Chapter 8

GENE UP-REGULATION BY DNA DEMETHYLATION IN 35S-GSHI Transgenic Poplars (POPULUS X CANESCENS)

G. Gyulai ${ }^{1}$, Z. Tóth ${ }^{1}$, A. Bittsánszky ${ }^{1,2}$, G. Gullner ${ }^{2}$, Z. Szabó ${ }^{1}$, J. Kiss ${ }^{1}$, T. Kőmíves ${ }^{2}$ and L. Heszky ${ }^{1}$
${ }^{1}$ St. Stephanus University, Institute of Genetics and Biotechnology, Gödöllő, H-2103, Hungary
${ }^{2}$ Plant Protection Institute, Hungarian Academy of Sciences, Budapest, H-1525, Hungary

Abstract

Gene expression levels of transgene 35S-gshI (γ-glutamylcysteine synthetase) cloned from E. coli, and the endogenous gene gsh1 of poplar (Populus x canescens) were upregulated by the DNA demethylating agent DHAC (5,6-dihydro-5'-azacytidine hydrochloride) ($10^{-4} \mathrm{M}$ for 7 days) in aseptic leaf discs cultures. Two 35S-gshI-transgenic ($6 \operatorname{lgl}$ and 11 ggs) and wild type (WT) poplar clones were used. The efficiency of gene upregulation was also analyzed under herbicide paraquat stress $\left(4 \times 10^{-7} \mathrm{M}\right)$. Levels of gshI-mRNA and gsh1-mRNA were determined by RT-qPCR (reverse transcriptase quantitative PCR) after cDNA synthesis. For internal control, the constitutively expressed housekeeping poplar genes α-tubulin and actin were used, and the $2^{-\Delta \Delta \mathrm{Ct}}$ method was applied for data analysis. In long term DHAC treatment (21 days), a morphogenetic response of de novo root development was observed on leaf discs in a wide concentration range of DHAC (10^{-8} to $10^{-6} \mathrm{M}$). Adventitious shoots (11 ggs clone) also emerged from leaf discs after a combined treatment with DHAC $\left(10^{-4} \mathrm{M}\right)$ and paraquat $\left(10^{-7} \mathrm{M}\right)$. Shoots were dissected, rooted and transplanted in glass houses for further analyses for phytoremediation capacity. Since DNA methylation patterns are inherited (epigenetic memory), these poplar plants with increased gene expression levels of both transgene $35 \mathrm{~S}-g s h \mathrm{I}$ and endogenous gene gsh1 provide novel plant sources for in situ application.

[^0]AbBreviations:
5-mC: 5-methylcytosine; AdoMet: S-adenosyl methionine dependent methyltransferases; C: cytosine nucleotide of DNA; BA: \underline{b} enzyl \underline{a} denine; cDNA: copia $D N A$; DHAC: 5,6-di $\underline{h} y$ ydro-5'-azacytidine hydrochloride; E. coli: bacterium Escherichia coli; GMO: genetically $\underline{\text { modified }} \underline{\text { organism; }}$ γ-ECS: γ-glutamylcysteine synthetase enzyme encoded by gene $g s h$; GSH: glutathione tripeptide (γ-L-glutamyl-L-cysteinyl-glycine); MTases: DNA methyltransferases;
NAA: \underline{n} aphthalene \underline{a} cetic \underline{a} cid; PCR: polymerase \underline{c} hain \underline{r} eaction; NTC: \underline{n} on \underline{t} emplate \underline{c} ontrol; PQ: paraquat (N, N^{\prime}-Dimethyl-4,4'-bipyridinium dichloride; syn.: methylviologen); RT-qPCR: \underline{r} everse $\underline{\text { ranscription }}$ based quantitative PCR; $r b c \mathrm{~S}$: gene for RBCS (syn.: RuBPCase SSU, $\underline{\text { ib }} \mathbf{i} u$ lose-1,5-bisphosphate \underline{c} arboxylase \underline{s} mall subunit); TGS: transcriptional gene silencing; PTGS: post-transcriptional gene $\underline{s i l e n c i n g ; ~}$ 6lgl and 11ggs: gshI-transformed poplar (Populus x canescens) clones; WT: wild type.

InTRODUCTION

Poplars (Populus ssp) are capable of removing and degrading toxic substances and heavy metals from polluted soils through phytoremediation due to the extensive root system, high water uptake capacity, rapid growth and large biomass production (Kőmíves et al. 1998; Burken and Schnoor 1998; Di Baccio et al. 2003; Gyulai et al. 2005). The oxidative stress tolerance capacity of Populus x canescens clones has been significantly increased recently by genetic transformation with the 35 S -gshI gene, which encodes for γ-glutamylcysteine synthetase (γ-ECS, EC 6.3.2.2) (Leple et al. 1992; Arisi et al. 1997; Noctor et al. 1998) cloned from E. coli (Watanabe et al. 1986; NCBI X03954). The transformed poplar clones ($6 \operatorname{lgl}$ and 11 ggs) showed higher levels of GSH and its precursor of γ-L-glutamyl-L-cysteine (γ-EC) than the WT, which led to an improved detoxification capacity against various environmental pollutants (Noctor et al. 1998; Peuke and Rennenberg 2005).

Transgenic clones ($6 l g l$ and $11 g g s$) studied have been maintained in aseptic shoot cultures for about a decade without 35S-gshI transgene elimination (Gyulai et al. 2005; Bittsánszky et al. 2006). However, transgenes have been exposed to gene silencing processes either in the region of the constitutive CaMV-35S promoter, or in the coding region of the genes. The CaMV-35S promoter is considered to be a constitutive promoter; nevertheless its expression might be modulated by photoperiod, temperature, developmental stages and DNA methylation (Benfey and Chua 1990; Zardo et al. 1999; Schnurr and Guerra 2000; Obertello et al. 2005; Yang et al. 2005). By the application of a DNA-demethylation treatment, as in the study presented here, this natural gene silencing process can be reversed.

DNA Methylation:

DNA methylation of plant genes is a general endogenous process for gene silencing catalyzed by nuclear enzyme family MTases (DNMT - DNA methyltransferases in mammals; and DNMT-orthologue MET - methyltransferases, CMT - cytosine methyltransferases, and DRM in plants). These enzymes transfer a methyl group $\left(\mathrm{CH}_{3}\right)$ mainly from S-adenosyl methionine (AdoMet-dependent methyltransferases) either to the position of cytosine- C_{5} (EC 2.1.1.73), cytosine- N_{4} (E.C. 2.1.113) or adenine- N_{6} of DNA (E.C. 2.1.2.72) (Pósfai et al. 1989; Cheng and Roberts 2001; Vaucheret 2006). The cytosine methylation to 5methylcytosine (5 mC) is the most frequent process resulting in down regulation of both genes and transgenes. DNA methylation is frequently directed by RdDM ($R \mathrm{NA}$-directed $D \mathrm{NA}$ methylation) (Linn et al. 1990; Kumpatla et al. 1997; Castilho et al. 1999; Mathieu and Bender 2004).

Genetically, DNA methylation patterns are associated with two types of gene silencing in plants, the transcriptional gene silencing (TGS) caused by methylation in the promoters of genes, and the post-transcriptional gene silencing (PTGS; called RNA interference in animals, RNAi) caused by methylation in the coding region of genes (Elmayan and Vaucheret 1996; Kooter et al. 1999). DNA methylation is not universal, as in the insect fruit fly Drosophyla where is does not occur (Hirochika et al. 2000). The meiotically heritable TGS (Park et al. 1996) results in methylation 'inprints', whereas PTGS, which is not heritable, affects the stability of the RNA transcripts, at a translational level under the control of RNAi (Napoli et al. 1990; Krol et al. 1990; Fire et al. 1998; Agrawal et al. 2003). The PTGS (RNAi) system allows cells to control endogenous nucleic acids (e.g. transposons) and exogenous (e.g. virus, transgenes) invaders (Vaucheret 2006).

DNA methyltransferases can be blocked exogenously by MTase-inhibitors, which act via covalent complex formation (Wolfe and Matzke 1999; Fan et al. 2005) when present either in the cytosol or when incorporated into DNA (as base analogues) resulting in gene reactivation (Bird 2002; Issa and Kantarjian 2005). Gene reactivation through the application of thymidine analogues can also occur in demethylation-independent gene up-regulations (Fan et al. 2005).

The study presented here aims to achieve the simultaneous analysis of gene up-regulation of both the prokarytic gene $35 \mathrm{~S}-\mathrm{gsh} \mathrm{I}$ and the endogenous eukaryotic poplar gene gsh1 of two 35S-gshI-transformant (6 lgl and 11 ggs) poplar clones (Leple et al. 1992; Arisi et al. 1997; Noctor et al. 1998) and the WT, in response to DHAC-treatment $\left(10^{-4} \mathrm{M}\right)$ combined with paraquat $\left(4 \times 10^{-7} \mathrm{M}\right)$ stress.

Conclusion

Sequence Analysis of $\boldsymbol{g s h}$ Genes:

Comparative analysis of sequence alignments (Figure 1), DNA nucleotide diversities (Figure 2), amino acid contents (Figure 3) and dendrogram analyses based on nucleotide and amino acid sequences of both $g s h 1$ and $g s h I$ genes of prokaryotic and eukaryotic plant species (Figure 4) reflects different rates of DNA nucleotide substitutions due to the consequences of evolution and adaptation (Baldwin 1896; Amirnovin 1997).
G. Gyulai, Z. Tóth, A. Bittsánszky et al. Gene up-Regulation by DNA demethylation.

Figure 1. Multiple sequence alignments and box shade of parts (150 nt) of gsh1-cDNA triplets (top lines) of plants ($1-14$); alga
 with translated amino acid (50) sequences (below). Synonymous and non-synonymous (amino acid red box) nucleotide substitutions are indicated. Sequences of NCBI databases (Altschul et al. 1997) were analyzed by BioEdit program (Hall 1999).

Figure 2. Nucleotide (G, C, A, T) compositions of gsh1-cDNAs of sixteen plant species and the nonhomologous gshI-cDNA of prokaryote E. coli. (accession \# are indicated in Figure 1).

Figure 3. Comparative amino acid (AA) content of complete sequences of the leucine (Leu)-rich GHS1 enzymes of eight plant species compared to non-homologous GSHI of E. coli (accession \# are indicated in Figure 1).
G. Gyulai, Z. Tóth, A. Bittsánszky et al. Gene up-Regulation by DNA demethylation...

Figure 4. Distance trees (MEGA4; Tamura et al. 2007) of sixteen plant gsh1-cDNA (derived form gsh1-mRNAs) (left), and the translated GSH1 protein sequences (right) with boot strap analyses (1000). Size bars indicate numbers of substitutions per locus (accession numbers are indicated in Figure 1

As a result of redundancy of genetic code, which provides protection against mutations, synonymous (silent) nucleotide substitutions (point mutation) in the protein coding triplets do not cause amino acid replacement in the protein sequences (Wong 1981 in 1988). Sample sections of the plant DNA and cDNA of gsh1 genes and the non-homologous prokaryotic gshI gene of E. coli revealed several synonymous and non-synonymous nucleotide substitutions (Figure 1). In general, nucleotide substitution is a neutral processes as certain codons are translated more frequently (codon use preferences) which might be related to adaptation capacity (fitness) of the species (Palmer 1997); however, distance tree of gsh sequences of plant species showed correlation with taxonomical lineages, with dominance of Brassicaceae species (Figure 4). Both cDNA and protein sequences of poplar showed the closest linkage to Solanaceae species (tomato and tobacco), however nucleotide substitution scale (0.005) showed double level of that of amino acids (0.01) (Figure 4).

The Role of Reduced Glutathione (GSH) in Plant Cell:

Reduced glutathione (GSH), the major non-protein, tripeptide thiol compound (Meister and Anderson 1983), present in high concentrations (mM) of plant tissues, is regarded as one of the major determinants of cellular redox homeostasis (Rusznyák and Szent-Györgyi 1936) with a key role in the detoxification processes (Strohm et al. 1995; Foyer and Noctor 2005; Mullineaux and Rausch 2005; Wachter et al. 2005). Glutathione becomes reactive as the thiol group of cysteine residue releases electrons to unstable electron acceptor molecules, such as reactive oxygen species. The two reduced GSH molecules form glutathione disulfide (GSSG) which regenerates to GSH again by the catalysis of gluathione reductase. Cells under regular conditions ('healthy cells') have a GSH / GSSG ratio over about 90%. Changes in the GSSG / GSH ratio indicates that plants are exposed to oxidative stress.

Up-Regulation of $\boldsymbol{g s h}$ Genes by DNA Demethylation:

Gene expression levels can be easily triggered in vitro by up-regulation (syn.: reactivation, hypomethylation and demethylation) or down-regulation (syn.: silencing, hypermethylation and suppression) of the gene of interest (Goffin and Eisenhauer 2002; Columbus 2006). For gene up-regulation, MTase-inhibitors such as the structurally modified cytosine analogues zebularine, 5 -azacytidine (5 -azaC), 5 -aza-2'-deoxycytidine and DHAC have been shown to be highly effective (Chen and Pikaard 1997; Cao et al. 2000; Cheng and Roberts 2001). Alternatively, the drug 3 -aminobenzamide has been used for gene downregulation in a series of genes by DNA hypermethylation (Zardo et al. 1999). In the study presented here, DHAC was applied due to its high chemical stability in aqueous solutions of long term treatments (Goffin and Eisenhauer 2002).

RT-qPCR:

Reverse transcription (RT) followed by qPCR analysis has proven to be an exceptionally sensitive method compared to RNA-DNA hybridization (Northern blot) (Alwine et al. 1977)
for both absolute and relative quantification of gene expressions (Veres et al. 1987). In the study presented here, relative quantification was used as it is more relevant to compare expression levels of different treatments rather than absolute quantification (Pfaffl 2001; Livak and Schmittgen 2001; Tichopad et al. 2003).

The relative gene expression level of 35S-gshI transgene in the 6 lgl clone showed a 13.5fold increase over the $11 g g s$ clone (1.0) which was doubled (1.8-fold) in the DHAC-treated $6 \lg l$ samples (23.7) but not in the $11 g g s$ clone (0.4 -fold) (Figure 5). This expression pattern was contrary to the observation of relative copy numbers of the transgene $35 \mathrm{~S}-\mathrm{gsh} \mathrm{I}$ as it was lower in the $6 l g l$ clone (1.0) than in the 11 ggs samples (1.69) (Table 1). These results might be due to the $35 \mathrm{~S}-g s h \mathrm{I}$ transgene construct of the $6 \operatorname{lgl}$ clone which included an additional targeting sequence (from $32^{\text {nd }} \mathrm{nt}$ to $202^{\text {nd }} \mathrm{nt}$ of the total 206 bp ; NCBI M25614) of a transit peptide (TP) (57 amino acids) gene of $r b c \mathrm{~S}$ (RuBPCase SSU: small subunit of RuBPCase, ribulose-1,5-bisphosphate carboxylase) (Leple et al. 1992; Arisi et al. 1997; Noctor et al. 1998; Bittsánszky et al. 2007). TPs as N-terminal extensions of transgene-products facilitate targeting and translocation of the cytosolically synthesized RBCS-GSH complex into plastids, which has also been found to be more effective in transgenic tobacco compared to regular transgene cassettes (Creissen et al. 1996; Bruce 2001; Wachter et al. 2005).

Gene expression levels of the endogenous poplar gene gsh1 also showed high responsiveness to DHAC-induced demethylation with an extremely high expression in the untransformed WT poplar clone (19.8-fold). A competition in the reactivation capacity between transgene 35S-gshI and poplar $g s h 1$ of $6 \operatorname{lgl}$ clone occurred as the gene expression of transgene $35 \mathrm{~S}-\mathrm{gsh}$ increased from a high rel. expression level (13.5) up by about a two-fold (1.8 times) rate to 23.7 compared to the poplar $g s h 1$ gene that increased by an 8.7 -fold increment from a lower level (1.3) to 13.9 rel. unit (Figure 5). These results might indicate differences in DNA methylating capacity between transgenes and proper wild type genes as a type of cosuppression (Krol et al. 1990; Anand et al. 2003; Baumberger and Baulcombe 2005).

The phenomenon of co-suppression was originally discovered in plants (Napoli et al. 1990; Krol et al. 1990). Napoli et al. (1990) intended to up-regulate the activity of a gene for chalcone synthase (chsA), an enzyme involved in the production of anthocyanin pigments. Some of the transgenic petunia plants harboring the chsA coding region under the control of a CaMV-35S promoter lost both endogene and transgene chalcone synthase activity. As a result, many of the flowers were variegated in color or developed white sectors (Napoli et al. 1990). The molecular analysis discovered that transgene expression led to the formation of dsRNA, which, in turn, initiated PTGS (Metzlaff et al. 1997).

The interaction between transgenes and endogenous genes might also have resulted either from multicopy integration of transgene at the same locus (Assaad et al. 1993), the position effects due to random integration (Yang et al. 2005), the AT/CG composition of the transgene (Matzke and Matzke 1998), the presence of inverted repeats in the integration site (Stam et al. 1997), the overexpression of the transgene (Que et al. 1997), or the environmental conditions (Meyer and Heidman 1994).

Selective methylation capacity of transgene homologues has also been observed in supertransformants (a type of transgene pyramiding) where the resident transgene promoter Ubil from the first transformation remained unmethylated whereas the incoming 35S transgene promoter of the subsequent transformation was silenced in rice (Yang et al. 2005).

Figure 5. Relative gene expression levels (RT-qPCR) of transgene 35S-gshI (E. coli) and endogenous poplar (Populus x canescens) gene $g s h 1$ in the $35 \mathrm{~S}-g s h \mathrm{I}$-transgenic clones of $11 g g s, 6 \operatorname{lgl}$ and WT exposed to DHAC ($10^{-4} \mathrm{M} ; 7$ days) and DHAC combined with paraquat (PQ) $\left(4 \times 10^{-7} \mathrm{M} ; 7\right.$ days $)(\mathrm{n}=$ 6) (n.d. - not detected).

Table 1. Relative copy number of transgene 35S-gshI (E.coli) in the transgenic poplar (P. x canescens) clones $6 \operatorname{lgl}$ and 11 ggs determined by RT-qPCR analysis using the $2^{-\Delta \Delta C t}$ method with the internal control of constitutively expressed poplar gene actin (three repetitions of two samples in each case, $n=6$)

Poplar lines	35S-gshI		actin		$\Delta \mathrm{Ct}$		$\Delta \Delta \mathrm{Ct}$		35S-gshI copy \# ($2^{-\Delta \Delta C t}$)		
	Ct	SD	Ct	SD	Value	SD	Value	SD	-/+ ra		Value
6 lg l	23.75	0.14	23.41	0.24	0.34	0.21	0.0	0.21	0.86	1.16	1.00
$11 \mathrm{gg} s$	22.50	0.26	22.91	0.14	-0.41	0.13	-0.75	0.13	1.54	1.85	1.69

Paraquat Stress:

Paraquat (N, N^{\prime}-Dimethyl-4,4'-bipyridinium dichloride; syn.: methylviologen) primarily acts as an electron acceptor in the electron transport chains located in chloroplasts (Gyulai 1984; Lehoczki et al. 1992; Szigeti et al. 2001). The paraquat, at bleaching concentrations totally impairs chloroplast function by reduction of the bleached tissues generating superoxide radicals that react with unsaturated lipids in membranes (Bittsánszky et al. 2005). This deleterious effect of paraquat was effectively eliminated by the DHAC treatment, as the endogenous poplar gene $g s h 1$ of the $11 g g s$ clone did not show DHAC responses but under paraquat stress it increased by 8 -fold (from 3.1 to 28.1) along with co-expressing the
transformed $35 \mathrm{~S}-\mathrm{gsh} \mathrm{I}$ gene with 4 -fold increment (from 1.0 to 4.0) (Figure 5). In contrast, endogenous $g s h 1$ of the WT clone showed extreme upregulation in response to DHACinduced DNA-demethylation with 20-fold increase (from 1.0 to 19.8) but no further responses to paraquat stress (17.3) (Figure 5).

Increased $g s h$-activity with elevated levels of $g s h$-mRNA (syn.: γ-ECS-mRNA) has also been reported in Brassica napus (Sun et al. 2005), Brassica juncea (Schäfer et al. 1998), and Arabidopsis thaliana under different stress conditions (Xiang and Oliver 1998; Harada et al. 2002). The moss Physcomitrella patens also showed a high level of γ-ECS overexpression (5.7-7.9-fold increase) in response to heavy metal ($10 \mu \mathrm{M} \mathrm{Cd}^{2+}$, for 3 days) stress (Rother et al. 2006). These results indicate a wide stress-response capacity of gsh 1 genes not only to herbicides but also to heavy metals.

DHAC-Induced Morphogenesis:

A de novo root development was observed on DHAC-treated poplar leaf discs incubated for long term (21 days) treatment, which indicates a multi-target action site of DHAC at especially the auxin-related root initiating genes (Figure 6).

Figure 6. Root initiation capacity of the DNA demethylating agent DHAC $\left(10^{-8} \mathrm{M}\right.$ to $\left.10^{-6} \mathrm{M}\right)$ on leaf discs of untransformed (WT) and 35S-gshI-transformed poplar (Populus \times canescens) clones ($6 \operatorname{lgl}$ and 11 ggs) incubated on long-term (21 days) aseptic agar media.

The morphogenetic capacity of DNA demethylating agents on plant development has been reported in different organs (Finnegan and Kovac 2000; Xiao et al. 2006). Flower induction of Arabidopsis (Finnegan et al. 1998) and shoot development of Petunia (Prakash and Kumar 1997; Prakash et al. 2003) were initiated by DNA-demethylating agents. Early flower bud
development (vernalization, remembering winter) in Arabidopsis was found to be coupled with low levels of DNA methylation (Finnegan et al. 1998, 2005; Henderson and Dean 2004).

Figure 7. Samples of shoot regeneration from leaf discs of 35 S -gshI-transgenic poplar (Populus \times canescens) clone (11 ggs) treated with DNA demethylating agent DHAC $\left(10^{-4} \mathrm{M}\right)$ combined with paraquat $\left(10^{-7} \mathrm{M}\right)$ stress and incubated on aseptic agar media for 21 days.

Low levels of methyl-cytosine were also associated with organogenetic capability in sugarbeet (Beta vulgaris altissima) (Causevic et al. 2005). Contrary to morphogenesis, incremental DNA methylation levels occurred during bud dormancy (Horvath et al. 2003; Law and Suttle 2003). Methylation also plays a key role in the chromosome modelling as it turnes out that the Pc-G (Polycomb Group) protein complexes encoded by pcg-g genes (polycomb group genes) control flowering in plants, which genes are similar to the PRC2 (Polycomb Repressive Complex 2) in animals, and functions as a histone methyltransferase (Chanvivattana et al. 2004).

Adventitious shoots were also developed from leaf discs of the 11 ggs clone treated with DHAC $\left(10^{-4} \mathrm{M}\right)$ and paraquat $\left(10^{-7} \mathrm{M}\right)$ in long term cultur (Figure 7). Shoots (three in total of the four repetition experiments) were micropropagated and rooted in vitro according to Gyulai et al. (2005), and transplanted in glass houses (86 lines) for further analyses for phytoremediation capacity. As DNA methylation patterns are inherited (epigenetic memory), these poplar plants with increased gene expression levels of both transgene 35S-gshI and endogenous gene $g s h 1$ provide novel plant sources with elevated stress capacity.

Materials and Methods

Plant material: Clones (INRA 717-1-B4) of the untransformed (WT) poplar (Populus x canescens $=P$. tremula \times. alba; $2 \mathrm{n}=4 \mathrm{x}=38 ; 4.5$ to $\left.5.5 \times 10^{8} \mathrm{bp}\right)$ (Taylor 2002) and the genetically transformed lines overexpressing 35S-gshI (γ-glutamylcysteine synthetase; EC 3.2.3.3; cloned from Escherichia coli; 1.557 bp) (Watanabe et al. 1986) (NCBI X03954) gene product, glutathione (GSH) either in the cytosol (line 11 ggs) or in the chloroplasts (line $6 \lg l$) were used. Gene constructs are driven by a copy of the CaMV-35S promoter (Leple et al. 1992; Arisi et al. 1997; Noctor et al. 1998).

Shoot culture in vitro: Nodal segments of poplar clones were micropropagated and maintained in aseptic shoot cultures in vitro (Gyulai et al. 1995; Kiss 1999; Gullner et al. 2005).

Detection of gene expression levels by RT-qPCR analysis, RNA isolation: Relative gene expression levels of $35 \mathrm{~S}-\mathrm{gsh} \mathrm{I}$-transgene (E. coli) and the endogenous poplar gene $g s h 1$ were analyzed by RT-qPCR in the control of constitutively expressed housekeeping poplar gene α -
tubulin and actin. Total RNA was extracted from 0.05 g leaf disc tissues using the Absolutely RNA Miniprep Kit (\# 400800, Stratagene, USA - Biomedica, Hungary) following the manufacture's protocol. Three individual leaf discs were analyzed in duplicate measurements $(\mathrm{n}=6)$ in each case. The quality and quantity of extracted RNA samples ($2 \mu \mathrm{l}$) were measured by NanoDrop ND-1000 UV-Vis spectrophotometer (NanoDrop Technologies, Montchanin, DE, USA - BioScience, Budapest, Hungary).
cDNA synthesis: Reverse transcription of first strand cDNA was synthesized on the mRNA templates by RT (reverse transcriptase of Moloney Murine Leukemia Virus: MMuLV) with oligo $(\mathrm{dT})_{18}(0.5 \mu \mathrm{~g})$ as the primer following the manufacturer's protocol (\# K1622; Fermentas - Biocenter, Szeged, Hungary).

Gene expression analysis: First strand cDNA samples ($2.5 \mu \mathrm{l}$) were directly applied in RT-qPCR $(25 \mu \mathrm{l})$ and probed by gene specific primers (400 nM). Primers were as follows: 35S-gshI: 5'-aggtcaggacatcgaactgg-3' and 5'-gatgcaccaaacagataagg-3'; gsh1-poplar: 5'-agttccgaggctgacatgat-3' and 5^{\prime} '-cagcacggttgttgtcagta-3'; α-tubulin (poplar): 5'-taaccgccttgttctcagg-3' and 5^{\prime} '-cttggggtatggaaccaagt-3'; and actin (poplar): 5'-aatggtaccggaatggtcaa-3' and 5'-cccaacatacgcatcctttt-3‘ according to Bittsánszky et al. (2007).

Kit of DyNAmo HS SybrGreenI qPCR kit (\# F-410L, Finnzymes, Finland - Izinta, Hungary) was used. Reactions were performed in forty cycles $\left(95^{\circ} \mathrm{C} / 20 \mathrm{sec}, 60^{\circ} \mathrm{C} / 20 \mathrm{sec}, 72\right.$ ${ }^{\circ} \mathrm{C} / 20 \mathrm{sec}$) prior to a hold at $95^{\circ} \mathrm{C}$ for 10 min , and a final hold at $4^{\circ} \mathrm{C}$. Reactions were run by Rotor Gene 6000 cycler (Corbett Research, Australia - Izinta, Hungary).

Detection of relative copy number of 35 S -gshI-transgene: Relative copy number of 35 S $g s h I-t r a n s g e n e ~ i n ~ c l o n e s ~ o f ~ 11 g g s ~ a n d ~ 6 l g l ~ w e r e ~ d e t e r m i n e d ~ u n d e r ~ t h e ~ c o n t r o l ~ o f ~$ constitutively expressed housekeeping gene actin by using selective primer pairs used for RTPCR. The levels of $g s h I-m R N A$ were detected by the amplified fragment (273 nt) of the incorporated transgene (from 667 nt to 939 nt).

Data analysis of real-time RT-qPCR: For both calibration and quantification of reactions, ten-fold serial dilutions $\left(1 \mathrm{x}, 10^{-1} \mathrm{x}, 10^{-2} \mathrm{x}, 10^{-3} \mathrm{x}\right)$ of cDNAs were applied including controls of NTC (non DNA-template control) and $\mathrm{ddH}_{2} \mathrm{O}$. Data were analyzed by relative quantification of the $2^{-\Delta \Delta C t}$ method (Livak and Schmittgen 2001). Ct values (threshold cycle): The threshold of fluorescence value (dR) of the amplified PCR products was determined manually above the background of fluorescence signals. Standard curve correlating Ct values to \log amount of DNA were plotted at high R^{2} - ratio (0.976 to 0.987). $\Delta \mathrm{Ct}: \Delta \mathrm{Ct}$ values were calculated as $\mathrm{Ct}_{g s h \mathrm{I}}$ minus $\mathrm{Ct}_{\text {a-tubulin }}$ and $\mathrm{Ct}_{\text {gsh1 }}$ minus $\mathrm{Ct}_{\text {a-tubulin }}$ according to (Livak and Schmittgen 2001). $\Delta \Delta \mathrm{Ct}$ values: $\Delta \Delta \mathrm{Ct}$ values were determined as mean $\mathrm{Ct}_{\text {untreated }}$ minus mean $\mathrm{Ct}_{\text {treated }}$ (Livak and Schmittgen 2001).

Multiple sequence alignments were carried out by BioEdit Sequence Alignment Editor (NCSU, USA) (Hall 1999) and CLUSTALW EMBL-EBI (Thompson et al. 1994) software programs. BLAST (Basic Local Alignment Search Tool) analysis (Altschul et al. 1997) was carried out by a computer program of NCBI (National Center for Biotechnology Information). Distance trees based on gsh 1 sequences were edited by either CLUSTALW EMBL-EBI (Thompson et al. 1994) or MEGA4 (Tamura et al. 2007). For MEGA4 the following steps were applied: Bootstrap Test of Phylogeny (1000); Neighbor-Joining; Gaps (Complete deletions); Substitution model (Nucleotide Maximum Composite Likelihood) according to Tamura et al. (2007). Diagrams were edited by Microsoft Office Excel program (9625 West 76th Street, Eden Prairie, MN 55344, USA).

ACKnowledgments

Authors thank RP Malone (DIT, Dublin, Ireland) and L Waters Jr (AU, Alabama, USA), for their comments on the manuscript. Poplar clones were kindly provided by CH Foyer (Newcastle upon Tyne U, UK) and H Rennenberg (A-LU, Freiburg, G).

References

Agrawal, N; Dasaradhi, PVN; Mohmmed, A; Malhotra, P; Bhatnagar, RK; Mukherjee, SK. (2003) RNA Interference: Biology, Mechanism and Applications. Microbiol. Mol. Biol. Reviews, 67, 657-685.
Alwine, JC; Kemp, DJ; Stark, GR. (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc. Natl. Acad. Sci. USA, 74, 5350-5354.
Amirnovin, R. (1997) An analysis of the metabolic theory of the origin of the genetic code. J. Mol. Evol., 44, 473-476.
Anand, A; Trick, HN; Gill, BS; Muthukrishnan, S. (2003) Stable transgene expression and random gene silencing in wheat. Plant Biotechnology J., 1, 241-251.
Altschul, SF; Madden, TL; Schaffer, AA; Zhang, JH; Zhang, Z; Miller, W; Lipmand, DJ. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389-3402.
Arisi, A-CM; Noctor, G; Foyer, CF; Jouanin, L. (1997) Modification of thiol contents in poplars (Populus tremula $\times P$. alba) overexpressing enzymes involved in glutathione synthesis. Planta, 203, 362-372.
Assaad, F; Tucker, KL; Signer, ER. (1993) Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol. Biol., 22, 1067-1085.
Baldwin, M.J. (1896) A new factor in evolution. The American Naturalist, 30, 441-451.
Baumberger, N. and Baulcombe, DC. (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruit microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. USA, 102, 11928-11933.
Benfey, P.N. and Chua, N.H. (1990) The cauliflower mosaic virus $35 S$ promoter: combinational regulation of transcription in plants. Science, 250, 959-966
Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes and Dev., 16, 6-21.
Bittsánszky, A; Kőmíves, T; Gullner, G; Gyulai, G; Kiss, J; Heszky, L; Radimszky, L; Rennenberg, H. (2005) Ability of transgenic poplars with elevated glutathione content to tolerate Zinc (2+) stress. Environment Int., 31, 251-254.
Bittsánszky, A; Gyulai, G; Humphreys, M; Gullner, G; Csintalan, Zs; Kiss, J; Szabó, Z; Lágler, R; Tóth, Z; Rennenberg, H; Heszky, L; Kőmíves T. (2006) RT-PCR analysis and stress response capacity of transgenic gshI-poplar clones (Populus x canescens) in response to paraquat exposure. Z Naturforschung, 61c, 699-730.
Bittsánszky, A; Gyulai, G; Malone, RP; Gullner, G; Kiss, J; Czakó, M; Márton, L; Heszky, L; Kőmíves, T. (2007) Triggering of a plant molecular defense mechanism; gene expression levels of transgene gshI and poplar gene gsh (Populus x canescens) in response to the

DNA demethylating drug DHAC - an RT-qPCR analysis. Acta Phytopathol. Entomol. Hung., 42, 235-243.
Bruce, B.D. (2001) The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. Biochimica Biophysica Acta, 1541, 2-21.
Burken, J.G. and Schnoor, J.L. (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ. Sci. Technol., 32, 3379-3385.
Castilho, A; Neves, N; Rufini-Castiglione, M; Viegas, W; Heslop-Harrison, JS. (1999) 5Methylcytosine distribution and genome organization in Triticale before and after treatment with 5-azacytidine. J. Cell Sci., 112, 4397-4404.
Causevic, A; Delaunay, A; Ounnar, S; Righezza, M; Delmotte, F; Brignolas, F; Hagège, D; Maury, S. (2005) DNA methylating and demethylating treatments modify phenotype and cell wall differentiation state in sugarbeet cell lines. Plant Physiol. Biochem., 43, 681691.

Cao, X; Springer, NM; Muszynskii, MG; Phillips, RL; Kaeppler, S; Jacobsen, SE. (2000) Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc. Natl. Acad. Sci. USA, 97, 4979-4984.
Chanvivattana, Y; Bishopp, A; Schubert, D; Stock, C; Moon, Y-H; Sung, ZR; Goodrich, J. (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development, 131, 5263-5276.
Chen, Z.J. and Pikaard, C.S. (1997) Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes and Development, 11, 2124-2136.
Cheng, X. and Roberts, R.J. (2001) AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acid Res., 29, 3784-3795.
Columbus, F.H. Focus on DNA research. Hauppauge, NY, USA: Nova Science Pub Inc. 2006. ISBN-10: 1594543437.

Creissen, G; Broadbent, P; Stevens, R; Wellburn, AR; Mullineaux, P, (1996) Manipulation of glutathione metabolism in transgenic plants. Biochemical Society Transactions, 24, 465469.

Di Baccio, D; Tognetti, R; Sebastiani, L; Vitagliano, C. (2003) Responses of Populus deltoides x Populus nigra (Populus x euramericana) clone $\mathrm{I}-214$ to high zinc concentrations. New Phytol., 159, 443-452.
Elmayan, T. and Vaucheret, H. (1996) Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J., 9, 787-797.
Fan, J; Kodama, E-I; Koh, Y; Nakao, M; Matsuoka, M. (2005) Halogenated Thymidine Analogues Restore the Expression of Silenced Genes without Demethylation. Cancer Res., 65, 6927-6933.
Finnegan, E.J. and Kovac, K.A. (2000) Plant DNA methyltransferases. Plant Mol. Biol., 43, 189-201.
Finnegan, EJ; Genger, RK; Kovac, KA; Peacock, WJ; Dennis, ES. (1998) DNA methylation and the promotion of flowering by vernalization. Proc. Natl. Acad. Sci. USA, 95, 5824 5829.

Finnegan, J; Kovac, KA; Jaligot, E; Sheldon, CC; Peacock, WJ; Dennis, ES. (2005) The downregulation of Flowering Locus C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J., 44, 420432.

Fire, A; Xu, S; Montgomery, MK; Kostas, SA; Driver, SE; Mello, CC. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806-811.
Foyer, C.H. and Noctor, G. (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 17, 18661875.

Goffin, J. and Eisenhauer, E. (2002) DNA methyltransferase inhibitors-state of the art. Annals of Oncology, 13, 1699-1716.
Gullner, G; Gyulai, G; Bittsánszky, A; Kiss, J; Heszky, L; Kömíves, T. (2005) Enhanced Inducibility of Glutathione S-Transferase Activity by Paraquat in Poplar Leaf Discs in the Presence of Sucrose. Phyton, 45, 39-44.
Gyulai, G. The effect of lipid metebolism regulators on the function of PS II of Chlorella pyrenoidosa. PhD Dissertation, Szeged University, Hungary, pp. 102, 1984.
Gyulai, G; Jekkel, Z; Kiss, E; Kiss, J; Heszky, LE. (1995) A selective auxin and cytokinin bioassay based on root and shoot formation in vitro. J. Plant Physiol., 145, 379-382.
Gyulai, G; Humphreys, M; Bittsánszky, A; Skøt, K; Kiss, J; Skøt, L; Gullner, G; Heywood, S; Szabó, Z; Lovatt, A; Radimszky, L; Roderick, H; Abberton, M; Rennenberg, H; Kőmíves, T; Heszky, L. (2005) AFLP analysis and improved phytoextraction capacity of transgenic gshI-poplar clones (Populus canescens L.) in vitro. Z Naturforschung, 60c, 300-306.
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser., 41,95-98.
Harada, E; Yamaguchi, Y; Koizumi, N; Hiroshi, S. (2002) Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. J. Plant Physiol., 159, 445-448.
Henderson, I.R. and Dean, C. (2004) Control of Arabidopsis flowering: the chill before the bloom. Development, 131, 3829-3838.
Hirochika, H; Okamoto, H; Kakutani, T. (2000) Silencing of retrotransposons in Arabidopsis and reactivation by the $d d m 1$ mutation. Plant Cell, 12, 357-368.
Horvath, DP; Anderson, JV; Chao, WS; Foley, ME. (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci., 8, 534-540.
Issa, J.P. and Kantarjian, H. (2005) Azacitidine. Nature Reviews Drug Discovery. May, Suppl., S6-7.
Kiss, J. Poplar germplasm improvement by means of biotechnology (PhD Dissertation), Gödöllő University, Hungary, pp. 98, 1999.
Kőmíves, T; Gullner, G; Király, Z. (1998) Role of glutathione and glutathione-related enzymes in response of plants to environmental stress. Stress of Life. From Molecules to Man, 851, 251-258.
Kooter, JM; Matzke MA; Meyer, P. (1999) Listening to silent gene: transgene silencing, gene regulation and pathogen control. Trends Plant Sci., 4, 340-347.
Krol, AR; Mur, LA; Beld, M; Mol, JN; Stuitje, AR. (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell, 2, 291-299.
Kumpatla, SP; Teng, W; Buchholz, WG; Hall, TC. (1997) Epigenetic transcriptional silencing and 5-azacitidne-mediated reactivation of a complex transgene in rice. Plant Physiol., 115, 361-73.

Law, R.D. and Suttle, J.C. (2003) Transient decreases in methylation at 50-CCGG-30 sequences in potato (Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth. Plant Mol. Biol., 51, 437447.

Lehoczki, E; Laskay, G; Gaál, I; Szigeti, Z. (1992) Mode of action of paraquat in leaves of paraquat-resistant Conyza canadensis (L.) Cronq, Plant Cell Environ., 15, 531-539.
Leple, JC; Brasileiro, ACM; Michel, BF; Delmotte, F; Jouanin, L. (1992) Transgenic poplars - Expression of chimeric genes using 4 different constructs. Plant Cell Rep., 11, 137-141.

Linn, F; Heidmann, I; Saedler, H; Meyer, P. (1990) Epigenetic changes in the expression of the maize Al gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol. Gen. Genet., 222, 329-336.
Livak, K.J. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the $2^{-\Delta \Delta C t}$ Method. Methods, 25, 402-408.
Mathieu, A. and Bender, J. (2004) RNA-directed DNA methylation. J. Cell Sci., 117, 48814888.

Matzke, A.J.M. and Matzke, M.A. (1998) Position effects and epigenetic silencing of plant transgenes. Current Opinion in Plant Biol., 1, 142-148.
Meister A. and Anderson, M.E. (1983) Glutathione. Annu. Rev. Biochem., 52, 711-760.
Metzlaff, M; O’Dell, M; Cluster, PD; Flavell, RB. (1997) RNA-mediated RNA degradation and chalcone synthase A silencing in Petunia. Cell, 88, 845-854.
Meyer, P. and Heidmann, I. (1994) Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. Mol. Gen. Genet., 243, 390-399.
Mullineaux, P. and Rausch, T. (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression, Photosynthesis Res., 86, 459-474.
Napoli, C; Lemieux, C; Jorgensen, RA. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 2, 279-289.
Noctor, G; Arisi, A-CM; Jouanin, L; Kunert, KJ; Rennenberg, H; Foyer, CH. (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot., 49, 623-647.
Obertello, M; Santi, C; Sy, M-O; Laplaze, L; Auguy, F; Bogusz, D; Franche, C. (2005) Comparison of four constitutive promoters for the expression of transgenes in the tropical nitrogen-fixing tree Allocasuarina verticillata. Plant Cell Rep., 24, 540-548.
Palmer, J.D. (1997) The mitochondrion that time forgot. Nature, 387, 454-455.
Park, Y-D; Papp, I; Moscone, EA; Iglesias, VA; Vaucheret, H; Matzke, AJM; Matzke, MA. (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J., 9, 183-194.
Peuke, A.D. and Rennenberg H. (2005) Phytoremediation with transgenic trees. Z. Naturforschung, 60c,:199-207.
Pfaffl, M.W. (2001) A new mathematical model for relative quantifcation in real-time RTPCR. Nucleic Acids Res., 29, E45:1-6.
Pósfai, J; Bhagwat, AS; Pósfai, Gy; Roberts, RJ. (1989) Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res., 17, 2421-2435.

Prakash, A.P. and Kumar, P.P. (1997) Inhibition of shoot induction by 5-azacytidine and 5-aza-2'-deoxycytidine in Petunia involves DNA hypomethylation. Plant Cell Rep., 16, 719-724.
Prakash, AP; Kush, A; Lakshmanan, P; Kumar PP (2003) Cytosine methylation occurs in a CDC48 homologue and a MADS-box gene during adventitious shoot induction in Petunia leaf explants. J Exp. Bot., 54, 1361-1371.
Que, Q; Wang, H-Y; English, J; Jorgensen, RA. (1997) The frequency and degree of cosuppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell, 9, 1357-1368.
Rother, M; Krauss, G-J; Grass, G; Wesenberg, D. (2006) Sulphate assimilation under Cd ${ }^{2+}$ stress in Physcomitrella patens - combined transcript, enzyme and metabolite profiling. Plant Cell Environ., 29, 1801-1811.
Rusznyák S. and Szent-Györgyi A. (1936) Vitamin P flavonols as vitamins. Nature, 138, 27.
Schäfer, HJ; Haag-Kerwer, A; Rausch, T. (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L. evidence for Cd-induction of a putative mitochondrial gammaglutamylcysteine synthetase isoform. Plant Mol. Biol., 37, 87-97.
Schnurr, J.A. and Guerra, D.J. (2000) The CaMV-35S promoter is sensitive to shortened photoperiod in transgenic tobacco. Plant Cell Rep., 19, 279-282.
Stam, M; Mol, JNM; Kooter, JM. (1997) The Silence of Genes in Transgenic Plants. Annals Bot., 79, 3-12.
Strohm, M; Jouanin, L; Kunert, KJ; Provost, C; Polle, A; Foyer, CH; Rennenberg, H. (1995) Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula \times Populus alba) overexpressing glutathione synthetase. Plant J., 7,141-145.
Szigeti, Z; Rácz, I; Lásztity, D. (2001) Paraquat resistance of weeds - the case of Conyza canadensis (L.) Cronq, Z. Naturforschung, 65c, 319-328.
Sun, X; Sun, XM; Yang, ZM; Li, SQ; Wang, J; Wang, SH. (2005) Expression of Brassica napus L. γ-glutamylcysteine synthetase and low-and high-affinity sulfate transporters in response to excess cadmium. J. Integrative Plant Biol., 47, 243-250.
Tamura, K; Dudley, J; Nei, M; Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24, 1596-1599.
Taylor, G. (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Annals of Bot., 90, 681-689.
Thompson, JD; Higgins, DG; Gibson, TJ. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673-4680.
Tichopad, A; Dilger, M; Schwarz, G; Pfaffl, MW. (2003) Standardized determination of realtime PCR effciency from a single reaction set-up. Nucleic Acids Res., 31, N ${ }^{0} 20$ e122, 16.

Vaucheret, H. (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes and Dev., 20, 759-771.
Veres, G; Gibbs, RA; Scherer, SE; Caskey, CT. (1987) The molecular basis of the sparse fur mouse mutation. Science, 237, 415-417.

Wachter, A; Wolf S; Steininger, H; Bogs, J; Rausch, T. (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J., 41, 15-30.
Watanabe, K; Yamano, Y; Murata, K; Kimura, A. (1986) The nucleotide sequence of the gene for gamma-glutamylcysteine synthetase of Escherichia coli. Nucleic Acids Res., 14: 4393-4400.
Wolfe, A.P. and Matzke, M.A. (1999) Epigenetics: Regulation through repression. Science, 286, 481-486.
Wong, J.T.F. (1988) Evolution of the genetic code. Microbiol., 5, 174-181.
Yang, G; Lee, YH; Jiang, Y; Kumpatla, SP; Hall, TC. (2005) Organization, not duplication, triggers silencing in a complex transgene locus in rice. Plant Mol. Biol., 58, 351-66.
Xiang, C. and Oliver, D.J. (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell, 10, 1539-1550.
Xiao, W; Brown, RC; Lemmon, BE; Harada, JJ; Goldberg, RB; Fischer, RL. (2006) Regulation of Seed Size by Hypomethylation of Maternal and Paternal Genomes. Plant Physiol., 142, 1160-1168.
Zardo, G; Marenzi, S; Perilli, M; Caiafa, P. (1999) Inhibition of poly(ADP-ribosyl)ation introduces an anomalous methylation pattern in transfected foreign DNA. The FASEB J., 13, 1518-1522.

[^0]: * e-mail: gyulai.gabor@mkk.szie.hu.

