 2 2  1 4 4 

B 8 1 1  8 1 3  2 4 4  1 8 8 

C 8 1 1  8 1 1  4 2 6  1 8 8 

D 16 1 1  16 1 3  4 4 12  1 16 16 

 615 
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Table 2: Illustration of the new approach using data set D given in the text. Results include 616 

pairwise beta diversities (βPAIR), among sampling units relative beta diversity (βREL(1)) among 617 

patches relative beta diversity (βREL(2)), contribution value of patch 1 (CV2,1) and contribution 618 

value of patch 2 (CV2,2). Subscript 2,1 means that landscape unit can be interpreted at patch 619 

[2] level and this is the first patch. × denotes pairs used in calculating the summary statistics 620 

βREL(1), βREL(2), CV2,1 and CV2,2 621 

 622 

Pairs βPAIR βREL(1) βREL(2) CV2,1 CV2,2 

1-2 1.5 ×  ×  

1-3 1.5  ×   

1-4 1.5  ×   

2-3 1  ×   

2-4 2  ×   

3-4 1 ×   × 

  1.25 1.5 1.5 1 

 623 
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Table 3: Comparison of diversity partitioning and our sample size-independent methodology 624 

 Diversity partitioning Sample size-independent 
measurement 

Interpretation of beta 
diversity 

Expresses the raw contribution 
of sampling levels 

Expresses the relative 
contribution of sampling levels 

(relative beta diversity) 
Sensitiveness to the 

spatial scale of sampling 
Comparisons within and 

between partitioning are rather 
problematic 

Comparisons within and 
between partitioning are 
possible, if the grain of 

sampling units is the same 
Partitioning (sum of alpha 
and beta diversities equals 

to gamma diversity) 

TRUE  NOT TRUE 

Able to express the 
contribution of landscape 

elements? 

NO YES, through contribution 
values 

 625 
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 626 
Fig. 1: The scheme of diversity partitioning. Upper part of the figure shows the handling of 627 
sampling units during the calculations whereas lower part of the figure (in grey) depicts the 628 
habitat hierarchy of sampling. Dotted line groups focal units used for calculating within focal 629 
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unit diversity (alpha and gamma) and 2 dots-3 dash line links focal units used for calculating 630 
beta diversity. 631 
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 633 
Fig. 2: Diversity of caddisfly assemblages in the Kemence stream (Hungary). A: Results of 634 
additive diversity partitioning. B: Relative beta diversities: full circles show observed relative 635 
beta diversity values, horizontal grey lines expected relative beta diversity values (median of 636 
randomized values) and grey vertical lines the 95% confidence intervals of the randomized 637 
values. Note that the departure of βREL(4) was tested by randomization #1, βREL(3) by 638 
randomization #2 and βREL(2) and βREL(1) by randomization #3 (see text). C: Contribution 639 
values: full circles show observed conservation values, horizontal grey lines expected 640 
contribution values (median of randomized values) and vertical grey lines the 95% confidence 641 
intervals of the randomized values. Statistically significant departures (P≤ 0.05) of observed 642 
and expected values are highlighted by asterisks. Note that the departure of the contribution 643 
value of segments (top) was tested by randomization #2 and that of reaches and riffles by 644 
randomization #3 (see text). Landscape elements are ordered from left to right (see numbers at 645 
the bottom of the subfigures). 646 
 647 
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 648 
Fig. 3: Comparison of the output of diversity partitioning (A) and sample size-independent 649 
measurement (i.e. relative beta diversity [B] and contribution value [C]) of the grassland 650 
community of Sas-hill (Budapest, Hungary). Columns from left to right show outputs from 651 
samples containing sampling units of size 1×1, 2×2, 3×3 and 4×4 m2. For diversity 652 
partitioning, black colour and α1 show within sampling unit alpha diversity, whereas white 653 
shows beta diversities (β1 is between sampling unit beta diversity and β2 is between habitats 654 
beta diversity). In case of relative beta diversity, full circles show observed relative beta 655 
diversity values, horizontal grey lines expected relative beta diversity values (median of 656 
randomized values) and grey vertical lines the 95% confidence intervals of the randomized 657 
values. In case of contribution value, full circles show observed contribution values, 658 
horizontal grey lines expected contribution values (median of randomized values) and vertical 659 
grey lines the 95% confidence intervals of the randomized values. SS: Slope steppe, OG: 660 
Open grassland, CG: Closed grassland. 661 
 662 
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 663 
Fig. 4: The effect of sample size (4, 8, 12 and 16) on the frequency distribution of bias 664 
(horizontal values) in relation to increasing patch size (rows: two, three and four patches) and 665 
matrix fill (columns: 20%, 50% and 80% matrix fill). White columns show the distribution of 666 
bias of only βREL(1), dark grey columns show the distribution of bias of only βREL(2), whereas 667 
light grey columns show the overlapping distribution of bias of βREL(1) and βREL(2).  668 
 669 



 33 

0.01

1

100
Matrix fill: 20%

Tw
o 

pa
tc

he
s

Matrix fill: 50% Matrix fill: 80%

0.01

1

100

Th
re

e 
pa

tc
he

s

4 8 12 16

0.01

1

100

Fo
ur

 p
at

ch
es

4 8 12 16 4 8 12 16

M
ea

n 
va

ria
tio

n 
of

 th
e 

es
tim

at
ed

 b
et

a 
di

ve
rs

ity

Sample size  670 
Fig. 5: Effect of sample size on the mean variation of estimated beta diversity in relation to 671 
increasing patch size (rows: two, three and four patches) and matrix fill (columns: 20%, 50% 672 
and 80% matrix fill). Solid lines show βREL(1), dashed lines show βREL(2) diversity.  673 
 674 
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Fig. 6: The effect of sample size on the type I (solid line) and type II (dashed line) error rates 676 
in relation to increasing patch size (rows: two, three and four patches) and matrix fill 677 
(columns: 20%, 50% and 80% matrix fill). 678 


